
Munich Personal RePEc Archive

A classical algorithm to break through

Maskin’s theorem for small-scale cases

Wu, Haoyang

Department of Physics, Xi’an Jiaotong University, China

22 April 2010

Online at https://mpra.ub.uni-muenchen.de/22402/

MPRA Paper No. 22402, posted 22 Aug 2010 00:24 UTC

April 29, 2010 23:12

A classical algorithm to break through Maskin’s theorem for

small-scale cases

Haoyang Wu

Department of Physics, Xi’an Jiaotong University,

Xi’an, 710049, China.

hywch@mail.xjtu.edu.cn

Quantum mechanics has been applied to game theory for years. A recent
work [H. Wu, Quantum mechanism helps agents combat “bad” social choice

rules. International Journal of Quantum Information, 2010 (accepted). Also see
http://arxiv.org/pdf/1002.4294v3] has generalized quantum mechanics to the theory

of mechanism design (a reverse problem of game theory). Although the quantum mech-
anism is theoretically feasible, agents cannot benefit from it immediately due to the
restriction of current experimental technologies. In this paper, a classical algorithm is
proposed to help agents combat “bad” social choice rules immediately. The algorithm
works well when the number of agents is not very large (e.g., less than 20). Since this
condition is acceptable for small-scale cases, it can be concluded that the Maskin’s suf-
ficiency theorem has been broken through for small-scale cases just right now. In the

future, when the experimental technologies for quantum information are commercially
available, the Wu’s quantum mechanism will break through the Maskin’s sufficiency

theorem completely.

Keywords: Quantum games; Prisoners’ Dilemma; Mechanism design.

1. Introduction

About 2500 years ago, the Chinese philosopher Confucius proposed a logion to de-

scribe how atrociously a dictator dominated the civilians, i.e., “tyranny was much

fiercer than the tiger”. Fortunately, with the development of human societies, nowa-

days the dictatorship has almost been abandoned in the world. In a democratic

society, a governor usually faces a “social engineering” problem, i.e., given some

outcomes, whether he/she can design a mechanism that produces them.

It is an interesting question to ask whether a group of self-interested agents can

find a way to fight the governor if all of them dislike a social choice rule (SCR) given

by the governor. According to Maskin’s sufficiency theorem 1, as long as an SCR is

monotonic and satisfies no-veto, it is Nash implementable even if all agents dislike

it (See Example 1 of Ref. [2]). Hence, the answer to the aforementioned question

seems to be “No”.

However, in 2010, Wu 2 generalized the theory of mechanism design to a quan-

tum domain and proposed two results: 1) The success of Maskin’s sufficiency theo-

rem was indeed founded on a multi-player Prisoners’ Dilemma, where self-interested

agents could not enter a binding agreement to reach a Pareto-efficient outcome.

1

April 29, 2010 23:12

2 Haoyang Wu

2) By virtue of quantum strategies, agents who satisfied a certain condition could

combat Pareto-inefficient SCRs instead of being restricted by Maskin’s sufficiency

theorem. For n agents, the time and space complexity of the quantum mechanism

was O(n), therefore the quantum mechanism was theoretically feasible.

Despite these interesting results, there exists an obstacle for agents to use the

quantum mechanism immediately: It needs a quantum equipment to work, but so

far the experimental technologies for quantum information are not commercially

available 5. It is difficult for agents to carry out the quantum mechanism right now.

As a result, the quantum mechanism may be viewed only as a “toy” to the real

world.

In this paper, we will propose a classical algorithm through which agents can

combat Pareto-inefficient SCRs immediately. Although the time and space com-

plexity of the algorithm is exponential, it works well when the number of agents is

not very large (e.g., less than 20). Since this condition is acceptable for small-scale

cases, it can be concluded that the Maskin’s sufficiency theorem has been broken

through for small-scale cases just right now.

The rest of the paper is organized as follows: Section 2 recalls preliminaries of

mechanism design; Section 3 is the main part of this paper, where we propose a

classical algorithm to help agents combat “bad” SCRs when the number of agents

is not very large; Section 4 draws conclusions.

2. Preliminaries

2.1. The traditional mechanism design theory

Let N = {1, · · · , n} be a finite set of agents with n ≥ 2, A = {a1, · · · , ak} be a finite

set of social outcomes. Let Ti be the finite set of agent i’s types, and the private

information possessed by agent i is denoted as ti ∈ Ti. We refer to a profile of types

t = (t1, · · · , tn) as a state. Let T =
∏

i∈N Ti be the set of states. At state t ∈ T ,

each agent i ∈ N is assumed to have a complete and transitive preference relation

ºt
i over the set A. We denote by ºt= (ºt

1, · · · ,ºt
n) the profile of preferences in

state t, and denote by ≻t
i the strict preference part of ºt

i. Fix a state t, we refer

to the collection E =< N, A, (ºt
i)i∈N > as an environment. Let ε be the class of

possible environments. A social choice rule (SCR) F is a mapping F : ε → 2A\{∅}.

A mechanism Γ = ((Mi)i∈N , g) describes a message or strategy set Mi for agent i,

and an outcome function g :
∏

i∈N Mi → A.

An SCR F satisfies no-veto if, whenever a ºt
i b for all b ∈ A and for all agents

i but perhaps one j, then a ∈ F (E). An SCR F is monotonic if for every pair of

environments E and E′, and for every a ∈ F (E), whenever a ºt
i b implies that

a ºt′

i b, there holds a ∈ F (E′). We assume that there is complete information

among the agents, i.e., the true state t is common knowledge among them. Given a

mechanism Γ = ((Mi)i∈N , g) played in state t, a Nash equilibrium of Γ in state t is

a strategy profile m∗ such that: ∀i ∈ N, g(m∗(t)) ºt
i g(mi,m

∗
−i(t)),∀mi ∈ Mi. Let

N (Γ, t) denote the set of Nash equilibria of the game induced by Γ in state t, and

April 29, 2010 23:12

A classical algorithm to break through Maskin’s theorem for small-scale cases 3

�ψ

��

��

��

�ψ

... ...

����	�

����	�

����	�

�

+
��

�
��
�	

��
�

��
��

���
��

��

�
�ω

�
�ω

�ω�

���	��	
��	�����	��	�	�������	����������	����	�����	���	�	

�������	����	���	�	�����		����	�����	�������������	��������	�	

�����	�������	���������	��	�������	���	�������	�����	

����	�	

����	�	

����	�

...
 �������

�!�"

�

�

�ψ #ψ

g(N (Γ, t)) denote the corresponding set of Nash equilibrium outcomes. An SCR F

is Nash implementable if there exists a mechanism Γ = ((Mi)i∈N , g) such that for

every t ∈ T , g(N (Γ, t)) = F (t).

Maskin 1 provided an almost complete characterization of SCRs that were Nash

implementable. The main results of Ref. [1] are two theorems: 1) (Necessity) If an

SCR is Nash implementable, then it is monotonic. 2) (Sufficiency) Let n ≥ 3, if

an SCR is monotonic and satisfies no-veto, then it is Nash implementable. In order

to facilitate the following investigation, we briefly recall the Maskin mechanism as

follows 3:

Consider the following mechanism Γ = ((Mi)i∈N , g), where agent i’s message

set is Mi = A × T × Z+, where Z+ is the set of non-negative integers. A typical

message sent by agent i is described as mi = (ai, ti, zi). The outcome function g

is defined in the following three rules: (1) If for every agent i ∈ N , mi = (a, t, 0)

and a ∈ F (t), then g(m) = a. (2) If (n − 1) agents i 6= j send mi = (a, t, 0) and

a ∈ F (t), but agent j sends mj = (aj , tj , zj) 6= (a, t, 0), then g(m) = a if aj ≻t
j a,

and g(m) = aj otherwise. (3) In all other cases, g(m) = a′, where a′ is the outcome

chosen by the agent with the lowest index among those who announce the highest

integer.

2.2. Wu’s quantum mechanism

According to Maskin’s sufficiency theorem, even if all agents dislike an SCR specified

by the designer, as long as it is monotonic and satisfies no-veto, the designer can

always construct a mechanism to implement the SCR in Nash equilibrium. In 2010,

Wu 2 proposed that when condition λ was satisfied, an original Nash implementable

“bad” (i.e., Pareto-inefficient) SCR would no longer be Nash implementable in the

context of a quantum domain. The setup of a quantum mechanism is depicted in

Fig. 1. Assumptions of the quantum mechanism are referred to Ref. [2]. The working

April 29, 2010 23:12

4 Haoyang Wu

steps of the quantum mechanism are listed as follows:

Step 1: Nature selects a state t ∈ T and assigns t to the agents. The state of

every quantum coin is set as |C〉. |ψ0〉 = |C · · ·CC〉.

Step 2: In state t, if all agents agree that the SCR F is “bad”, i.e., there exists

t̂ ∈ T , t̂ 6= t, â ∈ F (t̂) such that â ºt
i a ∈ F (t) for every i ∈ N , and â ≻t

j a ∈ F (t)

for at least one j ∈ N , then goto step 4.

Step 3: Each agent i sets ci = ((ai, ti, zi), (ai, ti, zi)) (where ai ∈ A, ti ∈ T ,

zi ∈ Z+), ω̂i = Î, and sends card(i, 0) as mi to the designer. Goto step 8.

Step 4: Each agent i sets ci = ((â, t̂, 0), (ai, ti, zi)). Let n quantum coins be

entangled by Ĵ . |ψ1〉 = Ĵ |C · · ·CC〉.

Step 5: Each agent i independently performs a local unitary operation ω̂i on

his/her own quantum coin. |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]Ĵ |C · · ·CC〉.

Step 6: Let n quantum coins be disentangled by Ĵ+. |ψ3〉 = Ĵ+[ω̂1 ⊗ · · · ⊗

ω̂n]Ĵ |C · · ·CC〉.

Step 7: The device measures the state of n quantum coins and returns the

collapsed state to the agents. Each agent i sends card(i, 0) (or card(i, 1)) as mi to

the designer if the state of quantum coin i is |C〉 (or |D〉).

Step 8: The designer receives the overall message m = (m1, · · · ,mn) and let the

final outcome Ĝ(ŝ) = g(m) using rule 1, 2 and 3. END.

3. Main results

3.1. The matrix representations of quantum states

In quantum mechanics, a quantum state can be described as a vector. For a two-

qubit system, there are two basis vectors: (1, 0)T and (0, 1)T . The matrix represen-

tations of quantum states |ψ0〉, |ψ1〉, |ψ2〉 and |ψ3〉 are given as follows.

|C〉 =

[
1

0

]

, Î =

[
1 0

0 1

]

, σ̂x =

[
0 1

1 0

]

(1)

|ψ0〉 = |CC · · ·C〉
︸ ︷︷ ︸

n

=







1

0

· · ·

0







2n×1

(2)

April 29, 2010 23:12

A classical algorithm to break through Maskin’s theorem for small-scale cases 5

Ĵ = cos(γ/2)Î⊗n + i sin(γ/2)σ̂⊗n
x (generalized from Ref. [4], Eq1) (3)

=
















cos(γ/2) i sin(γ/2)

cos(γ/2) i sin(γ/2)

· · · · · ·

cos(γ/2) i sin(γ/2)

i sin(γ/2) cos(γ/2)

· · · · · ·

i sin(γ/2) cos(γ/2)

i sin(γ/2) cos(γ/2)
















2n×2n

(4)

|ψ1〉 = Ĵ |CC · · ·C〉
︸ ︷︷ ︸

n

=









cos(γ/2)

0

· · ·

0

i sin(γ/2)









2n×1

(5)

According to Ref. [4], the two-parameter quantum strategies of Eisert et al. are

drawn from the set:

S(1) = {M̂ (1)(θ, φ) : θ ∈ [0, π], φ ∈ [0, π/2]}, (6)

M̂ (1)(θ, φ) =

[
eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)

]

(Ref. [4], Eq4) (7)

Therefore,

ω̂1 =

[
eiφ1 cos(θ1/2) i sin(θ1/2)

i sin(θ1/2) e−iφ1 cos(θ1/2)

]

, · · · , ω̂n =

[
eiφn cos(θn/2) i sin(θn/2)

i sin(θn/2) e−iφn cos(θn/2)

]

.

(8)

The dimension of ω̂1 ⊗ · · · ⊗ ω̂n is 2n × 2n. Since only two values in |ψ1〉 are

non-zero, it is not necessary to calculate the whole 2n × 2n matrix to obtain |ψ2〉.

Indeed, we only need to calculate the leftmost and rightmost column of ω̂1⊗· · ·⊗ω̂n

to derive |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]Ĵ |CC · · ·C〉
︸ ︷︷ ︸

n

.

April 29, 2010 23:12

6 Haoyang Wu

�������

�
��
�
����
	

...

�	

�	

	

	�
�����

�
	�...

���

���

�

���

���

 φθ

����

����

� ��

���

���

φθ

����

����

� ��

���

���

φθ

�������

������

���

γ

Ĵ+ =
















cos(γ/2) −i sin(γ/2)

cos(γ/2) −i sin(γ/2)

· · · · · ·

cos(γ/2) −i sin(γ/2)

−i sin(γ/2) cos(γ/2)

· · · · · ·

−i sin(γ/2) cos(γ/2)

−i sin(γ/2) cos(γ/2)
















2n×2n

(9)

|ψ3〉 = Ĵ+|ψ2〉 (10)

3.2. A classical algorithm

Based on the matrix representations of quantum states, in the following we propose

an algorithm that will generate the same outputs as the quantum mechanism does.

The input and output of the algorithm are shown in Fig. 2. A Matlab program is

given in Fig. 3(a)–(d).

Assumptions:

Each agent i (i ∈ N) has a card. The two sides of a card are denoted as Side

0 and Side 1. The message written on the Side 0 (or Side 1) of card i is denoted

as card(i, 0) (or card(i, 1)). A typical card written by agent i is described as ci =

(card(i, 0), card(i, 1)), where ci ∈ A×T ×Z+ ×A×T ×Z+, card(i, 0) = (ai, ti, zi),

card(i, 1) = (a′
i, t

′
i, z

′
i).

Inputs:

1) n: the number of agents;

April 29, 2010 23:12

A classical algorithm to break through Maskin’s theorem for small-scale cases 7

2) γ: the coefficient of entanglement. (Note: Because the algorithm is irrelevant

to experimental setups, the value of γ can be simply set as π/2.)

3) (θi, φi), i = 1, · · · , n: the parameter of agent i’s local operation ω̂i.

Outputs:

mi, i = 1, · · · , n: the agent i’s message.

Procedures:

Step 1: Nature selects a state t ∈ T and assigns t to the agents.

Step 2: In state t, if all agents agree that the SCR F is “bad”, i.e., there exists

t̂ ∈ T , t̂ 6= t, â ∈ F (t̂) such that â ºt
i a ∈ F (t) for every i ∈ N , and â ≻t

j a ∈ F (t)

for at least one j ∈ N , then goto step 4.

Step 3: Each agent i sends (ai, ti, zi) (where ai ∈ A, ti ∈ T , zi ∈ Z+) as mi to

the designer. Goto Step 11.

Step 4: Each agent i independently submits the parameter (θi, φi) of his/her

local operation ω̂i to the algorithm (See Fig. 3(a)).

Step 5: Computing the matrix representation of ω̂1 ⊗ ω̂2 ⊗ · · · ⊗ ω̂n. The full

representation of this formula needs a 2n × 2n matrix. However, since only the first

and last value of |ψ1〉 is non-zero, we can only compute the leftmost and rightmost

columns of ω̂1 ⊗ ω̂2 ⊗ · · · ⊗ ω̂n (See Fig. 3(b)).

Step 6: Computing the vector representation of |ψ2〉 = [ω̂1⊗· · ·⊗ω̂n]Ĵ |C · · ·CC〉.

Step 7: Computing the vector representation of |ψ3〉 = Ĵ+|ψ2〉.

Step 8: Computing the probability distribution 〈ψ3|ψ3〉 (See Fig. 3(c)).

Step 9: The algorithm randomly chooses a “collapsed” state from the set of all

2n possible states {|C · · ·CC〉, · · · , |D · · ·DD〉} according to the probability distri-

bution 〈ψ3|ψ3〉.

Step 10: For each i ∈ N , the algorithm sends card(i, 0) (or card(i, 1)) as mi to

the designer if the i-th basis vector of the “collapsed” state is |C〉 (or |D〉) (See Fig.

3(d)).

Step 11: The designer receives the overall message m = (m1, · · · ,mn) and let

the final outcome Ĝ(ŝ) = g(m) using rule 1, 2 and 3. END.

It can be seen from Step 11 that from the point of view of the designer, the

interface between the designer and the agents is the same as its counterpart in

the quantum mechanism. Therefore, the aforementioned classical algorithm will

generate the same results as the quantum mechanism does. Although the time and

space complexity of the algorithm is exponential, i.e., O(2n), when the number of

agents is not very large (e.g., less than 20), the algorithm works well. For example,

the runtime of the algorithm is about 0.5s for 15 agents, and about 12s for 20 agents

(MATLAB 7.1, CPU: Intel (R) 2GHz, RAM: 3GB).

4. Conclusions

Confucius might be one of the earliest philosophers that felt pity for civilians subject

to the dictatorship. Time elapsed, the Sveriges Riksbank Prize in Economic Sciences

in Memory of Alfred Nobel 2007 was awarded jointly to Hurwicz, Maskin and

April 29, 2010 23:12

8 Haoyang Wu

Myerson for having laid the foundations of mechanism design theory. However, the

theory of mechanism design is somehow depressive for agents, because according

to Maskin’s sufficiency theorem, even if all agents dislike an SCR, as long as it is

monotonic and satisfies no-veto, the designer can always construct a mechanism to

implement it in Nash equilibrium (See Example 1 of Ref. [2]).

Although Wu’s quantum mechanism is interesting and theoretically feasible,

current experimental technologies restrict it to be practically available for agents. In

this paper, we go beyond the obstacle of how to realize the quantum mechanism, and

propose an algorithm through which agents can combat “bad” SCRs in a classical

computer if the number of agents is not very large. As a result, people do not have

to construct a real quantum equipment to benefit from the quantum mechanism.

The novel algorithm can be easily applied to small-scale applications just right

now. In the future, when the experimental technologies of quantum information

are available for large-scale cases, Maskin’s sufficiency theorem will be completely

broken through by using the quantum mechanism.

References

1. E. Maskin, Rev. Econom. Stud. 66 (1999) 23-38.
2. H. Wu, Quantum mechanism helps agents combat “bad” social choice rules.

International Journal of Quantum Information, 2010 (accepted). Also see
http://arxiv.org/pdf/1002.4294v3

3. R. Serrano, SIAM Review 46 (2004) 377-414.
4. A.P. Flitney and L.C.L. Hollenberg, Phys. Lett. A 363 (2007) 381-388.
5. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J.L. O’Brien,

Nature, 464 (2010) 45-53.

April 29, 2010 23:12

A classical algorithm to break through Maskin’s theorem for small-scale cases 9

���������	��
�����
����������������
���������

start_time = cputime

% n: the number of agents. In Example 1 of Ref. [2], there are 3 agents: Apple, Lily, Cindy
n=3;

% gamma: the coefficient of entanglement. Here we simply set gamma to its maximum pi/2.
gamma=pi/2;

% Defining the array of
theta=zeros(n,1);
phi=zeros(n,1);

% Apple independently submits her parameters of local operation. For example,
theta(1)=0;
phi(1)=pi/2;

% Lily independently submits her parameters of local operation. For example,
theta(2)=0;
phi(2)=pi/2;

% Cindy independently submits her parameters of local operation. For example,
theta(3)=0;
phi(3)=0;

	��������
�� πωω == �

	��������
�� πωω == �

	�������
� ωω == �

��
��

���	��� �=φθ

April 29, 2010 23:12

10 Haoyang Wu

���������	��
��
���

% Defining two 2*2 matrices
A=zeros(2,2);
B=zeros(2,2);

% In the beginning, A represents the local operation of agent 1. (See Eq 8)
A(1,1)=exp(i*phi(1))*cos(theta(1)/2);
A(1,2)=i*sin(theta(1)/2);
A(2,1)=A(1,2);
A(2,2)=exp(-i*phi(1))*cos(theta(1)/2);
row_A=2;

% Computing
for agent=2 : n

% B varies from to
B(1,1)=exp(i*phi(agent))*cos(theta(agent)/2);
B(1,2)=i*sin(theta(agent)/2);
B(2,1)=B(1,2);
B(2,2)=exp(-i*phi(agent))*cos(theta(agent)/2);

% Computing the leftmost and rightmost columns of C= A ⊗ B
C=zeros(row_A*2, 2);
for row=1 : row_A

C((row-1)*2+1, 1) = A(row,1) * B(1,1);
C((row-1)*2+2, 1) = A(row,1) * B(2,1);
C((row-1)*2+1, 2) = A(row,2) * B(1,2);
C((row-1)*2+2, 2) = A(row,2) * B(2,2);

end
A=C;
row_A = 2 * row_A;

end
% Now the matrix A contains the leftmost and rightmost columns of

�
�ω

�
ωωω ���

�� ⊗⊗⊗ �

�
ωωω ���

�� ⊗⊗⊗ �

�
ωωω ���

�� ⊗⊗⊗ �

�
�ω

�
ω�

���������	��
��
��������������������������������

% Computing
psi2=zeros(power(2,n),1);
for row=1 : power(2,n)

psi2(row)=A(row,1)*cos(gamma/2)+A(row,2)*i*sin(gamma/2);
end

% Computing
psi3=zeros(power(2,n),1);
for row=1 : power(2,n)

psi3(row)=cos(gamma/2)*psi2(row) - i*sin(gamma/2)*psi2(power(2,n)-row+1);
end

% Computing the probability distribution
distribution=psi3.*conj(psi3);
distribution=distribution./sum(distribution);

��
� ψψ += �

����
�

�� ������ ��� ωωωψ ⊗⊗⊗=

�� ψψ

�ψ �ψ �� ψψ

April 29, 2010 23:12

A classical algorithm to break through Maskin’s theorem for small-scale cases 11

% Randomly choosing a “collapsed” state according to the probability distribution
random_number=rand;
temp=0;
for index=1: power(2,n)

temp = temp + distribution(index);
if temp >= random_number

break;
end

end

% indexstr: a binary representation of the index of the collapsed state
% ‘0’ stands for , ‘1’ stands for
indexstr=dec2bin(index-1);
sizeofindexstr=size(indexstr);

% Defining an array of messages for all agents
message=cell(n,1);

% For each agent , the algorithm generates the message
for index=1 : n - sizeofindexstr(2)

message{index,1}=strcat('card(',int2str(index),',0)');
end
for index=1 : sizeofindexstr(2)

if indexstr(index)=='0' % Note: ‘0’ stands for
message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',0)');

else
message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',1)');

end
end

% The algorithm outputs all messages to the designer
for index=1:n

disp(message(index));
end

end_time = cputime;
runtime=end_time – start_time

�� ψψ

�
��� ∈

�
��� ��� �� �

����	�	
���	
��������	���	��������																									�	����	

����	�����������	��	����	�	��	�� �	 ������	����������
�
��� ��� �� �

� �

�

