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1. Modeling in Finance and Economics  

 

Some economists (Mirowski, 2002) have asserted that the neo-

classical economic model was motivated by Newtonian 

mechanics. This viewpoint encourages confusion. Theoretical 

mechanics is firmly grounded in reproducible empirical 

observations and experiments, and provides a very accurate 

description of macroscopic motions to within high decimal 

precision. In stark contrast, neo-classical economics, or ‘rational 

expectations’ (ratex), is a merely postulated model that cannot 

be used to describe any real market or economy, even to zeroth 

order in perturbation theory. In mechanics we study both 

chaotic and complex dynamics whereas ratex restricts itself to 

equilibrium. Wigner (1967) has isolated the reasons for what he 

called ‘the unreasonable effectiveness of mathematics in 

physics’. In this article we isolate the reason for what Velupillai 

(2005), who was motivated by Wigner (1960), has called the 

ineffectiveness of mathematics in economics. I propose a 



remedy, namely, that economic theory should strive for the 

same degree of empirical success in modeling markets and 

economies as is exhibited by finance theory. 

  

2. Existence Proofs without Dynamics are Dangerously 

Misleading  

 

I begin with a topic of much interest to an economist: existence 

proofs of equilibrium in the absence of dynamics may be 

completely misleading. I provide an example to back up my 

claim.  

 

Consider Osborne’s model of lognormal market prices, used by 

Black and Scholes (1973) to price options based on the 

assumption of Gaussian returns. The stochastic differential 

equation generating the model is 

 

(1) 

 

where r and σp are constants, and dB(t) is the Wiener process. If 

we would take r<0, negative expected gain rate, then the drift 

term would provide us with an example of a restoring force, an 

example of the Invisible Hand (McCauley, 2004). Does the 

Invisible Hand pull the market toward equilibrium? From (1), 

the corresponding Fokker-Planck equation describing the price 

density g(p,t) is 

dp = rpdt + p! pdB(t)



 

 

(2) 
and indeed has a very simple equilibrium solution g(p) with 

fat tails in price p. However, the time dependent solution of 

(2), the lognormal density g(p,t), spreads without limit as t 

increases and does not approach statistical equilibrium at all! 

In particular, the second moment <p2> increases without limit. 

The reason that equilibrium is not approached is that the 

spectrum of the Fokker-Planck operator defined by (2) is 

continuous, not discrete. Imposing finite limits on p, price 

controls, would yield a discrete spectrum so that statistical 

equilibrium would follow asymptotically. We therefore expect 

that market equilibrium and stability are inconsistent with 

deregulation. 

 

Having whetted the reader’s appetite, let me now get down to 

business. 

 
 
3. Invariance Principles and Mathematical Laws of Motion 

 
Data collection and analysis are central to physics. Data 

collection in the attempt to describe the motion of bodies began 

with the ancient astronomers, who used epicycles to describe 

planetary orbits. The mathematical description of empirically 

discovered laws of nature began with Archimedes‘ discovery of 

the conditions for static equilibrium. Galileo and Kepler revived 
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the Archimedian tradition in the seventeenth century and 

provided the empirical discoveries from which Newton was able 

to formulate nature’s dynamics mathematically in a very precise 

and general way (Barbour, 1989). Why have we been able to 

discover strict mathematical laws of inanimate nature, but 

haven’t discovered corresponding mathematical laws of socio-

economic behavior? Wigner (1967) discussed these questions in 

his beautiful essays on symmetry and invariance, where he 

identifies the basis of the seemingly unreasonable effectiveness 

of mathematics in physics.  

 

Following Galileo and Kepler, scientists have discovered 

mathematical laws obeyed by nature via repeatable, identical 

experiments (physics, chemistry, genetics) and repeatable 

observations (astronomy). The foundation for the invariance of 

experimental results performed at different places and times and 

in different states of motion lies in the local symmetry principles 

that form the basis of Newtonian and quantum mechanics, and 

general relativity: the simplest predictions of mathematical laws 

of nature are invariant under translations, rotations, time 

translations, and transformations among Galilean/inertial 

frames. These symmetries produce periodic orbits in integrable 

systems like the Newtonian two-body problem. Laws of nature 

were first discovered by Galileo and Kepler from careful 

observations of very simple orbits of period zero and period 

one.  

 



Given enough symmetry principles obeyed by prices, we 

should in principle be able to discover mathematical laws 

obeyed by markets. We know only one invariance principle for 

markets, and will discuss it below. There’s a fundamental 

difference between economic motions, like price changes (or 

GNP growth), and motions of inanimate bodies described by 

inviolable mathematical laws of nature. 

 
Unlike natural law, we act on human wishes and expectations 

to create all of economic behavior. Without actions determined 

by our brains, wishes, and actions, markets and prices would 

not exist. Nature, e.g., stars, planets, atoms, and DNA are not 

invented and manipulated in that way. Mathematical laws of 

nature are beyond human invention, intervention, and convention. 

Without human agreement and/or regulation, in contrast, 

markets and prices do not exist. Given that human decisions 

and actions create markets and money, and even that self-

fulfilling prophecy is possible, to what extent can we hope to 

discover an even approximately correct dynamics of markets? 

And bear in mind that nonuniqueness due to limited precision 

in data analysis can lead us not to a single model, but at best to 

some nonuniversality class of models. That is still better than 

nonempirical postulation, which exhibits far worse 

nonuniqueness problems.  

 

4. Invariance principles in markets  

 



Let’s start with the dynamics of price p and quantity x of assets 

in some real market or in a hypothetical market model, 

 

 

(3) 

where ε(p,t)=D(p,t)-S(p,t) is the excess demand, and xD=D(p,t) 

and xS=S(p,t) are the demand and supply at price p 

respectively. There is only one dynamically correct definition 

of equilibrium: nothing changes with time. In deterministic 

dynamics, dp/dt=0, or excess demand vanishes.  

 

For a stochastic description of markets, as in parts 2, 5, and 6, 

the condition d<p>/dt=0 is necessary but not sufficient for 

equilibrium, where <…> denotes the average. Also necessary 

for equilibrium is that all moments of the price distribution are 

time independent, which means that the price distribution 

g(p,t) is time invariant.  No other definition of equilibrium is 

consistent with dynamics. Contrary to confusion rampant in the 

economics and finance literature (see, e.g., McAdam and 

Hallett, 2000), a limit cycle is not an equilibrium, nor is a 

strange attractor. Neither a Wiener, lognormal, nor Levy 

stochastic process defines an equilibrium. More than seven 

different misuses of the word “equilibrium” in the economics 

and finance literature are exposed in McCauley (2004).  

 

  

dp
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In order to arrive at a completely different invariance principle, 

consider next a distribution of markets for a single asset, like 

gold or globalized autos (Ford, Toyota, GM, VW, or BMW, e.g.) 

on the face of the earth. The price density g(p,X,t) depends not 

just on price p and time t, but on location X as well, and g(p,X,t) 

is a conditional probability density for prices, a ‘Green function’ 

in the language of physics. The ‚no-arbitrage‘ principle is 

equivalent to the assumption of translational and rotational 

invariance (McCauley, 2004) of the price density on the earth. 

The absence of arbitrage is a purely geometric principle that 

guarantees nothing other than that the probability distribution 

g(p,t) for the price of the object traded is independent of position 

X. In particular, ‚no-arbitrage‘ has nothing to do whatsoever 

with ‘market equilibrium’. Market equilibrium would be 

equivalent to time translational invariance of the price 

distribution: in equilibrium or in a driven steady state, g(p,t) 

would also be independent of t, would define a statistical 

equilibrium with price density g(p).  

 
Falsifiabilty of a model via empirical data is a scientific 

necessity. The idea of falsifiability is not a new idea. Karl Popper 

only put into words what ‘hard science’ since Galileo has 

practiced. In physics, a new model will not be accepted unless it 

makes falsifiable new predictions. As an example of its 

predictive power, Newtonian mechanics was used to predict the 

existence of an ‘extra’ unobserved planet before Neptune was 

discovered. The SU(3) model in field theory was used to predict 

the Ω- particle before it was observed. The neo-classical model 



was perhaps once an example of science: it made definite 

predictions that have been falsified (Osborne, 1973; McCauley, 

2004). So why is it still taught, since it cannot be used to predict 

or even explain any observable phenomenon correctly? 

 

5. The Invisible Hand is a Falsifiable Proposition 

 

Adam Smith’s Invisible Hand is the idea that supply in a free 

market should tend to rise to meet demand. Neo-classical 

economics refined the idea of the Invisible Hand to mean that 

price changes occur at or near equilibrium, that prices should 

tend to equilibrate so that market stability is implicitly 

assumed. Stable markets could exhibit only small fluctuations 

about statistical equilibrium, or near a steady state. The neo-

classical assumption of stable equilibrium is falsifiable. Price 

changes near equilibrium, under the influence of noise traders, 

could be described mathematically by a stationary process in 

stochastic dynamics, one where the Gibbs entropy of the 

market 

 

  

(4) 

would necessarily become asymptotically constant as t 

increases, achieving an entropy maximum. Both the average 

return and variance/volatility of a stationary process are 

constants. Here, g(p,t) must be understood the correct 

  
S(t) = ! g(p, t) ln g(p, t)dp"



empirically deduced price density. Financial markets are 

typically very liquid and in that limit can be approximately 

described by a stochastic differential equation 

 

 

(5) 

where, as we will show below, the p-dependence of the price 

diffusion coefficient p2d(p,t) must be extracted from the 

observed time-dependence of the empirical price density g(p,t). 

Here, the excess demand ε(p,t)=D(p,t)-S(p,t) is described as 

drift plus noise, in agreement with the fact that price changes 

are not deterministic even on the shortest time scales. But let us 

ignore the empirical data for the moment and ask first what 

would be the practical implications of the economists’ 

assumption of market equilibrium. 

 

Stationarity would demand an asymptotically time invariant 

price density g(p). This defines statistical equilibrium. In this 

case, both the mean <rp> and standard deviation 

σ2=<Δp2>=<p2>-<p>2=<(p2d(p,t)> would be constants (<rp>=0 

is necessary if <e>=0). Equilibrium markets would therefore be 

both stationary and nonvolatile.  

 

Why should anyone care about equilibrium? If we could locate 

equilibrium in a real market, then we could define ‘value’ 

unambiguously. ‘Value’ would simply be the equilibrium price 

  

dp

dt
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p*. In statistical equilibrium we could take the equilibrium 

price p* to be either the average or most probable price, with 

fluctuations about equilibrium described by g(p). This would 

permit the construction of a trading strategy: buy the stock if 

p<p* and sell it if p>p*. One could refine this to argue that one 

should trade outside the range Δp*≈p*±√σ.  Stationary 

stochastic dynamics is ergodic, whereas nonstationary 

dynamics is not. The return to equilibrium demanded by the 

assumption of stationarity guarantees that such buying and 

selling are possible, and to be more precise one could calculate 

the distribution of first passage times.   

 

However, if we study the returns variable x=lnp(t)/po, where 

the returns density is given by f(x,t)=g(p,t)dp/dx=pg(p,t) and 

po is some initial or other reference price, then the observed 

returns variance is given by σ2=<Δx2>=<(x-<x>)2> = Δt2H with 

H=O(1/2). Thererfore, financial markets are nonstationary. 

Another way to say it is that financial markets are unstable, 

they never approach statistical equilibrium. In spite of this 

simple fact, some economists continue to write papers about 

‘stationary financial markets’. Physically, outstanding limit 

orders prevent financial markets from clearing: empirically 

seen, there is no daily clearing price in a financial market.  

 

The lack of equilibrium in market data means that ‘value’ does 

not exist as an unambiguous idea, only price exists uniquely (to 

within arbitrage). Because neither dynamical nor statistical 



equilibrium can be found in real market data, assertions that an 

asset is either undervalued or overvalued are subjective. But 

wishful thinking acted on collectively (self-fulfilling 

expectations widely-held) can lead to big price swings, as in the 

phenomenon of ‘momentum investing’ and the corresponding 

U.S. stock market bubble of from 1994-2001. This psychological 

condition, the inability to know ‘value’, combined with the 

easy availability of money as credit (and especially via 

leveraging) surely contribute to both nonstationarity and 

volatility. One can imagine noise traders changing their minds 

frequently, and so trading frequently, because they’re very 

uncertain of the ‘value’ of a financial holding like a stock, 

currency, or bond. This proposition could be simulated via an 

agent based trading model. An interesting exercise would be to 

introduce a trading model where equilibrium ‘exists’ 

mathematically in the model but is in some sense 

noncomputable (it could simply be NP-complete, not 

necessarily Turing (1936) noncomputable), and see what would 

be the effect on the market. The liquidity bath term 

p√d(p,t)dB(t)/dt in (5), which does not generate a lognormal 

process in p when d(p,t) depends on p, approximates the effect 

of the ‘noise traders’. Successful traders like Warren Buffet 

have zero weight in (5), they do not provide the daily liquidity 

that allows us to trade frequently, even on a time scale of a 

second, with small bid/ask spreads.  

 



In the language of statistical physics, equation (5) with d(p,t) 

chosen correctly to reflect the market data provides us with 

something that may be roughly analogous to a mean field 

approximation to a complex system of interacting agents. Real 

agents have PC’s or Macs, high computational capability, but 

generally can’t do any worthwhile calculations when trading 

because they can’t distinguish knowledge from noise, and can 

only make guesses about future prices in the absence of ‘value’. 

Long Term Capital Management (LTCM) nearly brought down 

the world financial system (Dunbar, 2000) by assuming that 1. 

they could determine value, 2. by taking seriously the 

Modigilani-Miller “theorem” that the debt/equity ratio doesn’t 

matter, and 3. by combining these two assumptions with 

Black’s assumption that there is an equilibrium in the market, 

that ‘price always tends to return to value’.  But what is 

‘volatility’? 

 
The first approximately quantitatively correct description of 

stock market returns was proposed in 1958 by the physicist 

turned finance theorist M.F.M. Osborne (Cootner, 1964), who 

plotted rough price histograms based on Wall St. Journal data 

in order to try to deduce the empirical distribution of stock 

prices. He inferred that stock returns seem to do a random 

walk, so that prices are distributed lognormally. The lognormal 

price distribution is generated by the stochastic differential 

equation (5) with variable local price volatility p2d(p)=(σpp)2, 

where σp is constant. The corresponding returns distribution is 



Gaussian because the stochastic differential equations for 

returns x is given (via Ito calculus) by  

 

 

 

(6) 

Because Osborne‘s stochastic model is Markovian, the Hurst 

exponent H in the variance or ‘average volatility’ σ2 =<(x-<x>)2> 

= Δt2H is H=1/2. We know from empirical data analysis that 

H=O(1/2) (Mantegna and Stanley, 2000), but whether H=.4, .5, 

or .6 is hard to decide empirically. The choice H=1/2 yields 

models obeying the ‚efficient market hypothesis‘, which means 

simply that the market is very hard to beat: for H=1/2 there are 

no long time correlations in the market. There is also evidence 

from stock indices for H≠1/2 (Skjeltorp, 1996). A Hurst exponent 

H≠1/2 implies fractional Brownian motion and yields long-time 

correlations that could, in principle, be exploited for profit.  

 

The Black-Scholes (1973) model of option pricing assumes 

Osborne’s Gaussian returns model. The Black-Scholes model is 

based on only two empirically measurable parameters, σp and 

r, and is falsifiable. In fact, the model has been falsified on 

several grounds. One of them is that when the model is force 

fitted to option prices, the constant σp must be varied as if it 

would depend on the strike price K. This is so-called ‘implied 

volatility’, and indicates that, in order to understand what the 
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market is telling us, we should start with the more general 

stochastic differential equation 

dx = (r "D(x,t) /2)dt + D(x,t)dB 

 

(7) 

corresponding (via Ito calculus) to (5), where the diffusion 

coefficient, or ‘local volatility’ D depends on x, and the returns 

diffusion coefficient is D(x,t)=d(p,t). We’ll show in part 6 below 

how an (x,t) dependent diffusion coefficient can be deduced from 

the empirical density of returns f(x,t). We know three important 

empirical facts about financial markets: they’re 

nonstationary/unstable, and they’re volatile. Also, f(x,t) exhibits ‘fat 

tails’, but we’ll discuss the asymptotic behavior of f later. 

 

For any market or economy, the notion of the Invisible Hand is a 

falsifiable proposition: one need only test a set of price or returns 

data or other time series for a given market or economy for 

asymptotic (strong) stationarity, or at least for weak stationarity in 

the form of lack of growth and lack of volatility (McCauley, 2004). 

We’ll explain why the worst problem that one faces is that typical 

nonfinancial markets provide us with such sparse data that reliable 

testing may be difficult or even impossible (the data are too easy to 

fit by many different dynamics models). Because of nonuniqueness 

in extracting models from data, e.g., we expect that GNP and 

business cycle data should be relatively easy to fit by using 

nonstationary, volatile models. To date, there is no convincing 

evidence from empirical data that any known market is 



asymptotically stationary, and market volatility is rather common. 

Instead of approaching equilibrium, we expect that empirical 

returns distributions for nonfinancial markets will broaden without 

limit as time increases. 

 
But how can the empirically observed time series x(t) of a 

particular market be used to infer the underlying dynamics? 

This question is of central importance for economics, because 

economic dynamics have not yet been deduced empirically 

except for financial markets. Instead of trying to argue that the 

falsified ratex model is ideal, but the data are ‘hard to describe’ 

(no physicist will give any weight to such an argument), we 

must ask what the unmassaged market data can teach us. I 

emphasize in advance that our approach to data analysis is not 

at all the method of the econometrician: instead of having 

limited, preconceived models in mind (Granger, 1999), we 

deduce a stochastic model from the data (see McAdam and 

Hallet (2000) for an example of an attempt to force preconceived 

notions on the data). I will outline our program next, where I 

will argue that real market data are not at all hard to fit 

accurately by using dynamical models. To the contrary, market 

data are too easy to fit: lack of uniqueness in empirically based 

modeling is the real problem that we face.  

 

Returning to Wigner’s theme, given the absence of enough 

symmetry principles to pin down inviolable dynamical law in 

finance and economics, what can we do? As Osborne  has shown 

us, the answer is the same as if there would be enough invariance 



principles to pin down real mathematical laws: we can study the 

available data for a specific market and try to extract a 

dynamical model that reproduces that data. In this case, we 

know in advance that we’re modeling data for a particular 

market in a particular era, and that any model is expected to fail 

at some unknown time in the future. Therefore, it’s essential that 

the model has few enough empirically known parameters to be 

falsifiable, otherwise one cannot know when the market has 

shifted in a complex/fundamental way.  
 

Many economists are averse to studying finance, but financial 

markets differ from other markets mainly in that many trades 

are made very frequently, even on a time scale of a second, so 

that very good data are available for the falsifiability of few-

parameter models. For houses or cars, the time scale for a large 

number of trades is much greater so that the data are much 

sparser. Such markets are far less liquid and may vary much 

more from one locale to another. Because of the abundance of 

adequate and reliable data, financial markets provide the best 

testing ground for both new and old ideas. Financial markets 

exhibit the interesting characteristics of economic systems in 

general: growth and ‚the business cycle (see Goodwin (1993) for 

a discussion of these phenomena). When we speak of the 

‚business cycle‘, a topic where both stochastic (Cootner, 1964) 

and nonequilibrium nonlinear deterministic models were 

considered rather early (Velupillai, 1998), we no longer expect to 

discover any either stable or unstable periodicity. We rather 

expect to understand ‘the business cycle’ as volatility combined 



with nonstationarity of the market distribution, where the 

market distribution is simply the collection of histograms 

obtained from real market data. Stationarity is another name for 

time invariance. Nonstationarity means that market entropy (4) 

increases without limit, that the market is far from any 

equilibrium.  Equilibrium and stability do not exist as 

possibilities for financial markets: evidence for vanishing excess 

demand cannot be found in the empirical data. 

 

6. An Empirically Based Model of Financial Markets 

 
In a stochastic description of markets, the excess demand ε(p,t) 

is modeled as drift plus noise  

 

dp = prdt + p" d(p,t)dB(t)  

  

(8) 

where dB is a Wiener process and p2d(p,t) is the price diffusion 

coefficient. The stochastic differential equation for the returns 

variable x=lnp(t)/po is given by 

 

 

(9) 

where the returns diffusion coefficient transforms like a scalar, 

D(x,t)=d(p,t). We can regard the returns diffusion coefficient 

D(x,t) as the ‘local  volatility’ (McCauley, 2004). We will use as 

our independent variable the logarithmic return x, not price p, 

  dx = (r ! D(x, t) / 2)dt+ D(x, t)dB



in modeling because empirical analyses must be carried out 

using returns in order to avoid errors when x is large in 

magnitude (Osborne, 1958; Gunaratne, 1990; Dacorogna, 2001). 

 

In contrast with the usual desire of economists to divide the 

economy into ‘system’ and ‘shocks’, the noise/shock is the main 

part of the stochastic dynamical system (8), otherwise, excess 

demand is neither correctly defined nor described. The noise 

dominates the dynamics: financial markets are mainly noise. The 

noise term in (9) is √D(x,t)dB(t), and this is where the interesting 

market dynamics lie. The Green function of the Fokker-Planck 

equation corresponding to (9) is the market Green function: it 

can be used to calculate all market predictions, including option 

pricing (McCauley, 2004). 

 

To a first approximation, financial data for small to moderate 

returns x are neither approximately Gaussian nor Levy but are 

instead more approximately exponentially distributed (fig. 1) 

 

 

(10) 

 

where the plus-minus subscripts refer to the regions to the 

right and left of the peak of the returns density f, x>δ and x<δ. 

The exponential distribution is generated by a Markovian 
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model with nontrivial local volatility (diffusion coefficient 

D(x,t)) 

  

(11) 

where d+ and d- are constants, and δ depends on Δt and defines 

the peak of the returns density. When ‘Galilean invariance’ 

holds, then δ=rΔt. This local volatility yields a Brownian–like 

average (or global) volatility σ2 ≈ Δt at long times. The average 

volatility, or mean square fluctuation in return x, is given by 

 

 

 

(12) 

where g(x,t;x’t’) is the market Green function (eqn. (10) defines 

the Green function for one particular initial condition). The 

exponential model prices options correctly without the need 

for fudge-factors like ‚implied volatility‘ that characterize 

financial engineering based on trying to force-fit a Gaussian 

returns model to the data (McCauley and Gunaratne, 2003).  

All of the constants in the model are fixed by empirical data, so 

the model is falsifiable. 
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For the benefit of readers who are economists, here’s 

specifically what we did (McCauley, 2004). Gemunu Gunaratne 

first deduced the exponential distribution from financial 

market histograms. I used the known average volatility, σ2
≈Δt, 

for Δt larger than about 10 min. of trading, to deduce the time 

dependence of the exponential distribution. From there, we 

asked which diffusion coefficient D(x,t) in the stochastic 

differential equation (9) generates the exponential density with 

the observed time dependence. This is not the same as force-

fitting a preconceived stochastic model to the data. A strong 

test of our dynamical model would be to measure the local 

volatity D(x,t) directly. The main points are very simple but are 

easily misunderstood, because the method of deduction is not 

the usual method in econometrics. 

 

In particular, in a stochastic model (9), dB(t) is a Wiener process 

but the stochastic integral of √D(x,t)dB(t), which appears in the 

solution x(t), is not globally a Wiener process if the diffusion 

coefficient D(x,t) depends on x (models where D depends on t 

alone, and not on x, are trivially equivalent to Wiener processes 

by a time transformation). This is the main point: the form of the 

diffusion coefficient D(x,t) that defines the noise term 

√D(x,t)dB(t) in dynamics must be deduced empirically. The usual 

alternative is instead to assume a stochastic model based on a 

postulated, preconceived form of noise, and then try to force-fit 

the data by a ‘best choice of parameters’. Our program is to 

respect the data and therefore first to discover the form of the 



empirical distribution. Then, we determined the time 

dependence of the distribution’s parameters from the data, and 

used that information to deduce a dynamical model: plugging 

the empirical distribution into a Fokker-Planck equation 

(corresponding to (9)) allows one to solve the ‘inverse problem’ 

to find the diffusion coefficient that generates the observed 

distribution (McCauley and Gunaratne, 2003). Newton solved 

an inverse problem to deduce the inverse square law of gravity 

from Kepler’s elliptic orbits (McCauley, 1997).  

 

In contrast, the usual method of the economist is to assume a 

stochastic model and then try to extract a best fit of parameter 

values for that model from the data. E.g., the Real Business 

Cycle (RBC) model (Chow and Kwan, 1998) assumes a 

particular form for the noise term. In contrast with RBC, we 

deduce the form of the noise term from the observed time 

dependence of the empirical distribution. This is physically 

significant: the noise term reflects what the ‘noise traders’ are 

doing. The noise term that would describe a stochastic model of 

the GNP would reflect the nature of the noise in the economy, 

likewise for a sector in a business cycle model. 

 

The exponential distribution has also been discovered in 

empirical studies of the growth rate of firms (Stanley et al, 1996: 

Bottazi et al, 2001). Those papers also start with empirical 

histograms and then deduce a probability distribution. The 

exponential distribution has fat tails in price, but not in returns. 



The empirical financial distributions have fat tails in returns for 

large returns x. 

 

We’ve discussed volatility in part 4, but the most commonly 

heard criticism of the Gaussian returns model is that the 

empirical density of financial returns has fat tails f(x,t)≈x-µ (fig. 2) 

for large returns x (Dacorogna et al, 2001), where µ is  a 

nonuniversal scaling exponent in the range from about 3.5 to 7, 

it may vary from market to market. Fat tails in historic cotton 

prices were first discovered in Osborne’s era by Mandelbrot 

(Cootner, 1964), following Pareto, but Mandelbrot then assumed 

an infinite variance, to zeroth order, in order to try to apply the 

Levy distributions. Levy distributions generate the smallest tail 

exponents, 1<µ<3, and therefore the fattest tails. 

 

Levy distributions can be used to generate fat tails, but with 

entirely different underlying dynamics than in our Markovian 

model. In the formula 

 

 

 

(13) 

 

for a probability density, symmetric Levy distributions are 

given by α<2 and have infinite mean square fluctuation 
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(infinite volatility). The exponent α describes fat tails for large 

x. The tail exponent is µ=1+α, but α<2 is too small to generate 

financial data. The dynamics of the dynamics of Levy 

distributions especially for α<2 is discussed in Hughs et al 

(1981). For α>2 there is recurrence in the form of long-time 

anticorrelations, whereas for 0<α<2 there is a hierarchy of 

clustering in the time series x(t). In the physics literature, it 

seems not to have been understood that the case where α>2 

cannot be described by a ‘Langevin equation’ (stochastic 

differential equation) in the variables x or p. When α>2 then 

one gets fat tails with fractional Brownian motion, where the 

average volatility is <Δx2>=Δt2/α. The Hurst exponent is 

H=1/α<1/2, so there are infinitely long-time correlations, there 

is no diffusion coefficient D(x,t), and therefore no description of 

the dynamics via a stochastic differential equation or Fokker-

Planck equation in either p or x. Because of the long time 

correlations the efficient market hypothesis (EMH) is violated, 

although the violation will not likely help a small trader to beat 

the market is H close enough to 1/2. To have correlations 

strong enough to beat the market effectively, one needs an 

exponent H considerably different than 1/2.  

 

The efficient market hypothesis (EMH) may obeyed by a good 

model to zeroth order: the EMH simply reflects the fact that the 

market is very hard, but not necessarily impossible, to beat. To 

zeroth order, there are no systematic patterns (correlations) in 

the market.  



 

Here’s something entirely new: we can also generate fat tails 

f(x,t) ≈ x--µ for large x, for all possible exponents µ≥2 (fig. 3), via 

a stochastic differential equation (9) where the tail exponent µ 

is uniquely determined by the nonlinearity parameter ε in the 

returns diffusion coefficient (Alejandro-Quinones et al, 2004) 

 

 

 

(14) 

This is a surprising result. Many papers and some books have 

been written on nonstationary volatile stochastic processes, but 

few examples have been given that combine nonstationarity, 

volatility, and fat tails.  We’ve combined all three. 

 

Next, I will emphasize a point that’s central for extracting 

dynamical models from empirical data. There is nonuniqueness 

in the choice of time dependence of time dependence in 

equations (10) and (11) chosen to fit finance market data (fig. 1). 

Given the known nonuniqueness faced in extracting chaotic 

dynamics from data, this is not a surprise. One attempts to 

extract an infinite precision model from finite precision data. 

Newton didn’t face this problem because of the underyling 

space-time symmetry principles, but if you would try to extract 

Newton’s second law from a chaotic system like the three body 
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problem, then you’d have the same difficulty. In applying the 

new model defined by eqn. (10) to option pricing, we found 

(McCauley and Gunaratne, 2003) that we have the unwarranted 

luck that the nonuniqueness doesn’t matter on time scales much 

less than a hundred years. Normally, one should not expect such 

luck in modeling. Finite precision in empirical data always 

implies nonuniqueness in the inference of an infinite precision 

model. Without the underlying space-time symmetry principles 

used to pin down laws of motion in physics, the nonuniqueness 

can be severe, but the nonuniqueness involved in the 

nonempirical postulation of models is far, far worse. One cannot 

capture the essence of market behavior merely be imagining how 

agents might behave (as in ratex), one must instead ask the 

market directly. 

 

The main aim of economic theory in our era should be to match the 

success of the empirical description of financial markets for at least one 

nonfinancial market. Toward that end, ideas of stability and 

equilibrium in economics should either be verified empirically or 

else completely abandoned as guiding theoretical principles. In 

particular, economics texts should stop teaching ‘rational 

expectations’ as if that model would bear any realistic relation to 

real markets. To continue to teach a completely falsified model is 

to mislead generations of students. Again, Newton’s first law and 

the law of gravity can be verified to high decimal precision in 

experiments on earth and on the moon, but no market has yet 

been found that even approximately reflects ratex.  



 
Note that financial markets have been accurately described by 

very simple stochastic dynamics, so where‘s the complexity? 

Complexity leads us into questions of computational limitations 

or intractability. The highest degree of computational complexity 

is that of a Turing machine (Feynman, 1996; Velupillai, 2000). We 

expect that markets are not merely stochastic (“random”) but are 

also complex. Can the empirically observed time series of a 

complex system be used to infer the underlying dynamics? We 

know now that Newton would have had serious problems were 

it necessary to discover the basic laws of physics by analyzing 

time series for a chaotic system like the 3-body problem, but 

complexity turns out to be much worse that deterministic chaos.  

In what follows, I assume that all functions that we use to define 

a deterministic dynamical model are Turing computable, and 

that computable numbers are used as control parameters and 

initial conditions in the model. By this restriction we avoid the 

trivial noncomputability of the measure one set of numbers that 

can be defined to ‚exist‘ in the continuum, but cannot be 

generated algorithmically. 

 

7. Complexity in Physics, Biology, and Markets 

 

To date, we have no physically or biologically motivated 

definitions of complexity that are mathematically adequate, in 

spite of the fact that cell biology provides us with numerous 

examples of natural complexity. Our everyday computers are 

an example of complexity and can be described dynamically as 



Newtonian electro-mechanical machines. Contrary to 

expectations in some quarters, scaling is not an example of 

complexity, nor is stochastic dynamics (‘randomness’).  Moore 

has discussed the nature of maximal complexity in 

deterministic dynamics.  

 

We can generate maximal computational complexity by using 

simple deterministic dynamics (Moore, 1990, 1991). Low 

dimensional iterated maps that are equivalent to Turing 

machines provide examples. These dynamical systems have no 

attractors, no symbolic dynamics/no generating partition, and 

so exhibit no scaling laws that would inform us of behavior at 

smaller length scales in terms of observed dynamics at larger 

length scales. Instead, ‚surprises‘, new unforeseen behavior, are 

possible at all length scales. By length scales, I think here of the 

hierarchy of coarsegrainings defined by the generating 

partition in a chaotic system (McCauley, 1993), where one looks 

in finer and finer detail at the dynamics, increasing the 

magnification of the microscope, so to speak. Without symbolic 

dynamics and the corresponding generating partition, we have 

no way to deduce a Turing-equivalent dynamical system from 

time series.  This is a serious drawback in anyone’s book. 

 

Mutations of viruses and bacteria to new, unexpected forms 

provide an example of the surprises characteristic of 

complexity.  Such surprises now occur on very short time 



scales, time scales shorter than the time required to discover 

new antibiotics, e.g. 

 

In continuous time dynamics, at the shortest time scales there is 

no way to distinguish complexity from simplicity in 

deterministic dynamics. This assertion can be extended 

analytically to slightly larger time scales. Every deterministic 

dynamical system dp/dt=ε(p), even a chaotic or complex one, 

has a unique, well-defined solution (is globally solvable) so 

long as the velocity field ε(p) satisfies a Lipshitz condition with 

respect to the n variables p
i
. If, in addition, the velocity field 

ε(p) is analytic in those variables then the power series locally 

defining the time evolution operator U(t)=etL, 
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has a nonvanishing radius of convergence, so that the solution 

of the dynamical system can in principle be defined by power 

series combined with analytic continuation for all finite times 

(Poincaré, 1993). L is the infinitesimal generator of the flow and 

is determined by ε(p). The radius of convergence of (15) is 

typically small and unknown. Unless one can determine the 

singularities of (15) in the complex time plane, one does not 

know when and where to continue analytically. Therefore, in 

practice, we cannot expect to solve nonintegrable dynamical 

systems more than locally, for only very short time intervals. 

This is a restriction on predictability that precedes any 



computability limitations that may arise in deterministic 

dynamics. This limit on predictability is ignored by economists 

who claim that they can make reliable global predictions. 

 

In deterministic iterated maps, the surprises arise internally 

from the system’s dynamics. In order to imagine more clearly 

how  surprises could appear in a finance market in the short 

run, we can consider the market modeled by fluctuating asset 

price (described to zeroth order by (9)) and the liquidity bath, 

which Brownian motion theory assumes to remain unchanged. 

The diffusion term in (9) assumes implicitly that the liquidity 

bath is there, that you can make small trades without affecting 

the market, to zeroth order. The analogy of the liquidity bath 

with the heat bath for a Brownian particle is described in 

McCauley (2004). In a financial market, the occurrence of a 

surprise may cause the liquidity bath to dry up suddenly 

(market crash). In that case, (8) and (9) do not apply: a liquidity 

drought is not a Wiener, lognornal, Levy, exponential, or any 

other continuous time stochastic process. It is more 

approximately the complete absence of the noise traders (meaning 

that D(x,t)≈0). In order to try to include surprises 

mathematically, one could try to model the interacting system 

of agents trying to set prices in the absence of ‘value’, avoiding 

assuming the liquidity bath/Brownian motion approximation 

explicitly and then try to derive (9) from the model under a 

liquidity bath approximation.  

 



Summarizing, for a deterministic dynamical system with 

universal computational capability, nothing can be said in 

advance about the future, either statistically or otherwise: the 

future is computationally undecideable. This maximum degree of 

computational complexity occurs in low dimensional nonintegrable 

conservative Newtonian dynamics. In particular, billiard ball 

dynamics exhibit positive Liapunov exponents and provide us 

with an example of a chaotic system that is mixing (Cvitanovic 

et al’, 2003). But billiard balls can also be used to compute 

reversibly and universally (Fredkin and Toffoli, 1982). Such a 

method of computation would be impractical because the 

positive Liapunov exponents magnify errors in initial 

conditions of the billiard balls, messing up the computation. 

 

Molecular biology is largely about complexity at the molecular 

(DNA-protein) level. E.g., the thick, impressive, and heavy text 

by Alberts et al (2002) is an encyclopedia of cell biology, but 

displays no equations. Again, with no equations as an aid, 

Weinberg (1999) describes the 5-6 independent mutations 

required to produce a metastasizing tumor. All these 

impressive biological phenomena remind us more of the results 

of a complicated computer program than of a dynamical 

system, and have all been discovered reductively by standard 

isolation of cause and effect in controlled, repeatable 

experiments.  

 



Many economists and econophysicists would like to use a 

biological analogy in economics, but the stumbling block is the 

complete absence of a falsifiable dynamical description of 

biological evolution. Instead of simple equations, we have 

simple objects (genes) that behave more like symbols in a 

complicated computer program. Complex adaptable 

mathematical models notwithstanding, there exists no 

mathematical description of evolution that is empirically 

correct at the macroscopic or microscopic level. Schrödinger 

(1944), following the track initiated by Mendel1 that eventually 

led to the identification of the molecular structure of DNA and 

the genetic code, explained quite clearly why evolution can 

only be understood mutation by mutation at the molecular  

level of genes. Mendelism provides us with a clear picture of 

Darwinism at the cellular level. The only precise definition of 

biological evolution relies on mutations, there is no falsifiable 

model of Darwinism at the macroscopic level. That is, we can 

understand how DNA mutates to a new form but we do not 

have a model showing falsifiably how a fish evolves into a bird. 

That’s not to say that it didn’t happen, only that we don‘t have, 

and probably never will have, a model that helps us to picture 

how it happened.  

 

The terms ‘emergence’ and ‘self-organization’ are not precisely 

defined. They mean different things to different people. It’s not 
                                                
1 Mendel was trained in the Galilean method: he studied and taught physics in Vienna. 
He did not get an academic position, and so retreated to Brnn in what is now Slovakia,  
and studied peas.  The idea of a ‘code script’ in chromosomes was suggested by 
Schrödinger (1944). 



clear what writers could have in mind, other than symmetry-

breaking and pattern formation at a bifurcation in nonlinear 

dynamics, when they claim that a system ‘self-organizes’2. 

Some researchers who study complex models mathematically 

expect to discover new, ‚emergent‘ dynamics for complex 

systems, but so far no one has produced an empirically 

relevant or even theoretically clear example. See Lee (2004) for 

a survey of some of the usual ideas of self-organization and 

emergence. Crutchfield and Young (1990), Crutchfield3 (1994) 

and others have partly developed the interesting idea of 

nontrivial computational capability appearing spontaneously 

within a dynamical system due to bifurcations. This doesn’t 

present us with new dynamics, it’s about an increase in 

complexity in already existing dynamics due to a bifurcation. 

Crutchfield assumes a generating partition and symbolic 

dynamics, but Moore has shown that we have to give up those 

ideas for dynamics with Turing-equivalent complexity. 

Another weakness in Crutchfield’s program is his restriction of 

noise to stationary processes. That won’t work for market data, 

or for realistic market models either. Can the program be 

extended and then applied to teach us anything new or useful 

about economic or biologic data?  

 

                                                
2 Hermann Haken (1983), at the Landau-Ginzburg level of nonequilibrium statistical 
physics, provided examples of bifurcations to pattern formation via symmetry breaking. 
All subsequent writers have used ‘self-organized’ as if the term would be self-
explanatory, even when there is no apparent symmetry breaking. Is a deterministic or 
noisy stable equilibrium point or limit cycle (or other invariant set without escape) an 
example of self-organization? If so, then maybe we don’t need the phrase at all. 
3 My Galilean approach is completely contrary to the postmodernist philosophical outlook 
expressed, especially in part I, of Crutchfield’s 1994 paper. 



I now offer an observation to try to clarify ‘emergence’: 

whatever length and time scales one studies, one first needs to 

discover approximately invariant objects before one can hope to 

discover new dynamics. The ‘emergent dynamics’, if such 

dynamics can be discovered, will be the dynamics of those 

objects. Now, what many complexity theorists hope and expect 

is that new dynamical laws beyond physics will somehow 

emerge statistically-observationally, or can be postulated, at 

larger than molecular length and time scales, laws that cannot 

be derived systematically from phenomena at smaller length 

scales. A good example is that many Darwinists would like to 

be able to ignore physics and chemistry altogether and try to 

understand biological evolution macroscopically, 

independently of the mass of details of genetics, which have 

emerged from controlled experiments and data analysis.  

 

Consider specifically cell biology, where the emergent 

invariant objects are genes. Genes constitute a four-letter 

alphabet used to make three letter words. From the perspective 

of quantum physics, genes and the genetic code are a clear 

example of emergent phenomena. With the genetic code, we 

arrive at the basis for computational complexity in biology. 

Both DNA and RNA are known to have nontrivial 

computational capability (Adelman, 1994; Bennett, 1982; 

Lipton, 1989). One can think of the genes as ‚emergent‘ objects 

on long, helical molecules, DNA and RNA. But just because 

genes and the code of life have emerged on an approximately 



one-dimensional tape, we do not yet know any corresponding 

new dynamical equations that describe genetics, cell biology, or 

cancer. So far, one can only use quantum or classical 

mechanics, or chemical kinetics, in various different 

approximations to try to calculate some aspects of cell biology.  

 

My main conclusion is that ‘emergence‘ does not guarantee the 

appearance of new laws of motion. Apparently, invariant objects 

can emerge without the existence of any new laws of motion to 

describe those objects. Genes obey simple rules and form four 

letter words but that, taken alone, doesn’t tell us much about 

the consequences of genetics, which reflect the most important 

possible example in nature of computational complexity: the 

evolution from molecules to cells and human life.  

 

Finally, dreams of holism are pure illusion. Every mathematical 

model that can be written down represents some kind of attempt 

at reductionism. The only question is: does the attempt succeed 

or fail? Here are some examples. The renormalization group 

method in statistical physics, valid at order-disorder 

transitions, reduces phenomena at a critical point 

approximately to symmetry and dimension. Quantum theory, 

the law of nature at very small length scales explains chemistry 

via electrons, protons, atoms and molecules. Cell biology 

successfully reduces observed phenomena to very large, 

complicated molecules, to genes, DNA, proteins, and cells. 

Proponents of self-organized criticality try to reduce the 



important features of nature to the equivalent of sand grains 

and sand piles via the hope for an underlying universality 

principle (Bak, 1996). Network enthusiasts likewise hope to 

reduce many interesting phenomena to nodes and links 

(Barabasi, 2002). The worst weakness in the latter two 

programs is that there are no known universality principles for 

driven-dissipative systems far from thermal equilibrium, 

except at the transition to chaos. 

 

I end by suggesting an biological analogy for economics. The 

creation of new markets depends on new inventions and their 

exploitation for profit. Mathematical invention has been 

described psychologically by Hadamard (1945). Conventional 

ideas of psychology completely fail to describe the solitary 

mental act of invention, whether in mathematical discovery or 

as in the invention of the steam engine or the sequential 

computer. Every breakthrough that leads to a new invention is 

an example of a ‚surprise‘, of something emerging from within 

the system (the system includes human brains and human 

actions) that was not foreseen. A completely new product, like 

the gasoline engine or the PC, is based on an invention. The 

creation of a successful new market, based on a new product, is 

partly analogous to an epidemic: the disease spreads seemingly 

uncontrollably at first, and then eventually meets limited or 

negative growth. The simplest mathematical model of creation 

that I can think of would be described by the growth of a ‚tree‘, 

where new branches (inventions or breakthroughs) appear 



suddenly without warning. This is not like a search tree in a 

known computer program.  Growth of any kind is a form of 

instability, and mathematical trees reflecting instability do 

appear in nature, in the turbulent eddy cascade e.g., but in that 

case the element of ‚surprise‘ is missing.  

 

Summarizing, I've discussed the use of the Galilean method in 

finance and have suggested that it be applied in economics. 

Empirically motivated models are necessary beforehand if 

mathematics is to be made effective in general economics, as it 

has become in finance theory. Worries about complexity are 

premature before adequate empirical market models have been 

deduced. Market time series and histograms are, of course, of 

limited value in predicting the future: they reflect in some 

coarsegrained fashion how we've been behaving economically. 

The future in socio-economic phenomena is to some unknown 

degree undecidable and can't be known in advance, not even 

statistically. Using market statistics as a basis for prediction 

assumes that tomorrow will be statistically like yesterday. If 

we’ve modeled carefully, as in finance, then this assumption 

may not get us into hot water so long as there are no surprises. 

Insurance companies make money by assuming that the future 

will be like the past statistically (they take in to account fat tails 

but hope for stationarity), and lose money when it isn’t. 

 

Of course, one can also make nonempirically based 

mathematical or even nonmathematical models, and assert that 



if we assume this and that, then we expect that thus and such 

will happen. That sort of modeling activity is not necessarily 

completely vacuous, because socio-economic beliefs can be 

made into reality by acting strongly enough on wishes or 

expectations, there are self-fulfilling prophecies that go beyond 

the realm of science: e.g., a model can be enforced or legislated. 

Both communism (implemented via bloody dictatorships) and 

globalization (implemented via massive deregulation and 

privatization, big financial transfers, and supragovernmental4 

edict) provide examples. Neo-classical economics/‘rational 

expectations’ is a mathematized ideology that encourages 

unlimited deregulation. The construction of competing models 

based on real market statistics will be useful for confronting 

the ‘best of all possible worlds’ claims of the ideologues and 

other true believers with the reality of continually evolving 

markets and economies. Instability and surprises are the main 

aspects of market reality in our era.  
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Figure Captions 

 

1. The histogram for the distribution of relative price 

increments for US Bonds for a period of 600 days. The 

horizontal axis is the variable x = ln(p(t+Δt)/p(t)), and the 



vertical axis is the logarithm of the frequency of it’s 

occurrence (Δt=4 hours). The piecewise linearity of the plot 

implies that the distribution of returns x is exponential. 

 

2.Histogram of USD/DM hourly returns, and Gaussian returns 

(dashed line). Figure courtesy of Michel Dacorogna. 

 

3. The exponential distribution F(u)=f(x,t) developes fat tails in   

returns x when a quadratic term O((x-rΔt)/Δt1/2)2) is included in 

the diffusion coefficient D(x,t). Here, u=(x-rΔt)/√Δt. 

 
 

 

 

 

 

 


