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Abstract

We introduce a monotone class theory of value functions, which shows that they

can be replaced almost surely by a topological lifting comprised of a class of com-

pact isomorphic maps that embed weakly co-monotonic probability measures, at-

tached to state space, in outcome space. Thus, agents solve a signal extraction

problem to obtain estimates of empirical probability weights for prospects under

risk and uncertainty. By virtue of the topological lifting, we prove the follow-

ing almost sure isomorphism theorem between stochastic choice and well defined

outcome:

lim
n→∞

Pr{ sup
An∈B(X)

∣

∣

∣
J(w◦P)(An,ω)− (V−1TV )(An,ω)

∣

∣

∣
> ε}= 0

where S is a states space, P is a partition of S, J is a stochastic choice opera-

tor, w is a probability weight function, P is a probability measure on the sample

space Ω for states of nature–attached to S, {An}
∞
n=1 is a monotone sequence of

subsets in B(P)–the σ -field of Borel subsets of P , T is a risk operator in the

Hoffman-Jorgensen class of lifting operators, and V is a value function operator

with respect to Radon measure m. In particular, V is an averaging operator, and

T = Tg ⊕Tℓ where ⊕ is a binary operation on the space of value functions; Tg is

an isometric gain operator; Tℓ is a skewed loss operator; and ΛT = {1}∪ΛTℓ is the

[point] spectrum of T when ΛTℓ is the spectrum for Tℓ.

JEL Codes: C3, C5
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1 INTRODUCTION

At issue is the following excerpt from (Tversky and Khaneman, 1992, pg. 300):

Let S be a finite set of states of nature; subsets of S are called events.

It is assumed that exactly one state obtains, which is unknown to the

decision maker. Let X be a set of consequences also called outcomes.

* * * * * * * * * *

An uncertain prospect f is a function from S into X that assigns to each

state s ∈ S a consequence f (s) = x in X . To define the cumulative func-

tional, we arrange the outcomes of each prospect in increasing order.

A prospect f is then represented as a sequence of pairs (xi,Ai) which

yields xi if Ai occurs . . . .

* * * * * * * * * *

Cumulative prospect theory asserts that there exists a strictly increasing

value function v : X → Re, satisfying v(x0) = v(0) = 0), . . . [Emphasis

added].

Why do prospect theory’s agents map from state space to outcome space, and then

map a value function from outcome space to the reals? Why can’t they simply

map directly from state space to the reals? In other words, are value functions

irrelevant? (Luce and Narens, 2008, pg. 1) characterized problems of this type

thusly:

Most mathematical sciences rest upon quantitative models, and the the-

ory of measurement is devoted to making explicit the qualitative as-

sumptions that underlie them. This is accomplished by first stating

the qualitative assumptions empirical laws of the most elementary sort
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in axiomatic form, and then showing that there are structure preserv-

ing mappings, often but not always isomorphisms, from the qualitative

structure into a quantitative one. The set of such mappings forms what

is called a scale of measurement. [Emphasis added].

To answer the research questions posed, this paper introduces several “scale[s]

of measurement”–derived from an isomorphic topological lifting of the imputed

direct map from “qualitative” state space to the reals. Along the way, we prove

(1) that the direct map is measureable with respect to stochastic choice functions1

if and only if a value function defined on outcome space exists; (2) Radon inte-

gral representation of value functional with respect to stochastic choice; and (3)

spectral theory of value function operators.

First, extant literature on discrete choice typically apply logit and probit

type models to estimate binary choice probabilities2. Debreu (1958) provided ax-

iomatic foundations for the existence of [cardinal] utility functions on state space

consistent with stochastic choice on that space. That foundation was extended

by McFadden (1974) to include a panoply of discrete choice models. Recently,

(Narens, 2007, pg. 76) explained Luce (1959) choice axiom, which provides

a “ratio scale” for discrete choice parametrizations of conditional probability of

choice sets–a key element of McFadden’s work. See (McFadden, 1980, pg, S16).

1(Debreu, 1958, pg. 440) defines a stochastic choice function as follows:

Definition 1.1. Let Y be a choice set, and f be a function from Y ×Y to [0,1] such that f (a,b)+ f (b,a) = 1 for every

(a,b) ∈ Y ×Y . Then f is a stochastic choice function.

2The literature on stochastic choice is huge. Dating at least back to Fechner’s psychophysics experiments in the

1850’s concerning stimulus intensity and a subject’s detection of the stimulus. See e.g., (Hunt, 2007, pp. 47-53). See

also, Train (2003) and Stott (2003) for pertinent reviews of discrete choice models.
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However, recent advances in prospect theory, implicating the efficacy of von Neu-

man Morgenstern utility models, suggest that at least a cursory re-examination of

stochastic choice in the context of probability weight functions and comonotonic

probabilities is apropos. Our spectral theory of value functions, and matrix repre-

sentation of choice functions is foundated in prospect theory’s function space, so

it accounts for the impact of probability weight functions–phenomenon lacking in

extant discrete choice models3.

Second, our signal extraction approach to estimating probability weight

functions is distinguished from extant literature in which probability weight func-

tions are parametrized with an inverted S-shape4 and empirically tested. See

e.g.,Tversky and Khaneman (1992). For instance, Prelec (1998), introduced a gen-

eralized inverted S-shape probability weight function which he derived from ax-

iomatic foundations based on the concept of compound invariance5. Luce (2001)

3Acerbi (2001) introduced a risk based spectral theory that is fundamentally different from ours. de Palma et al.

(2008) included probability weighting in a discrete choice model parenthetically but did not provide an explicit

parametrization. Also, Cı́žek (2007) proposed a trimmmed estimation scheme to address the sensitivity of maxi-

mum likelihood estimators of binary choice models to tail observations. However, the “trimmed” observations are

precisely those that are overweighed or underweighed, accordingly, to induce the inverted S-shape phenomenon in

probability weight functions. Additionally, despite Train (2003) encyclopedic review of discrete choice models, he is

silent on matrix representation of choice functions.
4The inverted S-shape phenomenon derives from experiments which found that people tend to over weigh small

probabilities (concavity) and under weigh large probabilities (convexity). See e.g. Hsu et al. (2009)(fMRI analysis).

Thereby inducing concave and convex regions around a fixed point on a probability weight function that should

otherwise be inclined at 45% to the horizontal. These phenomena are described as lower and upper sub-additivity,

respectively, of the probability weight function. See (Gonzalez and Wu, 2003, pg. 7, note 2)
5Let (x, p) be a simple gamble in which the consequence x occurs with probability p and nothing otherwise. A

gamble is compound if ((x, p),q) ∼ (x, pq). (Prelec, 1998, pg. 503) defined compound invariace thusly, mutatis

mutandis:

Definition 1.2. A preference order � exhibits compound invariance if for any outcomes x,y,x′,y′ ∈ X , probabilities

q, p,r,s ∈ [0,1], and compounding integer N ≥ 1: If (x, p) ∼ (y,q) and (x,r) ∼ (y,s), then (x′, pN) ∼ (y′,qN) implies

(x′,rN)∼ (y′,sN).
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extended Prelec (1998) by using the concept of reduction invariance6. More re-

cent, al Nowaihi and Dhami (2005) extended Luce (2001) to include power in-

variance7. Wu and Gonzalez (1996, 1999) conducted some of the earlier em-

pirical tests of shape parameters for probability weight functions and confirmed

the inverted S-shape. Additionally, Gonzalez and Wu (1999) used a switching

regression approach to estimating probability weight functions based on a “gener-

alized” log-odds parametrization, i.e. a slight variation of Tversky and Khaneman

(1992). An important paper by Bliechrodt and Pinto (2000) reported that in ex-

periments they conducted on parameter free representation, the modal probability

weight function was found to be inverted S-shape, and that probability over [un-

der] weighting was especially prevalent in the lower [upper] tails8.

The invariance concept, above, is based on the notion that the expected

value of a value function with respect to probability weights over a lottery rep-

6(Luce, 2001, pg. 170) defined reduction invariance as:

Definition 1.3. Let N be a natural number. Then N-reduction invariance is said to hold if and only if, for any

consequence x and probabilities p,q,r ∈]0,1[,((x, p),q)∼ (x,r)
implies

((x, pN),qN)∼ (x,rN).
When N-reduction invariance holds for all natural numbers N, we say reduction invariance holds.

7(al Nowaihi and Dhami, 2005, pg. 4) defined power invariance as:

Definition 1.4. The probability weighting function w satisfies power invariance (PI) if, for all p,q ∈ [0,1],λ ∈
(0,∞)and m ∈ N,(w(p))m = w(q)⇒ (w(pλ ))m = w(qλ )

8By contrast, (Birchby et al., 2008, pp. 9-10) reported that in experiments they conducted the probability weight

function was unstable. Specifically, they analogized Cumulative Prospect Theory’s probability weighting function

(“PWF”) to the Phillips curve debate in Economics where aggregation bias led to analysts misperception of the shape

of the Phillips curve in the short and long run. It should be noted in passing that their experiment provided a “baseline”

lottery (Option A) and asked subjects to compare it with a variable lottery (Option B), and asked them to identify which

lottery among Option B was equivalent to the baseline Option A. They included kernel function plots from a purported

nonparametric estimation scheme, but did not include the parametrized model which generated the plots. Without

more, it is not clear whether their experiment is conclusive.
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resents the invariant value of the lottery to a subject. Much like the Birchoff-

Khinchin mean in an ergodic theory is invariant over time and space parameters.

A compound lottery is based on a monotone increasing set of lotteries constructed

by recursive union of other simpler lotteries. Thus, it is based on a monotone

class theory. Reduction invariance implies that a compound lottery ((x, p),q) is

reducible to an equivalent simple lottery (x, pq). The equivalence is maintained

even when the probabilities in each lottery are raised to a λ power. The idea is

motivated by separable utility over gambles, i.e. U(x, p) = U(x)w(p). Power in-

variance implies that raising the probability in a probability weight function by a

[positive and finite] power, and then raising that probability weight function by a

positive power, does not change its equivalence to the probability weight function

of a different probability raised by the same power. See al Nowaihi and Dhami

(2005) for an excellent set theoretic summary of these issues. See also, (Narens,

2007, pg. 51) for a probabilistic construct of compound invariance.

Third, our behavioral probability phase function appears to be new9. It

provides many of the properties of a probability weight function, including but not

limited to inverted S-shape. However, it accomodates cyclical behavior that arise

in choice under risk and uncertainty10. Thereby providing a natural mechanism

9Stott (2003) conducted a meta-analysis of prospect theory’s functional forms that include but is not limited to

probability weight functions. However, he did not mention probability phase functions. Subsequently, Takaheshi

(2006) introduced an entropy based probability weighting scheme in which the expected value of a value function is

V = A(pα −T{−(p log2 p+(1− p) log2(1− p))}) where A is outcome, T is a degree of aversion, and 0 < α < 1 is

psychophysical effect on small probabilities. Cf. Burns et al. (2010).
10See (Davidson and Marschak, 1958, pg. 1) who stated:

Common experience suggests, and experiment confirms, that a person does not always make the same

choice when faced with the same options, even when the circumstances of choice seem in all relevant

respects to be the same. However, the bulk of economic theory neglects the existence of such incon-
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for explaining behavior over time11.

This paper comprises topological analysis of prospect theory’s function

space under risk and uncertainty. It does not address axiomatic foundations of

stochastic choice12. Specifically, we show that an isomorphic topological lifting of

the imputed direct map from state space to the reals, defined on probability weights

attached to the state space, and embedded in outcome space, renders the value

function superfluous13. So we must solve a signal extraction problem to obtain

estimates of probability weights when outcomes are known but concommittant

probabilities are not14. For instance, instead of the strong comonotonic prospect

(x(1), p(1);x(2), p(2); . . . ;x(n), p(n))

in increasing order (best to worst) of preference for outcomes {xi}
n
i=1, we propose

a weak comonotonic ranking of outcomes that depend on probabilities15. In other

words instead of the ranked pair (x, p) we embed probability p in x and rank the

functions {x(p)}x∈X
16. Conceptually, our procedure exploits the equivalence class

sistencies and the best known theories for decision making, for example, those of von Neumann and

Morgenstern [12] or Savage [15], base the existence of a measurable utility upon a pattern of invariant

two-place relations, sometimes called ’preference’ and ’indifference’. This raises a difficulty for any

attempt to use such theories to describe and predict actual behavior

See also, (Dagsvik, 2006, pg. 1) and http://moodviews.com/.
11(Fabiyi, 2008, pg. 113) introduced an heuristic hyperbolic tangent function (tanh) to parametrize Tversky and

Khaneman (1992) type value functions. However, he did not use that function for probability weighting.
12See Dagsvik (2006) for a recent survey and extension
13We are assuming, without deciding, that prospect theory’s “choice function” from state space to outcome space is

regular.
14 Wu et al. (2004) reviewed how decisions are make under risky conditions when objective probabilities are known.

However, they did not broach decision under uncertainty
15See (Debreu, 1953, Thm. II, pg. 6) for justification of this type of embedding
16 This implies nonseparablity of gambles. At best, it implies weakly separable utility for a simple lottery or gamble

(x, p) because U(x(p)) may not be equal to U(x)w(p). Cf. (Luce, 2001, pp. 167-168). Even though one could
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of comonotone ranking of outcomes and probabilities. To see this, let M be the

space of probability measures, and X be a separable outcome space. For open

U ⊂ M define the equivalence class R on M ×X by

R = {(x, p)|p ∈U, x : U → X} ⊂ M ×X

We are interested in the quotient space17 (M ×X)/R that include ranked out-

comes
(

x(1)(p
k
(n)
1

); x(2)(p
k
(n)
2

); . . . ;x(n)(p
k
(n)
n
)
)

There, embedded unknown probabilities {p
k
(n)
j

} are weakly comonotonic by virtue

of being embedded in ranked outcomes {x( j)(p
k
(n)
j

)}–for the index k
(n)
j , j = 1,2, . . . ,n

which belongs to the index set {1,2, ,n}. Thus, we have for the subsequence of

indexes {k
(n)
j } the weak limit

lim
n→∞

x( j)(p
k
(n)
j

) = x( j)(pk j
)

In that setup, we prove that outcomes are related to choice functions and probabil-

ity weights by the assignment relation

f ◦w◦ p+op(1) = x

conceptually argue for pseudo-separability where x(p)∼ (y, p) for some y and that U(x(p)) =U(y)w(p)
17See (Jacobson, 1951, pp. 5-6) for definition of equivalence class, and quotient space. See also, (Debreu, 1953,

pg. 5).
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where f ◦w ◦ p is an unspecified composite choice function, i.e. operator, from

state space to outcome space, and w is a probability weight function that trans-

forms p to w(p). Intuitively, if f is a choice function, then it is an operation

which maps probability measures into outcome space. After performing this op-

eration agents assign a given outcome to it modulo measurement error18. This

“operator” aspect of f permits a matrix representation in function space.

In order to be consistent with the literature on choice functions, we let

f = βg, where 0 ≤ g ≤ 1

and β is a scale factor. Thus f is really a scaling of the “true” choice function g.

We adopt the rule that

xi 7→
xi

maxi xi ∈ f (P)
,

where P is a partition of state space. In that way, we retain the use of f as a

probabilistic choice function. We make slight modifications to a monotone class

theorem in (Blumenthal and Geetor, 1968, pg. 7, Prop. 2.7) which, in the context

of our model, essentially states that our direct map is measureable with respect

to KT92 choice functions iff there is a monotone sequence of functions on out-

come space X , i.e. strictly increasing value functions. Our weak comonotonic

embedding procedure applies to the proof.

18For instance, the canonical logit parametrization log P
1−P

= xT β + ε where P is the probability associated with a

given choice, ε is measurement error, and x is a vector of attributes, i.e., outcomes, assigns the logit of P to outcomes

x.
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To estimate w(p), we must either parametrize the composite function or

proceed nonparametrically. Either way, some estimation scheme on the measure

space (X ,B(X)) is needed to extract w(p) from the [ranked] functional x(w(p)).

To formulate a scheme, we endow outcome space with a suitable metric induced

norm, and transform it into a Banach space. There, we introduce a spectral the-

ory of loss aversion and the solution space for prospect theory is extended. In

a companion paper, we use well known ordinary least squares19 and factor anal-

ysis20 approaches to devise estimation schemes for probability weight functions

(“PWFs”). In order not to overload this paper, we did not address the critical issue

of estimation of loss aversion index. That issue is addressed in a another paper

where a semiparametric two stage regression approach is used to show that the

asymptotic distribution of Tversky and Khaneman (1992) loss aversion index is a

Brownian bridge functional.

To make this paper as self contained as possible we make liberal use of

definitions of esoteric terms throughout, and reproduce some key theorems in an

appendix. This paper proceeds as follows. In section 2 we provide an overview

of prospect theory. In section 3 we use elementary operator theory to establish a

nexus between stochastic choice functions and value functionals in Theorem 3.1.

An independently important spectral theory of loss aversion is introduced–based

on binary operations in subsection 3.1 for gain-loss averaging operators motivated

19Gonzalez and Wu (1999) used a nonparametric alternating regression for ”switching” δ to estimate probability

weight functions
δ pγ

δ pγ+(1−p)γ . Our approach estimates the entire probability weight function by a reverse regression

approach.
20See (Härdle and Simar, 2003, Chapter 10) for details on this procedure.
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by the invariance principles above. Thus indicating in Theorem 3.4 that a given

value function for losses supports a spectrum of admissible loss aversion indexes.

In Theorem 3.3, on page 21, we provide mathematical proof that the gain oper-

ator is isometric, whereas the loss operator is skewed. In section 4 the topology

of prospect space is introduced. A commutative map, produced in Figure 1 in

subsubsection 4.1.1, provides a pictorial overview of the salient characteristics of

Prospect Theory’s function space. Theorem 4.2 provides a proof for the existance

of the direct map from state space to the reals. The main results on the lifted

space and embedding of weakly ranked comonotonic weighted probabilities are

addressed in Propositions 4.5 and 4.7. Theorem 4.9 on page 35 is the main result

in this paper. It proves almost sure convergence between the lifting of stochas-

tic choice functions and an isomorphic mapping of value functions. We conclude

with perspectives in section 5.

2 OVERVIEW OF PROSPECT THEORY

We begin with a concise overview of prospect theory-taking all axioms as

given. Suppose we are given a separable outcome space X, and an array of conse-

quences or outcomes {x1,x2, . . . ,xn}. Associated with each outcome xi is a gamble

or measureable event Ei drawn from an abstract state space S and its associated

σ -algebra S, where P = {E1,E2, . . . ,En} is a partition of S. So that S =
⋃ n

j=1 E j

for measureable subsets E j ∈ S. A prospect is defined on the product space X ×S,

12



i.e., {x1,E1;x2,E2; . . . ;xn,En} ⊂ X × S21. Let P be a probability measure on the

measureable space (S,S) so that P(Ei) = pi is the probability assigned to the i-th

event. If the probability distribution is known, then the prospect is risky. If the

probability distribution is unknown, then it (the prospect) is uncertain22. Rank

order the choices monotonically, i.e., in ascending order from most important x(1)

to least important x(n)to get the permutation 23

σ{x1,x2, . . . ,xn}→ {x(1),x(2), . . . ,x(n)} (2.1)

Notationally, E(i) is the event attached to x(i)–it is not an independent ranking of

the partition. Define a “cumulative event” E(i) =
⋃ i

j=1 E j. Presumably, there is

some (probability) measure m such that if xi > x j, then m(Ei)> m(E j)
24. The rank

dependant utility (RDU) procedure introduced by Quiggin (1982) is as follows25:

The class of RDU representations involve proving from the axioms the

existence of an order-preserving, utility function U over pure conse-

21Blackwell (1951) characterized a similar space.
22See (Horton, 2004, pg. 20)
23 (Loewenstein and Prelec, 1991, pg. 351) report that experiments show that “to most persons, a deteriorating

series of utility levels is a rather close approximation to the least attractive of all possible patterns, regardless of

the nature of events that are being ordered”. Recently, Ingersoll (2008) also derived a non-monotonicity result, via

“comparative statics” of Tversky and Khaneman (1992) probability weighting function, when he showed that TK92

PWF is not increasing for all parameter values. So that it can assign negative weights in some cases. Nonetheless, the

selected permutation is an artifact of the comonotonic probability distribution of prospects. In this paper, we embed

the probabilities in outcome space. So that when agents rank outcomes they ineluctably rank probabilities a fortiori,

and invariably produce a weak monotonic ranking of probabilities. While our theoretical procedure does not negate

the Loewenstein-Prelec-Ingersoll critique, it does imply that in this paper ranked outcomes is a sufficient condition for

weak comonotonicity. Inasmuch as the probability space is incomplete, i.e., subprobability measures are incomplete,

violations of Tversky and Khaneman (1992) comonotonicity are accomodated by our embedding scheme.
24Ironically, this definition could be internally inconsistent if any of the sets contain a compact set. Thus, E is

presumably compact.
25See Komarova, N. L, Jameson, K. A., & Narens, L., Theory of Measurement, mimeo, mutatis mutandis. In Blume,

L. & Durlauf, S. N. (Eds.) Palgrave Dictionary of Economics.
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quences and gambles and, in general, non-additive weighting function

w over the chance events such that

U(x1,E1;x2,E2; . . . ;xn,En)=
n

∑
1

U(xi)[w(E(i)∪E(i−1))−w(E(i−1))]. (∗)

Note that the weighting function is essentially the incremental impact

of adding Ei to E(i−1). When w is finitely additive, i.e., for disjoint A

and B, w(A∪B) = w(A)+w(B), then Equation (*) reduces to subjec-

tive expected utility (SEU). If there is a unique consequence e, some-

times called a reference level and sometimes taken to be no change

from the status quo, then the consequences and gambles can be par-

titioned into gains, where xi � e, and the remainder, losses. In such

cases, usually it follows from the assumptions made that U(e) = 0 and,

usually, the weighting functions are sign dependent (i.e., their form de-

pends on whether their consequences are positive with respect to e or

negative). Also, the RSDU representation includes cumulative prospect

theory (Tversky and Khaneman (1992)) as a special case having added

restrictions on both U and w.

To evaluate the sum in (*) (Schmeidler, 1989, pg. 580) used a Choquet (1955)

integral26 subsequently adopted by Tversky and Khaneman (1992). However, a

cursory inspection of that approach shows that it is averaging over (weighted)

jumps in the probability weight function. Therefore, any “integral devised for

[that special] purpose”27i.e., for averaging over utility or value functions to get an

expected value, should yield satisfactory estimates of the sum28.

26see Appendix A.
27See McShane (1963).
28In fact, Schmeidler states ”[i]ntuitively, uncertainty aversion means that ”smoothing” or averaging utility distri-

bution makes the decision maker better off”, id at 582.
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2.1 Risk, Uncertainty, Rank Dependent Utility, and Choquet Capacity

To address uncertainty about probabilities, TK92 defined a ”state choice” function

f : S → X where S is a state space, and X ⊂ R is a space of outcomes or conse-

quences; let Ai be a measureable event in S; defined a prospect f by a sequence of

pairs (xi,Ai); assigned a number V ( f ) to the prospect f ; and modified Quiggin’s

(1982) rank dependent utility for risk assessment as follows

π+
n = w+(An), π−

−m = w−(A−m) (2.2)

πi = w+(Ai ∪ . . .∪An)−w+(Ai+1 ∪ . . .∪An), 0 ≤ i ≤ n−1 (2.3)

π−
i = w−(A−m ∪ . . .∪Ai)−w−(A−m ∪ . . .∪Ai), 1−m ≤ i ≤ 0 (2.4)

Here πi is an unobservable probablity weight induced by the nonlinear weight

function w. The quantities w+ and w− are the probability weights assigned to

gains and losses, respectively. Technically, they are generalized measures of the

commensuraate set which is presumed compact. By assigning

V ( f+) =
n

∑
i=0

π+
i v(xi) and V ( f−) =

0

∑
−m

π−
i v(xi) (2.5)

they defined

V ( f ) =
n

∑
−m

πiv(xi) (2.6)

They concluded that if the prospect f = (xi,Ai) is qualified by a “probability dis-

tribution” p(Ai) = pi, then for an aggregate of measureable events {Ai}i∈I , for
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some index I , it can be viewed as a probabilistic or risky prospect (xi, pi). In

particular,

πi = w+(
i=n

∑
i=0

pi)−w+(
i=n−1

∑
i=1

pi) (2.7)

for gains, and vice versa for losses with w+ replaced by w− and the commensurate

probability sums defined over −m ≤ i ≤ 0. Further, (Tversky and Khaneman,

1992, pg. 301) states that “the decision weight associated with an outcome can be

interpreted as the marginal contribution of the respective event, defined in terms of

capacities W+ and W−. That definition is equivalent to one in which a probability

distribution function F , estimated by Fn, has discontinuities of the second kind.

So that if F+
n = ∑

i=n
i=0 pi and F−

n = ∑
i=n
i=−1 pi , then

πn = w+(F+
n )−w+(F−

n ) (2.8)

This is the sui generis of Quiggin (1982) “anticipated” or “rank dependent” utility

theory where prospects are ranked and then the “expected” value is derived by

summing over the product of ranked utility and probability weights29.

29See Appendix A for Choquet integral representation.
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3 A SPECTRAL THEORY OF VALUE FUNCTIONAL DECOMPOSI-

TION

Of particular importance to this paper is TK92 dichotomous value function30

v(x) =















xα if x ≥ 0 for gains,

(−λ )(−x)β if x < 0 for losses

(3.1)

where λ is a loss aversion index, and α and β are shape parameters. The invariant

value functional V ( f ) is represented by the integral

V ( f ) =
∫

x∈X
v(x)w(dF)(x) (3.2)

Technically, V ( f ) is a functional of the probability weight function w(dF), and it

should probably be written as V f (w) for reasons that will be apparent in the sequel.

Definition 3.1 (Radon measure). (Hewitt and Stromberg, 1965, pg. 114).

Let B(X) be the space of all bounded functions defined on a nonempty set X . Let

C0(X) ⊂ B(X) be the subspace of continuous functions with compact support in

X , i.e. if K ⊂ X is compact, then for some measure µ we have µ(X\K) < ε for

some ε > 0. A Radon measure is a nonnegative linear functional I defined on

C0(X) if for f , g ∈ C0(X) we have:

i. I( f +g) = I( f )+ I(g);

ii. I(α f ) = αI( f ), for some scalar α;

30This section is exerpted from Cadogan (2010)
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iii. I( f )≥ 0, if f ∈ C+
0 (X).

Furthermore, instead of the Choquet integral representation, we posit that w(dF)

is a Radon measure31 ψ . We present that claim in a formal proof in the sequel.

Specifically, we have the following standard definition for essentially bounded

functions, and averaging operators that involve them.

Definition 3.2 (Essentially bounded value functions). An essentially bounded value

function is defined on a subset of the reals with Radon measure zero as follows

esssupv = inf{a ∈ R+|ψ({x : v(x)> a}= 0)}

Definition 3.3 (Averaging Operator). (Rota, 1960, pg. 53). Let A be a linear oper-

ator on the space of Lebesgue integrable functions Lp(X ,B(X),m), for some measure m, 1≤

p ≤ ∞. Then A is an averaging operator if it has the following three properties:

i. A is a contraction mapping for v ∈ Lp(X ,B(X),m)

∫

X
|(Av)(x)|p m(dx)≤

∫

X
|v(x)|p m(dx) (3.3)

ii. Let v,h ∈ Lp(X ,B(X),m)and y = esssuph. Then

(Av)(x)(Ay)(x) ∈ Lp(X ,B(X),m), and A(yv) = (Ay)(Av)

iii. Let 1 ∈ X , then A1 = 1

31It can be shown that Choquet integrals are functionally equivalent to Stone-Daniell integrals which in turn are

based on local Radon integrals. See Richards (1959) and Thomas and Volc̆ic̆ (1989).
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Theorem 3.1 (Radon Integral of Value Function). Let S be a locally compact state

space, with σ -field of Borel subsets S, and Ω be a sample space, i.e. state of

nature, attached to S, with σ -field of Borel subsets O; and µ be a probabil-

ity measure on Ω, and (S×Ω,S×O,µ) be the associated probability measure

space. Let L∞(S × Ω,S×O,µ)∗ be the dual space of linear functionals de-

fined on the space of Lebesgue integrable functions L∞(S ×Ω,S×O,µ). For

any set B ∈ S and ω ∈ Ω let χB(s,ω) ∈ L∞(S ×Ω,S×O,µ) be a stochastic

choice function, i.e. characteristic function, defined by χB(s,ω) = 1, if s ∈ B

and χB(s,ω) = 0, otherwise. Let V be a value function operator so that V :

L∞(S×Ω,S×O,µ) 7→ L∞(S×Ω,S×O,µ)∗. Let ψ(B,ω) be a random set func-

tion and assign V (χB(s,ω)) =ψ(B,ω). For any function f ∈ L∞(S×Ω,S×O,µ)

V ( f ) =
∫

S
f (s,ω)ψ(ds,ω) (3.4)

‖V‖= sup
esssup | f (s,ω)|≤1

∣

∣

∣

∣

∫

S
f (s,ω)ψ(ds,ω)

∣

∣

∣

∣

(3.5)

where ψ(ds,ω) is a Radon measure on S×Ω.

Proof. See Appendix E.

Remark 3.1. It is clear that χB(s,ω) is a discrete stochastic choice function of the

choice set of “attributes” B. Implicit in the theorem is the “attached” probability p,

say, when χB(s,ω) = 1 and 1− p when χB(s,ω) = 0. The logit function f (s,ω) =

log( p
1−p

) is admissible under Radon-Nikodym Theorem. So the class of logit and

probit models is subsumed by this theorem.
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Remark 3.2. The measure w(dF) in equation (3.2) is a special case of the more

abstract measure ψ(ds,ω). To avoid technical pedantics, we assumed that S is

locally compact so that the Radon measure is well defined.

Accordingly, let Tv be an averaging operator32 for a value function v defined on

the domain DTv
. This operator is consistent with the various “invariance princi-

ples” for prospects enunciated earlier by Luce, Prelec and al-Nowaihi, et al. Let

vg and vℓ be the parts of v that constitute the value function for gains and losses,

respectively, and Tg and Tℓ be their corresponding averaging operators. So that

vg ∈ DTg
and vℓ ∈ DTℓ. Undeniably, TK92 suggests the existence of a binary oper-

ation ⊕ on gains and losses based on the following axiomatic foundations.

3.1 Binary conditions for value operator

A binary operator ⊕ is regular if it is:

Assumption 3.2. (1) associative, i.e., (a⊕b)⊕ c = a⊕ (b⊕ c);

(2) distributive, i.e., m(a⊕b) = m.a⊕m.b; and the

(3) identity exists for a⊕−a = 0. We might also add,

(4) reflexitivity ∀a ∈Mv,a⊕a ∈Mv,

(5) completion for a,b ∈Mv either a⊕b ∈Mv or b⊕a ∈Mv,

(6) transitivity a,b,c ∈Mv and a⊕b ∈Mv and b⊕ c ∈Mv implies a⊕ c ∈Mv,

and
32See Moy (1954) and Rota (1960).
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(7) antisymmmetric a⊕b ∈Mv and b⊕a ∈Mv ⇒ a = b. Cf. Lahiri (2004).

Remark 3.3. Banach algebra for the averaging operators require a different inverse

relationship than that in 3.2 (3) above.

According to TK92 theory, v = vg⊕vℓ, from which it follows that the averaging

operation Tv = Tg ⊕Tℓ. Technically, Tg and Tℓ are reductions of Tv. In which case

(Tvv)(x) =
(

Tgv⊕Tℓv
)

(x) =V ( f ) =
∫

x∈X
v(x)w(dF)(x) = Tv(vg ⊕ vℓ)(x). (3.6)

By definition, Tv is a bounded linear operator on X since the space of outcomes is

bounded. So the binary operation is well defined. Thus, by the distributive prop-

erty of ⊕, Tgv = Tvvg and Tℓv = Tvvℓ. However, introduction of the loss aversion

parameter λ in the TK92 model, together with the invariance axioms above, im-

ply that Tgv = Tvvg = vg and Tℓv = Tvvℓ = −λvℓ. Specifically, TK92 implies that

the operator for gains is isometric while the operator for losses is skewed. These

results are summarized by the following theorems.

Theorem 3.3 (Gain Loss Risk Operators). Assume that the invarianve principle

holds. Let v be a Tversky and Khaneman (1992) value function, and vg, vℓ be

the gain and loss components of v, respectively. Let Mv be the space of value

functions endowed with a binary operation ⊕ such that v = vg ⊕ vℓ. Let Tv be an

averaging operator with domain DTv
and v ∈ DTv

. Let λ be a loss aversion index.

Then the following holds:

(i) Tv = Tg ⊕Tℓ
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(ii) Tg is an isometric operator

(iii) Tℓ is a skewed operator

Proof. See Appendix E.

Theorem 3.4 (Spectral Theorem). Let T be the class of Tversky and Khaneman

(1992) value functions and Tv be a linear averaging operator absolutely continu-

ous with respect to a Radon measure w(dF) on the space of distribution functions

F ∈MF . Let ⊕ be a regular binary relation on the domain DTv
of Tv such that if Tg

is an averaging operator for gains, and Tℓ an averaging operator for losses, each

absolutely continuous with respect to the Radon measure w(dF), then Tv = Tg⊕Tℓ.

So for any value function v ∈ T the spectrum ΛTg
for gains is comprised of the

eigenvalue λ = 1; and the spectrum ΛTℓ for losses is characterized by the set

ΛTℓ = {λ |(Tℓ+λE)v = 0, v 6= 0} (3.7)

where E is the identity operator. Moreover, the spectrum of Tv is given by

ΛTv
= {1}∪ΛTℓ (3.8)

Specifically, Tg is isometric and Tℓ is skewed.
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4 PROSPECT TOPOLOGY

4.1 Topological lifting of prospect space

4.1.1 Preliminaries

The proverbial elephant in prospect theory space is metrizability33 of out-

comes. For implicit in an agent’s ranking of outcomes, based on mapping a choice

function f from state space S into outcome space X , is her ability to measure and

hence rank outcomes in X via some metric. Before we embark on the journey to-

wards topological lifting of value functions, we include a few definitions to clarify

terminology.

Definition 4.1 (Hausdorff space). (Dugundji, 1966, pg. 137) .

A space Y is Hausdorff (or separated) if each of two distinct points have non-

intersecting neighbourhoods. That is, whenever p 6= q there are neighbourhoods

U(p), V (q) such that U(p)∩V (q) = /0.

Definition 4.2 (Homeomorphism). (Dugundji, 1966, pg. 87).

A continous bijective map, i.e., 1-1 and onto, f : S → X , such that f−1X :→ S is

called a homeomorphism (or bicontinous bijection) and denoted by f : S ∼= X . Two

spaces are homeomorphic, written S ∼= X if there is a homeomorphism f : S ∼= X .

Definition 4.3 (Embedding). (Dugundji, 1966, pg. 89).

If Z is any space, and if f : X → Z is a map establishing that X is homeomorphic

33A topological space (Y,τ) is metrizable if its topology τ is one induced by a metric on the space Y. See (Dugundji,

1966, pg. 183).
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to f (X)⊂ Z, i.e. X ∼= f (X)⊂ Z, then f is called an embedding map of X into Z.

Definition 4.4 (Covering). (Munkres, 2000, pg. 164)

A collection A of subsets of a space X is said to cover X , or to be a covering of X ,

if the union of elements of A is equal to X . It is called an open covering of X if its

elements are open subsets of X .

Definition 4.5 (Partition). .

Let J be an index set. If {Aα | α ∈ J } is a covering of S, and if Aα ∩Aβ = ∅

whenever α 6= β , then the family P = {Aα | α ∈ J } is called a partition of S.

Definition 4.6 (Covering spaces). (Munkres, 2000, pg. 336).

Let {Aα} be a partition of S,α = 1,2, . . . ,n and f : S → X be a continuous onto

mapping of S. Let U ⊂ X be an open set in X . If f−1(U) =
⋃

αk
Aαk

for some

indexes αk ∈ 1,2, ,n such that for each αk the restriction of f to Aαk
, i.e., f|Aαk

, is

a homeomorphism of Aαk
onto U , then U is said to be evenly covered by f . The

collection {Aαk
} will be called a partition of f−1(U) into slices.

Definition 4.7 (Covering map). (Munkres, 2000, pg. 337).

Let f : S→X be continuous and onto. If every outcome x∈X has a neighbourhood

U that is evenly covered by f , then f is called a covering map, and S is called a

covering space.

Definition 4.8 (Lifting). (Munkres, 2000, pg. 342).

Let v : X → R be a mapping of real valued value functions (v) on outcome space.
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If g : S → R is a continuous real valued mapping defined on the state space S, a

lifting of g is a map f : S → X such that v◦ f = g.

4.1.2 Commutative map of Prospect Theory’s Liftings

To keep track of the myriad liftings and composite maps in the sequel we

modify the old adage to a commutative map is worth a thousand words. The dia-

R S

f
��

goo P(Ω)woo

w̃
ww

Ω

Y gggggggggggggggg

ssgggggggggggggggg

Poo

X

vN
N
N
N
N
N
N

ffN
N
N
N
N
N
N

Figure 1: Commutative Map of Prospect Theory’s Liftings

gram in Figure 1 plainly shows that the stochastic choice map f is a lifting of the

imputed direct map g = v◦ f from state space S to the reals R. Compare Tversky

and Khaneman (1992) mapping scheme in the introduction section 1 of this paper.

Additionally, the composite direct map g ◦ (w ◦P) = v ◦Y , from sample space Ω

to the reals R, is a lifting of Y . In that case, for a given outcome x ∈ X , the map

v(Y (x)) is a functional. Thus, averaging over that quantity gives rise to an aver-

aging operator. Further, the probability weight function w is a lifting of the direct

map w̃ = f ◦w from P(Ω) to S. Perhaps most important, the composite map w◦P

is a lifting of the direct map Y = f ◦(w◦P) from sample space Ω to outcome space

X . The stochastic choice functions in extant literature, see e.g., Debreu (1958) and

McFadden (1974), considers a mapping P : Ω → S. But not the intermittent com-

posite mapping w : P(Ω)→ S which embeds probability weights in state space S,
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and indirectly in X through f or directly through w̃. The commutative map plainly

shows that the introduction of probability weighting map w should be incorporated

in any stochastic choice map f : S → X . That is the sui generis of this paper.

The mapping Y has the following interpretation. Since Y : Ω → X ⇒

Y (Ω) ⊆ X , there exists a lottery {(x1, p1),(x2, p2), . . . ,(xn, pn)} such that Y (ω)

takes the values (x1,x2, . . . ,xn) with corresponding joint probability distribution

(p1, p2, . . . , pn). So that for a given realization of outcomes, Yi(ω) = f ◦(w◦ pi) =

f (w(pi)) = (xi, pi) ∼= xi(pi), for some index i. Additionally, let FY be the proba-

bility distribution function of Y . So that for rank ordered Y we have the relation

πy = w(F+
Y (y))−w(F−

Y (y)) as the probability weight assigned to the marginal lot-

tery at the jump of F . In any event, the commutative diagram plainly shows how

probabilities and or probability weights are embedded in outcome space X . The

rest of this paper constitutes analytic proofs of these facts, with ensuing applica-

tions in abstract Hilbert spaces.

4.1.3 Hoffman-Jorgensen lifting on Lebesgue spaces

Hoffman-Jorgenson (1971) described a lifting by defining a measure space

(S,Σ,µ) with Σµ a Lebesgue extension of Σ; a function space L∞(µ)⊂ X of essen-

tially bounded functions with norm ‖ f ‖
µ
∞= µ −esssups∈S | f (s) |, ∀ f ∈ L∞(µ) .

He also, introduced the set B(S,Σµ) of all Σµ-measureable bounded real functions

on S, endowed with the norm ‖ f‖∞. What is more, he introduced an ordering

≤ on L∞(µ) and B(S,Σµ) so that for s ∈ S, we have f (s) ≤ g(s) µ a.e., and he
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defined a map L : L∞(µ)→ B(S,Σµ) so that (L,≤) is a vector lattice. In particu-

lar, Hoffman-Jorgenson defined a lifting as a linear operator ℓ : L∞(µ)→ B(S,Σµ)

with the additional properties that h = f g ⇒ ℓ(h) = ℓ( f )ℓ(g) and ℓ( f ) = f . That

definition is consistent with (Quiggin, 1982, pg. 326) and functionally equivalent

to our probabilistic approach a fortiori. Specifically, in the composite function h

Hoffman-Jorgensen’s ℓ-operator is isometric with respect to the lifting element f .

A result consistent with our value function operator for gains.

4.1.4 Kernel function generation of probability and choice function sequences

An alternative approach to the embedding procedure used here is to define a

kernel k : S×Ω→X and let kn(s,ω)= n2k(ns,nω) where k(s,ω) has the following

properties with respect to measures ν on S and µ on Ω:

(i)
∫

S

∫

Ω kn(s,ω)ν(ds)µ(dω) = 1

(ii)
∫

S

∫

Ω kn(s,ω)ν(ds)µ(dω)≤ K0 for some constant K0;

(iii) limn→∞

∫

S−δS Ω−δΩkn(s,ω)ν(ds)µ(dω) = 0

Property (iii) implies that the tail of the kernel function vanishes. For a given

“choice function” f : S → X , and probability measure P on Ω, and an operator K

we can generate a sequence of probability measures

Pn(E) = (K f )(ω) =
∫

E
kn(s,ω) f (s)ν(ds), E ∈S (4.1)
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or a sequence of choice (set) functions

fn(A) = (KP)(s) =
∫

A
kn(s,ω)P(ω)µ(dω), A ∈O (4.2)

See (Bochner, 1955, pp. 1-2). Equation (4.1) shows that a sequence of prob-

ability measures can be generated by transformation of the choice function with

an appropriate kernel. Similarly, equation (4.2) shows that a sequence of choice

functions can be generated by transforming probability measures via kernel es-

timation. In fact, the stochastic choice function is an operator K on probability

measures P. Of course, the whole process could be simplified by using Lebesgue

measure instead of the general measures ν and µ . By truncating kn in (i), in equa-

tion 4.1 Pn becomes a sub-probabiility measure on Ω. Similarly, we can generate

estimates of choice functions in equation 4.2 for pre-specified probability distribu-

tions. This kernel approach provides an independently important mechanism for

generating sequences of choice functions and probability measures. Nonetheless,

in this paper we emphasize the topological lifting, embedding, and concomitant

weak comonotonic feature of our proposed topology.

4.2 Existence of mapping from state space to reals as value function com-

posite

In this sub-section, we provide justification for the research question concerning

the imputed map from state space to the reals, and our lifting hypothesis. The
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lemma and existence theorem that follow are modifications of (Blumenthal and

Geetor, 1968, pp. 6-7).

Lemma 4.1. Let Mv◦ f be a vector space of real valued value functions on S×Ω,

and S×O be the corresponding product σ -field of Borel subsets. Assume that

i. 1 ∈Mv◦ f

ii. if {vn} is an increasing sequence of value functions in Mv◦ f such that v =

supn vn is bounded, then v ∈Mv◦ f

iii. The product ∏i<∞(χAi
◦ f )(s,ω) is in Mv◦ f for Ai ∈ ∩ f−1

i (Ai)

Then Mv◦ f contains all real valued bounded functions in the product sub-σ -field

Si ×Oi.

Theorem 4.2 (Existence of Mapping from State space to Reals). Let S×Ω be the

product space of state space and states of nature, and S×O the corresponding

product σ -field. Let f : S×Ω → X where X is outcome space, and B(X) is the

σ -field of Borel measureable subsets of X. Then there exist a S×O-measureable

mapping φ : S×Ω → R if and only if there exist a real valued B(X)-measureable

positive value function v such that φ = v◦ f .

Proof. See Appendix E.

4.3 Weak comonotone probability embedding

Let S be a σ -field of Borel subsets of the state space S, and endow the measure

space (S,S) with a sub-probability measure P such that 0 < P(S) ≤ 1. Thus,
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(S,P) is a metric space. If P is a partition of S, then each [nonempty] subset Ai ∈

P, i = 1,2, . . . ,n is comprised of elementary events, i.e., states, s ∈ S. However,

(Tversky and Khaneman, 1992, pg. 300) defines a mapping f : S → X such that

f (s) = x ∈ X ; and then state that “[a] prospect f is then represented as a sequence

of pairs (xi,Ai), which yields xi if Ai occurs, where xi > x j iff i > j”. In that

definition, it is not clear whether the sequence of x’s are elements of a vector and

or an array. However, taken literally, it implies that if event Ai occurs, then the

other n − 1 events in P did not occur, i.e., events are mutually exclusive and

do not occur jointly. Nonetheless, in the sequel we propose a scheme to ensure

metrizability of X and its co-monotonicity with P.

Lemma 4.3 (Attaching map). ˙

Let f be a homeomorphic mapping, i.e., it preserves topological properties in its

domain and range space. Let O be the σ -field of Borel measureable subsets of

the sample space Ω. Similarly, let S be the σ -field of Borel measureable subsets

of the state space S. Let P be a subprobability measure defined on Ω. Define the

composite map

f ◦P : (S×Ω,S×O)→ X

so that for Ai ∈S, and xi ∈ X we write ( f ◦P)(Ai,ω)≡ ( f ◦P)(Ai)(ω) = xi. Then

P is an attaching map, i.e., it attaches Ω to S.

Proof. See Theorem B.3 on attaching spaces in the appendix for justification of

this extended composite map with attachment. See also, Musial and Macheras
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(2002); Musial et al. (2009) for proof of lifting on extended topological probability

product spaces.

Remark 4.1. The quantity ( f ◦P)(Ai)(ω) is a Borel measureable random variable

assigned the outcome xi. Vizly, it is a random operator. Specifically, by virtue

of the discrete partition S =
⋃n

i=1 Ai the composite map is a “point function” de-

fined on S into X , and the probability law of f ◦P is a probability measure on the

measureable outcome space (X ,B(X)).

To proceed with the weak embedding proposition we need the following impor-

tant

Lemma 4.4 (Homeomorphic extension). Let J be an index set. If {Aα |α ∈ J }

is a partition of S, and if for each α ∈ J there is a given map fα : Aα → X, then

there exist a unique f : S → X which is an extension of fα .

Proof. See (Dugundji, 1966, Corollary 6.8, pg. 13).

Thus, the extended composite map in Lemmas 4.3 and 4.4 leads to the following

Proposition 4.5 (Weak embedding). Let f be a homeomorphic mapping on the

state space S, and P be an attaching map for the sample space Σ. Then the proba-

bility of event Ai is weakly embedded in X under the mapping f ◦P : S×Ω → X.

Proof. The homeomorphism hypothesis S ∼= f (S)⊂ X implies that f is an embed-

ding map of S into X . Let J = {1,2,3, . . . ,n} be an index set. Since Ai, i ∈ J

is an element of the partition of S, it follows from Lemma 4.4 that Ai
∼= f (Ai) is a
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local homeomorphism of the extended map f . Let P(Ai) = pi. Since every point

pi is put in 1-1 correspondence with the set Ai in the partition P , the map P is

homeomorphic. So that P−1(pi) = Ai
∼= f (Ai). Since both P, and f are homeo-

morphic, every point pi can also be put in 1-1 correspondence with the compos-

ite ( f ◦P)(Ai(ω). So by Lemma 4.4 the composite map is also homeomorphic.

Specifically,

pi ↔ f (P(Ai)(ω))⇒ pi
∼= f (P(Ai)) = ( f ◦P)(Ai(ω))⊂ ( f ◦P)(S)

Therefore, by 4.3 pi is embedded in ( f ◦ P)(S). Let V (pi) be an open neigh-

bourhood of pi. By definition, S is a Hausdorff space, and P induces a discrete

topology. Thus, we have P(Ai(ω)) ∼= V (pi). By Lemma 4.4 P is a unique ex-

tension of this local homeomorphism. Additionally, each of the neighbourhoods

V (pi), i = 1,2, . . . ,n are in 1-1 correspondence with the Ai’s through P. So that for

disjoint Ai we have
⋃n

i=1V (pi)∼=P(
⋃n

i=1 Ai) =P(S). Thus, by 4.6 {V (pi), i∈J }

constitute the covering spaces, induced by P, in correspondence with the partition

P of S. In other words, {V (pi), i ∈ J } is a partition of unity34 weakly home-

omorphic to S through P. Since S ∼= f (S), we get P(S) ∼= ( f ◦P)(S) ⊂ X , where

the latter subset relation exist by Lemma 4.4 and definition of the composite map.

Thus, by 4.3 the probability P(Ai) is weakly embedded in X through the neigh-

bourhoods V (pi).

34For instance, ∑α∈A kα(p) = 1 for some Hausdorff space Y covered by {V (pi), i ∈ J } where p ∈ V (pi), and

kα : Y → [0,1]. See (Dugundji, 1966, pg. 170).
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Corollary 4.6. The probability of event Ai is weakly embedded in X under the

mapping f ◦w◦P : S×Ω → X

Proof. Since w is an isomorphic map, substitute w(P) for P in Proposition 4.5 and

the proof follows through as before.

As new information becomes available agents presumably re-rank their

prospects. This process puts restrictions on the function f . In particular, f must

preserve monotonicity in P. These restrictions are weakened by embedding a

probability weight function w(P) in outcome space X . Thereby inducing a comono-

tonic ranking on X a fortiori through the attached embedding. That is, if the com-

posite map in Proposition 4.5 is transformed further, by replacing P with w(P),

we get ( f ◦ w ◦ P)(Ai,ω) = f ◦ w(P(Ai,ω)). Whereupon by 4.6 the mapping

f ◦w ◦ P : S ×Ω → X embeds w(P) in X since w is isomorphic–by definition.

Thus, X is weakly metrizable, i.e., ranked, because the composite map includes

a probability weight metric for ranked probabilities. Furthermore, the probabil-

ity law of the composite f ◦w ◦P is a probability measure on (X ,B(X)). This

argument is summarized by the following

Proposition 4.7 (Weak comonotonic ranking of outcomes). Let X be outcome

space; Ω be sample space; w be a probability weight function; P be a probability

measure on Ω, and f be a stochastic choice function. The composite map f ◦w◦P :

S×Ω → X embeds probability weights w(P) into outcome space X. Thus, the pair

(X(w(P(A,ω))),�), A ∈ P is a weak comonotonic ranking of X based on some

33



ordering � on P .

Probablistically, f (w(P(Ai,ω))), Ai ∈ P ∩S is functionally equivalent to an

isomorphism of the value functional V ( f ) obtained by summing over the partition

P of S. To see this, consider the discrete topology in outcome space X . Let

T be an averaging operator over the space of probability weights. Let Mv be a

sufficiently dense class of value functions. So that for a value function v defined on

X , the operation T performed on v results in an average value function in Mv. By

virtue of TK92 reference point hypothesis, the point zero is in the spectrum of T ,

i.e. 0 ∈ ΛT . So the spectrum contains a convergent sequence limn→∞ λn = 0 where

{λn}n≥1 ∈ ΛT . This implies the existence of a convergent sequence {vn} ∈ Mv

since T vn = λnvn. Specifically, for every open neighbourhood N(v0)⊂Mv ; metric

ρ defined on Mv; and ε > 0, there exist δ > 0, such that whenever v ∈ N(v0) then

ρ(v,v0) < δ , and ‖T v−T v0‖ < ε . Thus, the family of maps A (T ) ⊂Mv
Mv are

equicontinuous. We summarize this in the following

Lemma 4.8. Let Mv
Mv be the space of all maps from Mv into itself, and A (T )

be the family of averaging maps T in Mv
Mv. Let ΛT be the spectrum of T . If

0 ∈ λT , then A (T ) is equicontinuous. Furthermore, {vn} is a weakly convergent

sequence induced by ΛT .
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4.4 Almost sure isomorphisms of lifted choice functions in outcome space

This subsection is based on a fairly lengthy proof of almost sure convergence

between lifted stochastic choice functions with embedded probability weights,

and isomorphic mappings of value functions. The proof is based on topologi-

cal considerations in outcome space. It is broken up in three parts motivated by

(1) Prokohorov’s Theorem for weak compactness of probability measures in func-

tion space; (2) properties of compact operators; and (3) Skorokhod’s Theorem

for convergence of random functions. We begin with the observation that since

T : Mv → Mv, the result v−1T v is an isomorphic mapping of outcomes that in-

duce a set Ev = {x|v−1T v = x} ⊂ X . However, by Corollary 4.6 there exist a set

E f = {x| f ◦w ◦P : S×Ω → X} ⊂ X . Since f is homeomorphic, it is a closed

map, see (Dugundji, 1966, Thm 12.2 pg. 89). Therefore, the set Ev ∩E f 6= /0. In

particular, the closure f (S) in X subsumes
⋃

v∈Mv
Ev. That is,

⋃

v∈Mv
Ev is dense

in f (S). So that
⋃

v∈Mv
Ev = f (S). Essentially, the proof is based on the fact that

different sequences of outcomes in a closed dense subbspace of X must converge

to the same limit almost surely. This result is summarized as

Theorem 4.9 (Almost sure isomorphism). Let Mv be the class of Tversky and

Khaneman (1992) value functions, and T be an averaging operator over Mv

with respect to a probability weight functional w(dF), where F is a probabil-

ity distribution function, and T : Mv → Mv. Let S be a state space; Ω be a

sample space attached to S and endowed with probability measure P; X be the

35



separable space of outcomes characterized by the composite homeomorphic map

f ◦w◦P : S×Ω → X, and B(X) be the Borel subsets of X. Then for An ∈B(X),

we have for some stochastic operator J = f

lim
n→∞

Pr{ sup
An∈B(X)

∣

∣

∣
(J(w◦P)(An,ω)− (v−1T v)(An)(ω)

∣

∣

∣
> ε}= 0 (4.3)

Proof. The hypotheses of the proposition created an ambient space which facili-

tates attacking the proof in three parts. Notationally, we use f instead of J for con-

venience. The idea behind the proof is as follows. First, we will use Prokhorov’s

Theorem, see (Ash, 2000, pp. 37-40), for weak convergence of probability mea-

sures, i.e., Pn ⇒ P, to show that f ◦w◦Pn ⇒ f ◦w◦P in X . Technically, because

P is a subprobability measure, we have vague convergence. See (Athreya and

Lahiri, 2006, Ch. 9.2). This means that a convergent sequence of subprobability

measures need not converge in the set containing the sequence. That fact impli-

cates our proof. To get around that problem, we make the following strong

Assumption 4.10. The space of probability measures is locally compact.

This assumption creates an ambient space for weak convergence of conditional

probability measures. See (Billingsley, 1995, pg. 371). Second, we will use

(Akheizer and Glazman, 1961, pp. 46-47) weak compactness theorem for opera-

tors in Hilbert space to show that the sequence of averaging operators T vn ⇒ T v

is compact in Mv. The sequence of mappings {v−1T v(An)}n≥1, An ∈B(X) gen-

erate a sequence of outcomes in X . Third, according to Skorokhod’s Theorem
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in (Brieman, 1968, pg. 340) and Arzela-Ascoli Theorem in (Royden, 1988, pg.

169), since each sequence of composite maps and isomorphic averaging opera-

tors generate separate sequences of outcomes in a dense subspace of X (endowed

with a sup-norm metric) they must do so in the same cluster set for consistency of

choice for well defined outcomes. That cluster set is covered by an ε-net. And it

is that ε-net that gives us the probability bounds because the closure of the cluster

set is bounded by the base topology on the metricized space X .

Definition 4.9 (Tightnness ). (Billingsley, 1968, pg. 9) ˙

Let Ω be a sample space, and O be the σ -field of Borel sets of Ω. A sequence

{Pn} of probability measures defined on Ω is tight if for every ε > 0 there exist

a compact set K ∈ O such that P(K ) > 1 − ε . Moreover, for every A ∈ O

P(A) = supK ⊂A P(K ).

Lemma 4.11 (Prokhorov’s Theorem). ˙

Let Ω be a sample space, O be a σ -field of Borel measureable subsets of Ω, and

U be a compact subset of Ω. Let P1,P2, . . . be finite measures on (Ω,O) with

corresponding distribution functions F1,F2, . . . Further, let O|U be the restriction

of O to U. Assume that Fn(E) = Pn(ω ∈ E) for E ∈ O|U . Suppose that 0 ≤

Pn(Ω)< 1 for all n. Then the sequence {Pn} is tight iff it is relatively compact.

Proof. See (Ash, 2000, pg. 340). See also, (Billingsley, 1968, pp. 37-40).

Lemma 4.12 (Akheizer and Glazman (1961)). ˙

For the weak convergence of a sequence of value functions {vn}n≥1 it is necessary
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and sufficient that:

(i) T vn ⇒ T v for v ∈ K dense in Mv;

(ii) The sequence {vn}n≥1 is bounded.

Proof. See (Akheizer and Glazman, 1961, pg. 47).

Lemma 4.13 (Skorokhod’s Theorem). ˙

Let {vn(x)}n≥1, x ∈ X, be a sequence of value functions such that vn
D
−→ v, i.e.

vn converges in distribution to v. Then for any countable set K ⊂ X, there exist

{ṽn(x)},x ∈ K , defined on a common space such that

(1) For each n, ṽn and vn have the same distribution

(2) For every x we have ṽn
a.s
−→ ṽ.

Proof. See (Brieman, 1968, Thm 13.29, pg. 293).

Part I.

Let Ω be a sample space that corresponds to the states of nature, S be a state space

partitioned by P = {Ai}
n
i=1, and P be a subprobability measure defined on S, so

that Pi = P(Ai) is the probability associated with the outcome xi. Since P is a

subprobability measure we can extend it to a a probability measure by

P̃n =















P(An) An ∈S

0 An /∈S
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But this extended probability function implies the existence of a truncated distri-

bution or locally compact sets in the Skorokhod space D[0,1] of functions with

discontinuities of the second kind. Let C({P}) be the cluster set of {Pn}, i.e.

C({P}) = {0}∪{1}∪ [a,b] where a> 0, b< 1. According to Bolzano-Wierstrass

Theorem every point of C({P}) is a limit point for the sequence {Pn}. See (Shilov,

1973, pg. 75). Thus, every Cauchy sequence {Pn} has a convergent subsequence

with limit point in C({P}). Whereupon C({P}) is closed and relatively compact.

So that by Lemma 4.11, Pn ⇒ P. It follows from continuity of the probability

weight function w and choice function f that the composite map f ◦ w ◦ Pn ⇒

f ◦w◦P. See (Shilov, 1973, pg. 135).

Part II.

From Lemma 4.8 the family of operators A (T ) on Mv is equicontinuous. Further-

more, by virtue of the convergent spectrum, T maps weakly convergent sequences

of value functions into convergent sequences. Thus, by Lemma 4.12 T is a com-

pact operator.

Part III.

Take the outcomes of a lottery as a countable set of points K ⊂ X . Specifically,

the set K ∩ Ev is countable, where Ev = {x| v−1T v = x} ⊂ X . Similarly, for

the partition
⋃

i Ai = S, the probability P(Ai) corresponds to a discrete outcome

xi ∈ K ∩Ev. So for the set E f = {x| f ◦w ◦P : S → X}, the extended composite

function ( f ◦w◦P)(Ai) = xi is in K ∩E f . Extend E f to Ev by the relation {x|x ∈
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E f if x ∈ Ev, and E f = /0 otherwise} then we have a common space, call it E,

restricted to K , such that E|K ⊂ X . By construction of Ev and E f , the set E is

nonempty. It is clear that vn converges to v in distribution for the spectrum ΛT

by virtue of compactness of T . We define an ε-net for K by taking a lottery in

E|K and a point x ∈ K such that the metric ρE|K
(x,xi)< ε2−i. For any partition

⋃

i Ai = S, let δ (Ai) be the diameter of Ai. The equicontinuity of T ∈ A (T ) and

continuity of v implies that g = v−1T v is at least a continuous isomorphism. By

hypothesis, f is continuous. Therefore, the function f − g is continuous. For

f , g ∈ C(X), define the metric ρ( f ,g) = sup
f ,g∈C(X)‖ f −g‖. So that by Lemma

4.13

∣

∣

∣
( f ◦w◦P)(Ai)− (v−1T v)(Ai)

∣

∣

∣
= | f (w(P)(Ai)−g(Ai)| (4.4)

≤ sup
i

| f (w(P)(Ai)−g(Ai)| (4.5)

Since |w(P)(A)−δ (A)| ≤ supδ (A) (4.6)

by continuity of ( f −g) we have

∣

∣

∣
( f ◦w◦P)(Ai)− (v−1T v)(Ai)

∣

∣

∣
(4.7)

≤ sup
f ,g∈C(X)

‖ f −g‖ sup
1≤i≤n

δ (Ai) (4.8)
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By virtue of the ε-net K , and Ai ∈ E|K , let sup1≤i≤n δ (Ai) = ε2−i. Thus

lim
n→∞

Pr{ sup
1≤i≤n

∣

∣

∣
( f ◦w◦P)(Ai)− (v−1T v)(Ai)

∣

∣

∣
> ε} (4.9)

≤ 1−
∞

∑
i=1

sup
f ,g∈C(X)

‖ f −g‖ε2−i (4.10)

≤ 1− sup
f ,g∈C(X)

‖ f −g‖ε (4.11)

Since the function f −g is continuous, and ε is arbitrary, choose

ε =

(

sup
f ,g∈C(X)

‖ f −g‖

)−1

(4.12)

Whereupon the right hand side of the inequality vanishes and we have f ◦w◦P =

v−1T v almost surely. So we may write for x ∈ Ev

f ◦w◦P+op(1) = v−1T v+op(1) = x (4.13)

Thus, the proof is done.

Corollary 4.14. J = f is a stochastic contraction operation that transforms prob-

ability weights into assigned outcomes.

Proof. The proof follows from isomorphism with averaging operator T .

Corollary 4.15. J = f is a self adjoint map.
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5 Conclusion

This paper provides analytic proofs for prospect theory’s topological space.

In particular, it employs a monotone class theory to derive results from weak

comonotonic probability measures embedded in outcome space. The almost sure

isomorphism it produced is an approximation result. By characterizing prospect

theory with operators, we provide a nexus between theory and experiment because

the [discrete] spectrum provides the range of admissible values one should observe

in an experiment. This theory was applied elsewhere to asses agents’ response to

fair gambles, and it was found that they assign asymmetric probabilities for gains

and losses for martingales. Further research in this area includes applications to

conjoint analysis.
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6 APPENDIX

A Rank dependent utility and Schmeidler’s Choquet represen-

tation

Given a von Neuman Morgenstern utility function u : X → R, and a lottery

(x1,π1;x2,π2; . . .xn,πn)

rank order a vector x=(x1,x2, . . . ,xn) of outcomes so that it is xrank =(x(1),x(2), . . . ,x(n)).

Assign known probability π(i) in correspondence with x(i) for i = 1,2, . . . ,n so that

they are ”comonotonic”. Define a transformation function p : [0,1]→ [0,1] where

p(0) = 0, p(1) = 1 such that

w(i) = p

(

k=i

∑
k=1

π(k)

)

− p

(

k=i−1

∑
k=1

π(k)

)

(A.1)

is nonlinear. Thus, the ”expected” value of the utility associated with these risky

choices is

W (x) =
n

∑
i

w(i)u(x(i)) (A.2)

In the context of TK92, for f ∈ RS, and measureable sets

At = {s : f (s)≥ t} ∈S (A.3)

where S is the σ -field of Borel subsets of S . Define a measure ν on monotonic

subsets of the measureable space (S, S), so the ”expected value” of f with respect

43



to the measure is defined by the Choquet integral:

Ev[ f ] =
∫

f dv =
∫

X∩[−∞,0]
(ν( f ≥ t)−1)dt +

∫

X∩(0,∞]
ν( f ≥ t)dt (A.4)

Under this setup if f : [0,1]→ [0,1], and ν is a probability measure, the integral

is decomposed by the signed measure ν = ν+− ν− on [0,1]. However, the no

aditivity assumption puts limitations on the signed measure.

B Topological attachment and embedding of probability spaces

In what follows Ω is a probability space, S is a state space, and X is outcome space.

Definition B.1 (Free union). (Dugundji 1966, p. 127) The free union Ω⊎ S of

disjoint spaces Ω and S is the union Ω∪S with the following topology. U ⊂ Ω⊎S

is open if and only if U ∩Ω is open in Ω and U ∩S is open in S. Since Ω∩S = /0,

Ω and S keep their own topologies and are disjoint open sets in Ω⊎S. B ⊂ Ω⊎S

is closed if and only if B∩Ω is closed in Ω and U ∩S is closed in S.

Definition B.2 (Attaching maps). Let Ω,S be two disjoint spaces, V ⊂ Ω a closed

subset, and P : Ω → S be continuous. Construct an equivalence relation

R = (ω,s)|ω inV,P(ω) = s ⊂ Ω×S

in the free union Ω⊎S wherein for ω ∈V we have ω ∼ P(ω). The quotient space

Ω⊎S/R between the free union and equivalence relation is said to be ”Ω attached

44



to S by P,” and is written Ω∪P S and P is called the attaching map. Specifically,

we identify each ω ∈V with its image P(ω) ∈ S.

Definition B.3 (Embedding). If X is any outcome space, S a state space, and

f : S → X is a mapping establishing S ∼= f (S)⊂ X , then f is called an embedding

of S into X .

Theorem B.1 (Embedding). Let π : Ω⊎S → Ω∪P S be a projection. Then:

1. S is embedded as a closed set, homeomorphic to S, and π|S is a homeomor-

phism. That is, S̄ ∼= S ⊂ S and pi|S : S → X is a homeomorphism.

2. Let V̄ be closed in Ω. Then Ω−V̄ is embedded homeomorphically as an open

set, and π|Ω−V̄ is a homeomorphism.

Proof. See (Dugundji, 1966, pg. 128).

Theorem B.2 (Embedded subspace). Let Ω be attached to S by a closed subset

V̄ ⊂ Ω, i.e., P : V → S. Let Ω1 ⊂ Ω and S1 ⊂ S be closed subsets such that

P(V̄1 ∩Ω1) ⊂ S1, and attach Ω1 → S1 by the restricted map P1 = P|V̄1∩Ω1
. Then

Ω1 ∪P1
S1 is homeomorphic to a closed subset of Ω∪P S.

Proof. See (Dugundji, 1966, pp. 128-129).

Theorem B.3 (Extension of continuous composite map on attached spaces). Let Ω

be attached to S by P : V̄ → S, where V̄ ⊂Ω is closed, and let π : Ω⊎S→Ω∪P S be

the identification map. Let ϕΩ :→ X and ψ : S → X be a pair of continuous maps,

and let (ϕ,ψ) : Ω⊎S → X be their unique common extension. If ϕ(ω) = φ [P(ω)]

for each ω ∈ V̄ , then (ϕ,φ)π−1 : Ω∪P S → X is continuous.
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Proof. See (Dugundji, 1966, pg. 129).

C Elements of operator theory used in this paper

C.1 Definitions and theorems

The material that follow is drawn from Curtain and Pritchard (1977), Rudin (1973),

Reed and Simon (1980), and Saxe (2002). In this section we provide definitions

and outline a few theories pertaining to linear operators.

Definition C.1 (Banach space, Hilbert space). . A Banach space is a complete

normed linear space. A Hilbert space is a complete inner product space. A Hilbert

space endowed with a norm induced by its innder product is an example of a

Banach space.

Definition C.2 (Linear operator). . Let Mv and Y be linear spaces-real or complex.

A mapping T : Mv → Y is called a linear operator if its domain DT is a linear

subspace of Mv, and for α,β real or complex

T (αv+βg) = αT v+βT g

for v,g ∈ DT . When T is a numerical values mapping, it is called a linear func-

tional.

Definition C.3 (Topological isomorphism). . Let (Mv,‖ · ‖Mv
) and (Y,‖ · ‖Y ) be

two normed linear spaces. Mv is said to be topologically isomorphic to Y , i.e.,
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Mv
∼= Y , if there exist a bijective map T : Mv → Y such that α‖v‖Mv

≤ ‖T v‖Y ≤

β‖v‖Mv
for all v ∈Mv.

Definition C.4 (Compact operator). . Let U be an open ball in Mv. A linear oper-

ator T : Mv → Y is compact if every sequence in the closure T (U)⊂ Y contains a

convergent subsequence with limit point in T (U).

Definition C.5 (Denseness). (Curtain and Pritchard 1977, p. 20). A subspace S

of a normed linear space X is dense in X if its closure with respect to the norm

is equal to X or contains X as a subset. This important property means that any

element x ∈ X may be approximated by some element sinS, as closely as we like

i.e. for any x ∈ X and ε > 0, there exists s ∈ S such that ‖x− s‖< ε .

D Some Limit Theorems

Proposition D.1 (Prokhorov-Varadarajan). Let X be a space of outcomes, com-

plete in norm ‖ · ‖X , and B(X) be the σ -field of Borel subsets of X. Let {µn}n≥1

be a sequence of probability measures on (X ,B(X)). Then {µn} is tight if and only

if given a subsequence {µnk
} ⊂ {µn}, there exist a nested subsequence {µ

n
( j)
k

} ⊂

{µnk
} and a probability measure µ on (X ,B(X)) such that µ

n
( j)
nk

d
−→ µ as j → ∞.

Proof. See (Athreya and Lahiri, 2006, pg. 303).

Definition D.1 (ε-net). (Billingsley, 1968, pg. 217). Let E be a compact set in X .

An ε-net for E is a set of outcomes {xk}, not necessarily in E, with the property
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that for each outcome x in E there is an outcome xk such that ρ(x,xk) < ε . E is

totally bounded if for every ε > 0 it has a finite ε-net.

E Proofs of theorems, lemmas, and propositions

Proof of Theorem 3.3

Proof. Let L2
w(MF) be the space of square integrable functions with respect to

TK92 probability weight functions. Define an inner product of this space by

( f ,g) =
∫

X f ḡw(dF). Thus,

(Tgvg,Tgvg) = ‖Tgvg‖
2
L2

w
= (vg,vg) = ‖vg‖

2
L2

w
which implies‖Tg‖

2 = 1. (E.1)

Thus, Tg is isometric. Therefore, it preserves measures of gains. By contrast,

(Tℓvℓ,Tℓvℓ) = ‖Tℓvℓ‖
2
L2

w
(E.2)

= (−λvℓ,−λvℓ) = |λ |2‖vℓ‖
2
L2

w
(E.3)

⇒‖Tℓ‖
2 = |λ |2 (E.4)

⇒ sup
vℓ=1

‖Tℓ‖= max
λ∈Λℓ

λ . (E.5)

Which shows that the loss operator Tℓ is skewed and it bounded by the maximal

eigenvalue in the loss spectrum ΛTℓ .

Proof of Theorem 3.1.

The following proof is adapted from (Yosida, 1980, pp. 118-119)
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Proof. Let P = {A1,A2, . . . ,An} be a partition of S, and for ε > 0 let δ (Ai) =

diam(Ai)< ε . Define the set Bi = {s ∈ | f (s) ∈ Ai}. So that for some state αi ∈ Ai

we have

∥

∥

∥

∥

∥

f −
n

∑
i=1

αiχBi
(s,ω)

∥

∥

∥

∥

∥

L∞(S×Ω,S×O,µ)

≤ ε (E.6)

∥

∥

∥

∥

∥

V ( f )−
n

∑
i=1

αiψ(Bi,ω)

∥

∥

∥

∥

∥

L∞(S×Ω,S×O,µ)∗

≤ ‖ f‖L∞(S×Ω,S×O,µ) |ε| (E.7)

where the last equation is due to linearity of the functional V ( f −∑
n
i=1 αiχBi

(s,ω)).

Since ε is arbitrary, let ε = 2−n. So that as n → ∞, ε ↓ 0. By hypothesis ψ(Bi,ω)

is a random set function. So that by Radon-Nikodyn theorem it is finitely additive,

and there exist a measure, call it dV , that is absolutely continuous with respect to

ψ(ds,ω). That is, dV
dψ = f . In particular, in the limit we have

V ( f ) =
∫

S
f (s,ω)ψ(ds,ω) (E.8)

‖V‖L∞(S×Ω,S×O,µ)∗ = sup
esssup | f (s,ω)|≤1

∣

∣

∣

∣

∫

S
f (s)ψ(ds,ω)

∣

∣

∣

∣

(E.9)

Thus, the proof is done.

Proof of Theorem 4.2

Proof. (i) Suppose that v ∈ B(X). Then by definition f ∈ S×Ω and φ(s,ω) =

(v◦ f )(s,ω). Let

Eα = {(s,ω)|φ = (v◦ f )(s,ω)> α, α ∈ R} ∈S×O
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Then φ = limα→∞∩αEα is measureable with respect to S×O

(ii) Suppose that φ is a measureable function on S×Ω. Let Mv◦ f be the space of all

real valued functions of the form v◦ f defined on S×Ω with v B(X)-measureable.

Clearly 1 ∈ Mv◦ f since for B ∈ S×O we have the stochastic choice function

χB(s,ω) defined on S×Ω and χB(s,ω) = 1, s ∈ B and 0 otherwise. Let {vn ◦ f}

be an increasing sequence in Mv◦ f such that g= supn vn◦ f <∞. Let A= {(s,ω)∈

S×Ω|supn vn <∞}. Then A∈S×O and f (S×Ω)⊂ A. To see this latter relation,

suppose that f (S×Ω)" A. Then there exist f such that supn vn ≥ ∞. This result is

contrary to our hypothesis of bounded value functions. Therefore, f (S×Ω)⊂ A.

Define v = supn vn on A and v = 0 on Ac. Then v is S×O-measureable, and

consequently g = v ◦ f . If C ∈ S×O, then for some set A ∈ S×O, we have

C = f−1(A) so that χC(s,ω) = (χA ◦ f )(s,ω) ∈Mv◦ f . Thus, by Lemma 4.1 Mv◦ f

contains all real valued functions on S×O. Since v is a real valued value function,

it is numerical, i.e., a functional. Thus, we can write y = tan−1(v) ∈S×O. Thus,

y = ṽ ◦ f for some B(X)-measureable function ṽ. Assume that ṽ(X) ⊂ [−π
2
, π

2
]

because by definition y takes values only in this interval. If we let φ = v◦ f with

v = tan(ṽ), then the value function v is also measureable. So, there exist φ such

that the value function v is B(X)−measureable. Thus, the proof is done.

Remark E.1. Even though the choice of v = tan(y) is arbitrary in this proof, it

nonetheless captures the salient characteritics of Tversky and Khaneman (1992)

value functions–concave in gains and convex in losses, relative to the ”reference

point” y=0. That representation can also be derived from theoretical considera-
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tions outside the scope of this paper.
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