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Abstract 

 

Implicit values of amenities and the quality of life in an area can be measured by differences in 

“real wages” across areas, where real wages are computed as nominal wages adjusted for the cost 

of living.  Computing cost of living differences involves several important issues, most important 

being how housing prices should be measured.  Previous researchers typically have used some 

combination of rental payments and homeowner housing values.  This paper examines 

differences in quality of life estimates for U.S. metropolitan areas using, alternatively, rents and 

housing values.  We find that the two measures of quality of life are highly correlated.  Value-

based estimates, however, are considerably more dispersed than rent-based estimates, likely 

because of the recent bubble in the housing market and because housing values often provide an 

imperfect measure of the present user cost of housing.  Researchers should be cautious in using 

housing values to construct quality of life estimates. 

 

 

 

JEL Classification: R13, R21, R23 

 

Keywords: quality of life; amenities; rents; housing; wages  

 

*Department of Economics, Auburn University at Montgomery, PO Box 244023, Montgomery, 

AL 36124-4023, Phone (334) 244-3471, E-mail jwinter3@aum.edu   



1 

 

1. Introduction 

 Researchers, policymakers, and the general public are all interested in differences in the 

quality of life across areas.  Quality of life differences affect individual welfare and have been 

found to be an important driver of metropolitan population growth (Rappaport 2007, 2009).  A 

number of popular publications have emerged that rank the quality of life across cities and states 

based on their observable characteristics.  Following Rosen (1979) and Roback (1982), 

economists and other researchers have ranked the quality of life across areas based on 

compensating differentials in labor, housing, and consumption markets.
1
  In other words, the 

existence of a spatial equilibrium necessitates that workers accept lower “real wages” to live in 

nicer areas.  Computing real wages requires estimating cost of living differences across areas, 

and doing so is one of the biggest challenges faced by quality of life researchers.  Differences in 

the cost of living across areas are mostly attributable to differences in the cost of housing 

(Beeson and Eberts 1989), but are also at least partially attributable to differences in the prices of 

non-housing goods (Gabriel, Mattey, and Wascher 2003).  There are two main issues in 

computing cost of living differences.  The first is that good information on non-housing prices is 

not readily available for all areas.  Researchers usually deal with this by either ignoring non-

housing prices altogether (e.g., Roback 1982; Blomquist, Berger and Hoehn 1988) or by 

inferring non-housing prices from housing prices when non-housing prices are not available 

(e.g., Shapiro 2006; Albouy 2008).
2
   

 The second major issue in computing cost of living differences is whether housing prices 

should be measured by rental payments, homeowner user costs based on housing values, or both 

(Winters 2009).  Most studies tend to use a weighted average of rental payments and homeowner 

                                                 
1 Gabriel and Rosenthal (2004) also develop a method to rank the quality of the business environment across areas. 
2 Alternatively, Gyourko and Tracy (1991) treat non-housing prices as an amenity in wage and housing hedonic 

regressions. 
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values, with greater weight given to homeowner values.  However, the recent housing bubble has 

caused rents and homeowner values to diverge considerably (Verbrugge 2008; Garner and 

Verbrugge 2009).  Furthermore, even absent a housing bubble, the ratio of rents to housing 

values is likely to differ across areas because of different expectations about the future growth of 

rents (Clark, 1995; Davis, Lehnert and Martin 2008).  The value of a house is equal to the 

expected net present value of the income stream it generates.  Areas where rents are expected to 

grow more quickly should have a lower ratio of rents to values.  Therefore, measuring the cost of 

housing using house values may be inappropriate for estimating the cost of living.  Because of 

this the U.S. Bureau of Labor Statistics (BLS) measures housing prices solely by rents and not 

values in computing the Consumer Price Index (CPI).
3
   

 Using a framework similar to Rosen (1979) and Roback (1982), this paper computes 

quality of life estimates across metropolitan areas of the U.S. for the year 2007.  Because values 

may be an inappropriate measure of housing prices, the preferred estimates compute housing 

prices using quality-adjusted rents.  For comparison, we also compute additional quality of life 

estimates where housing prices are measured solely by housing values.  The two measures of 

quality of life are very highly correlated, but value-based estimates are considerably more 

dispersed across areas than the rent-based estimates.  That is the value-based estimates report a 

higher implicit value of amenities in high amenity areas than do the rent-based estimates.  This is 

likely due in large part to the dramatic growth in housing values prior to 2007.  However, we 

also estimate quality of life values for 2000 and find that a similar relationship holds in that year, 

though to a much lesser extent.  Value-based estimates are notably more dispersed than rent-

                                                 
3 Winters (2009) also suggests that the relationship between wages and prices across metropolitan areas is consistent 

with the spatial equilibrium hypothesis when housing prices are measured by rents but not when housing prices are 

measured by housing values. 
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based estimates.  We conclude that future researchers should use rents and not values when 

computing estimates of quality of life and amenity values. 

 

2. Theoretical Framework 

 This section presents a simple model following Rosen (1979) and Roback (1982) that 

shows that differences in amenity values across cities can be computed from differences in real 

wages.  Firms produce two goods,  and , according to constant returns to scale production 

functions using labor ( ), capital ( ), and land ( ) and subject to locational differences in 

productivity due to amenities ( ): , , ; .  The marginal products of labor, capital, 

and land are all non-negative, but increases in amenities can either increase or decrease 

productivity.  The price of capital is determined exogenously in the world market, while the 

prices of labor ( ) and land ( ) are determined competitively in local markets.  In equilibrium, 

firms earn zero profits and the price of each good is equal to its unit cost of production ( ): 

(1) , ; ,   = 1, 2. 

 Individual workers maximize their own utility subject to a budget constraint.  Utility is a 

function of goods  and  and location-specific amenities: , ; .  Workers are 

mobile across areas, and in equilibrium utility for identical workers is equal across all areas.  The 

indirect utility function can be represented as a function of wages and the prices of  and  

given amenities: 

(2) , , ; . 

Taking the total differential of both sides of (2), setting  = 0 so that there are no differences in 

utility across areas, rearranging, and employing Roy’s Identity yields a slight variant of the 

common equation used to estimate the implicit price of amenities: 
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(3) .
4
 

Dividing both sides of (3) by  converts the equation to: 

(4) / /  ln /  ln   . 

Equation (4) says that the implicit share of wages spent on amenity consumption in an 

area can be computed from logarithmic differences in real wages across areas, where real wages 

are equal to nominal wages, , divided by the cost of living, .  Logarithmic differences in 

nominal wages are represented by the    term.  Logarithmic differences in the cost of living 

are given by an expenditure share weighted average of the logarithmic differences in the prices 

of goods one and two.  That is,   /  ln /  ln .  The implicit 

share of wages spent on amenity consumption is thus equal to the negative of log differences in 

real wages, i.e.,     .
5
  To live in an area with nice amenities workers must accept 

lower real wages.
6
 

 

3. Empirical Framework and Data 

This study computes quality of life estimates for metro areas in the U.S. from the 

negative of logarithmic differences in real wages.  Most previous studies of quality of life 

differentials across areas try to separately estimate the effect of amenities on wages and housing 

prices and then aggregate the compensating differentials from these markets to estimate the value 

of the quality of life in each area.
7
  An important limitation to this approach is that important 

                                                 
4 Alternatively, we could have defined the expenditure function and used Shephard’s Lemma to obtain an equivalent 

result as in Albouy (2008). 
5 If the real wage is / , then the log of the real wage is     . 
6 For non-workers, the implicit price to live in a high quality of life area depends only on the cost of living and not 

on wages.  Thus we would expect retirees and other non-workers to be attracted to areas where amenity values are 

capitalized more into wages than prices (Chen and Rosenthal 2008). 
7 See Gyourko, Kahn and Tracy (1999) for a review of the literature on quality of life and amenity valuation.  Stover 

and Leven (1992) also discuss a number of important issues related to estimating quality of life. 
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amenities are unlikely to be completely observed.  This would cause the quality of life in areas 

with nice unobserved amenities to be understated.  A further problem concerns how one should 

account for non-housing prices in this method.  Should non-housing price differentials be treated 

as resulting from amenities as in Gabriel et al. (2003)?  What if some of the differential in non-

housing prices is due to things other than amenities, such as geographical remoteness?  The real 

wage approach used in this paper does not rely on observed values of amenities and it provides a 

clear answer as to how non-housing prices should be treated.  There are certainly limitations to 

the real wage approach as well, but it is considered the preferred method for valuing amenities 

and quality of life in this paper.  Similar approaches are also used in Kahn (1995), Albouy 

(2008), and others. 

This paper computes logarithmic differences in nominal wages and housing prices across 

metropolitan areas using microdata from the 2007 American Community Survey (ACS) and the 

2000 Census, both of which are available from the IPUMS (Ruggles et al. 2008).  In this study, 

the geographical unit of analysis is the Combined Statistical Area (CSA) where one exists and 

the Core Based Statistical Area (CBSA) for areas not part of a CSA.  For ease of discussion, we 

usually just refer to these as metropolitan areas.  We only consider CSA/CBSAs that are 

primarily metropolitan in nature and can be at least partially identified from the IPUMS data.  

Unfortunately, the IPUMS data do not allow identification of geographic areas with populations 

less than 100,000.  Consequently, the lowest level of identifiable geography, the PUMA, often 

includes both metropolitan and non-metropolitan areas.  We assign each PUMA to a 

metropolitan area if more than 50 percent of the population of the PUMA is contained within the 

metropolitan area.  This procedure allows us to identify 293 metropolitan areas in both 2000 and 
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2007.
8
  However, it is important to keep in mind that parts of metropolitan areas are often 

unobservable and our resulting quality of life estimates are subject to some degree of 

measurement error.   

Logarithmic differences in nominal wages across areas are computed by regressing the 

log of the after-tax hourly wage for worker  in area  on a vector of individual characteristics, , 

and a vector of area fixed-effects, :
9
   

(5) ln . 

The individual characteristics are included to make workers roughly equivalent across areas and 

include variables commonly found to affect individual wages such as a quadratic specification in 

potential experience, dummy variables for highest level of education completed, gender, marital 

status, whether an individual is Black, Hispanic, Asian, or Other, citizenship status, industry, and 

occupation.  These results for the individual characteristics are generally as expected and are 

available by request.  The sample is restricted to workers between the ages of 25 and 61.  We use 

wages net of federal income taxes because the progressive nature of the federal income tax 

system means that workers in high wage areas pay a higher percentage of their income in federal 

income taxes than workers in low wages areas (Henderson 1982; Albouy 2008, 2009).  However, 

workers receive the same federal benefits regardless of how much federal taxes they pay.  

Therefore, workers are ultimately concerned with wages net of federal taxes when making 

location decisions, and this is what we use in this study.  We do not, however, make any 

                                                 
8 A few small CBSAs are not identified and are not included in this study. 
9 Pre-tax hourly wages (  are estimated by dividing annual wage income by the number of weeks worked times 

the usual hours worked per week.  Federal income taxes are estimated using the federal tax schedule and based on 

several assumptions.  We assume that all married couples file jointly and receive two personal exemptions and non-

married persons have a filing status of single and receive one personal exemption.  Itemized deductions are assumed 

to equal 20 percent of annual income, but taxpayers take the standard deduction if it is more than their itemized 

deductions.  Deductions and exemptions are subtracted from annual earnings to estimate taxable income.  Tax 

schedules are then used to compute federal tax liabilities.  We next compute the average tax rate for each taxpayer 

( ), and then multiply the pre-tax hourly wage by one minus the average tax rate to compute after-tax hourly wages 

( 1 ). 
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adjustment to wages for social security contributions or state and local taxes.
10

  The estimated 

area fixed-effects in (5) represent logarithmic differences in wages across metropolitan areas. 

Logarithmic differences in rents and housing values are also based on microdata from the 

ACS and Census.  More specifically, we regress the log of gross rents
11

, , for each housing unit 

on a vector of housing characteristics, , and a vector of area fixed-effects, : 

(6) ln  Γ . 

We also estimate a similar equation for homeowner housing values: 

(7) ln  . 

The housing characteristics included are dummy variables for the number of bedrooms, the total 

number of rooms, the age of the structure, the number of units in the building, modern plumbing, 

modern kitchen facilities, and lot size for single-family homes.  These results are available upon 

request.  The area fixed-effects from (6) and (7) are used to measure logarithmic differences in 

rents and housing values across metropolitan areas. 

To compute quality of life estimates, we also need to account for non-housing prices.  

This paper estimates non-housing prices using the ACCRA Cost of Living Index.  As discussed 

by Koo, Phillips and Sigalla (2000) and others, there are a number of problems with using the 

ACCRA data to estimate cost of living differences across areas.
12

  However, ACCRA is the 

single best source of data on interarea differences in non-housing prices available.  We combine 

                                                 
10 Social security contributions could be easily estimated but estimating Social Security benefits is much more 

difficult.  Adjusting wages for state and local income taxes would also require accounting for other taxes and the 

benefits from public spending that these taxes make possible.   
11 Rents are measured to include certain utilities but exclude a portion of rents attributable to property tax payments 

based on the effective tax rates of owner-occupied housing.  Removing property taxes from rents is based on the 

assumption that higher property taxes are offset by lowering other state and local taxes (e.g. income, sales, etc.).  If 

this assumption holds, then including property taxes in rents to construct quality of life estimates would cause areas 

that heavily rely on property taxes to have higher QOL values than they should.  As a practical matter, excluding 

property taxes has only a small effect on QOL estimates for most areas. 
12 ACCRA also reports housing prices and a composite price index that are based primarily on housing values.  

DuMond, Hirsch and Macpherson (1999) argue that the ACCRA Index is over-dispersed across areas.  Winters 

(2009) suggests that this is primarily because of ACCRA’s heavy reliance on housing values. 
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non-housing prices from ACCRA with the housing price fixed-effects from (6) and (7) to 

construct two cost of living measures.  The rent-based index is a weighted average of rents and 

non-housing prices excluding utilities with rents given a weight of 0.29 and non-housing prices 

given a weight of 0.71.  Weights are chosen based on calculations from the 2005 Consumer 

Expenditure Survey suggesting that housing including certain utilities represents 29 percent of 

average consumption expenditures.
13

  The value-based index is computed as a weighted average 

of housing values and non-housing prices including utilities.  Because utilities are now included 

in non-housing prices, housing values are given a weight of 0.23 and non-housing prices are 

given a weight of 0.77.    

Another issue with the ACCRA data is that they are not available for all metropolitan 

areas.  For areas without ACCRA data on non-housing prices, the rent-based and value-based 

price indices are imputed based on information from those that are available.  For the rent-based 

index, we regress  on the area fixed-effects from (6) along with Census division dummies 

and metropolitan area population dummies.  The coefficients from this regression are then used 

to predict values of the rent-based index for areas with missing non-housing prices.  Missing 

values for the value-based index are imputed similarly except that they are based on the area 

fixed-effects from (7).   

Once we have constructed rent-based and value-based price indices for every metro area, 

we then subtract the logarithmic differences in wages from the logarithmic differences in prices 

to construct the alternative rent-based and housing value-based quality of life estimates.  The 

next section presents these results. 

                                                 
13 Note that this expenditure share for housing differs from official reports of the CES expenditure share for both 

“Housing” and “Shelter.”  The housing share based on gross rents used herein includes certain utilities but excludes 

others and also excludes expenditures for household operations, housekeeping, and household furnishings.  The 

housing share of 0.29 also differs from the official CES tabulations in that homeowner housing expenditures are 

measured by implicit rents and not by out-of-pocket expenses such as mortgage interest. 
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4. Quality of Life Estimates 

This section presents the results of the quality of life (QOL) estimates and discusses the 

differences that result from measuring housing prices by rents and by values.  This paper differs 

from most previous quality of life studies because of its emphasis on measuring housing prices 

by rents instead of housing values.  Summary statistics for the rent-based and housing value-

based QOL estimates for 2007 are presented in Table 1.  Both measures have means close to 

zero, but the value-based estimates are considerably more dispersed.  The standard deviation for 

the rent-based estimates is 0.058, while the standard deviation for the value-based estimates is 

0.094.  Similarly, the value-based estimates have a much wider spread between the maximum 

and minimum values than the rent-based estimates.  The spreads between the 90
th

 and 10
th

 

percentiles and the 75
th

 and 25
th

 percentiles are considerably smaller than the max-min spread, 

but for both the value-based QOL estimates continue to be considerably more dispersed than the 

rent-based estimates.   

 The quality of life estimates for 2007 are presented in Table 2.  Using the rent-based 

index Honolulu, HI is considered to have the highest quality of life with an estimate of 0.273.  

The estimate suggests that workers in Honolulu accept roughly 27 percent lower real wages than 

what they would get from relocating to an average QOL area.  Well behind Honolulu is Medford, 

OR in second with a rent-based QOL estimate of 0.161.  Santa Barbara-Santa Maria-Goleta, CA 

and Burlington-South Burlington, VT are third and fourth with estimates of 0.158 and 0.153, 

respectively.  It would be tedious to discuss the ranking for every area, but a few general 

observations might be useful.  Metropolitan areas in California and Florida tend to do fairly well 

probably because of their mild winters and proximity to the coast.  A few small to mid-size 
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college towns, such as State College, PA and Morgantown, WV, also rank pretty highly.
14

  The 

bottom of the rankings is more mixed but there is some tendency toward interior areas of the 

country such as in parts of Indiana, Ohio and Texas.  Of particular note are a few big cities that 

rank quite poorly such as Houston-Baytown-Huntsville, TX at 288
th

 and Detroit-Warren-Flint, 

MI at 290
th

 out of 293. 

 Though there are some differences, the rankings using the value-based estimates are 

largely similar.  In fact, the Spearman rank correlation between the two series is very high at 

0.750.
15

  The important difference, though, is that the value-based estimates are considerably 

more dispersed, especially at the very top of the rankings.  Honolulu is still the top ranked area 

according to the value-based series, but its QOL estimate increases to 0.409.  Santa Barbara-

Santa Maria-Goleta and Medford swap the second and third positions with estimates of 0.325 

and 0.310, respectively.  Though there are some exceptions, the value-based estimates for the 

nicest areas are generally larger than the rent-based estimates.  If rents are the appropriate 

measure of the present user cost of housing, then housing values should not be used as a proxy 

for rents.  Housing values in 2007 are considerably more dispersed across areas than rents, and 

quality of life estimates based on values are considerably more dispersed than QOL estimates 

based on rents.   

 While using housing values to compute QOL estimates is certainly a problem for 2007, 

one might think that it would not be much of a problem for more “normal” times.  After all 2007 

was the peak of the housing bubble and values were definitely inflated, especially in areas with 

an inelastic supply of housing (Glaeser, Gyourko and Saiz 2008).  To investigate the extent of 

                                                 
14 State College is home to Pennsylvania State University and Morgantown is the home of the University of West 

Virginia.  Winters (forthcoming) also shows that college towns are growing faster than other metropolitan areas and 

suggests that it is because recent student in-migrants often develop friendships, relationships with local employers, 

and a taste for local amenities and decide to stay in the area after their education is complete.   
15 The correlation for the estimates themselves is also very high at 0.758. 
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problems from using housing values to measure QOL in more normal times, we next compute 

rent-based and value-based QOL estimates for 2000.  Table 3 reports the summary statistics for 

2000.  Means are still close to zero and roughly equal for the two series, and the value-based 

estimates are again more dispersed than the rent-based estimates, though by considerably less 

than in 2000.  The standard deviation is 0.074 for the rent-based estimates and 0.083 for the 

value-based estimates.  The max-min and the 90-10 spreads are also larger for the value-based 

estimates than the rent-based estimates, though the 75-25 spread is actually slightly larger for the 

rent-based estimates.  Note also that the rent-based QOL estimates became generally less 

dispersed between 2000 and 2007, while the value-based estimates became more dispersed over 

the same period. 

 To conserve space, Table 4 only reports the QOL estimates for the top 20 areas in 2000 

according to the rent-based series.  Again the value-based estimates are more dispersed, but there 

is a very high Spearman rank correlation between the two series of 0.893.  According to the rent-

based estimates, Missoula, MT occupied the top position in 2000 with a QOL estimate of 0.202.  

Missoula is a small metropolitan area with low population density and nice outdoor recreation 

amenities that is also home to the University of Montana (Howie, Murphy, and Wicks 2010).  A 

number of other small western areas also ranked highly in 2000 such as Prescott, AZ, Medford, 

OR and Cheyenne, WY.  There are some differences in the QOL rankings between 2000 and 

2007, but the rankings are quite highly correlated across the two years.  The rent-based estimates 

in 2000 and 2007 have a Spearman rank correlation of 0.720, and the value-based estimates in 

2000 and 2007 have a Spearman rank correlation of 0.714.  We have also examined changes in 

QOL between 2000 and 2007, but the biggest gainers and losers tend to be smaller metro areas.  
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This may be a legitimate result, but it is probably at least partially due to greater measurement 

error in QOL for smaller areas and we refrain from making strong inferences. 

 

5. Valuing Amenities 

 One also might be interested in how the QOL estimates from the previous section are 

affected by various amenities.  To provide some basic insights, this section presents results from 

regressing the rent-based QOL estimates for 2007 on a number of exogenous amenities.  The 

amenities investigated include the mean January temperature in degrees Fahrenheit, mean hours 

of sunlight in January, mean July temperature, mean July relative humidity (divided by 100), the 

percent of land area covered by water (divided by 100), five dummy variables for topography 

that range from very flat to mountainous, and dummy variables for coastal location on the 

Atlantic Ocean, Pacific Ocean and Gulf of Mexico.  The coastal dummies are constructed by 

consulting maps.  The rest of the variables come from the USDA Economic Research Service 

(ERS) natural amenities scale.  The ERS data are not available for Honolulu, HI, Anchorage, AK 

and Fairbanks, AK.  This reduces the number of metro area observations in this section to 290.  

Other amenities surely affect the quality of life in an area as well and these variables are not 

meant to be exhaustive.  Summary statistics for the exogenous amenities are reported in Table 5. 

The results from regressing the rent-based QOL estimates for 2007 on the exogenous 

amenities are presented in Table 6 and are generally as one might expect.  Warmer January 

temperatures increase the quality of life in an area with a statistically significant coefficient 

estimate of 0.0011.  In other words, workers are on average willing to accept a 1.1 percent 

decrease in their real wage to live in an area with a 10 degree Fahrenheit warmer January.  

January sunlight hours also increase the quality of life with a significant coefficient of 0.0003.  
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Hotter July temperatures significantly reduce the quality of life in an area with an estimate of      

-0.0030.  July humidity also has a negative coefficient, but the effect is not statistically different 

from zero.  The percent of land area covered with water has a positive coefficient, but is also not 

statistically significant.   

The topography variables suggest that a more mountainous terrain increases the quality of 

life.  The flattest land surface (Topography 1) is the omitted reference group.  Topography 3, 

Topography 4, and Topography 5 are all positive and statistically significant with coefficients of 

0.0240, 0.0395, and 0.0534.  The dummy variables for location on the Atlantic Coast and Gulf 

Coast have positive and significant effects on the quality of life with coefficients of 0.0258 and 

0.0255, respectively.  The Pacific Coast dummy also has a positive coefficient, but the effect is 

not statistically significant.  This, however, should not be interpreted to suggest that the Pacific 

Coast is not a high quality of life area.  Areas on the Pacific Coast tend to have warm winters and 

mild summers, both of which are highly valued amenities. 

 

6. Conclusion 

 This paper presents quality of estimates for 293 metropolitan areas in the year 2007 based 

on differences in real wages across areas, where real wages are defined as nominal wages 

adjusted for the local cost of living.  Households receive utility from the quality of life in an area 

and are willing to accept lower real wages to live in areas with nice amenities.  The spatial 

equilibrium hypothesis says that utility for identical workers should be equal across locations, 

and a variant of the Rosen-Roback model shows that quality of life differences across areas can 

be measured by differences in real wages.  An important issue, though, is whether housing prices 

should be measured by rental payments or owner-occupied housing values.  On theoretical 
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grounds, rents are considered the superior measure because housing values are based on the net 

present value of future rental income and do not necessarily reflect the present user cost of 

housing.  We compute separate quality of life estimates that measure housing prices by rents and 

by values.  The two series are highly correlated, but the housing value-based estimates are 

considerably more dispersed.  This is likely due in large part to the recent housing bubble, but 

examination of quality of life estimates using data from 2000 shows a similar result, though to a 

lesser extent.  We conclude that future researchers should be cautious in using housing values to 

measure housing prices in estimating quality of life differences across areas. 
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Table 1: Summary Statistics for QOL Estimates, 2007 

  Rent-based QOL Estimate Value-based QOL Estimate 

Mean 0.003 -0.001 

Standard Deviation 0.058 0.094 

Max - Min 0.449 0.610 

90th - 10th percentile 0.141 0.227 

75th - 25th percentile 0.080 0.105 

N=293. 
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Table 2: Quality of Life Estimates and Rankings, 2007 

CBSA/CSA Name Rent-based Rent-based Value-based Value-based

  QOL Est. QOL Rank QOL Est. QOL Rank 

Honolulu, HI CBSA 0.273 1 0.409 1

Medford, OR CBSA* 0.161 2 0.310 3

Santa Barbara-Santa Maria-Goleta, CA CBSA* 0.158 3 0.325 2

Burlington-South Burlington, VT CBSA 0.153 4 0.172 16

State College, PA CBSA* 0.143 5 0.126 30

Fort Walton Beach-Crestview-Destin, FL CBSA* 0.128 6 0.115 33

Chico, CA CBSA* 0.123 7 0.247 7

Morgantown, WV CBSA 0.114 8 0.068 61

Eugene-Springfield, OR CBSA 0.108 9 0.165 17

Bangor, ME CBSA 0.106 10 0.094 41

San Luis Obispo-Paso Robles, CA CBSA* 0.103 11 0.300 4

Coeur d'Alene, ID CBSA* 0.103 12 0.209 11

Anchorage, AK CBSA 0.098 13 0.093 43

Blacksburg-Christiansburg-Radford, VA CBSA* 0.098 14 0.053 66

St. George, UT CBSA 0.093 15 0.092 45

New Orleans-Metairie-Bogalusa, LA CSA 0.092 16 -0.018 148

Bowling Green, KY CBSA 0.090 17 0.022 92

Missoula, MT CBSA 0.090 18 0.154 20

San Diego-Carlsbad-San Marcos, CA CBSA 0.088 19 0.239 9

Pensacola-Ferry Pass-Brent, FL CBSA* 0.088 20 0.035 78

Portland-Vancouver-Beaverton, OR-WA CBSA 0.088 21 0.157 18

Orlando-Deltona-Daytona Beach, FL CSA 0.088 22 0.070 60

Fairbanks, AK CBSA 0.085 23 0.093 44

Panama City-Lynn Haven, FL CBSA* 0.083 24 0.080 53

Hot Springs, AR CBSA 0.082 25 0.036 77

Sarasota-Bradenton-Punta Gorda, FL CSA 0.081 26 0.110 34

Las Cruces, NM CBSA 0.081 27 0.108 35

Salinas, CA CBSA* 0.078 28 0.271 6

Rapid City, SD CBSA* 0.076 29 0.107 36

Ithaca-Cortland, NY CSA 0.075 30 0.024 89

Jacksonville, NC CBSA* 0.075 31 0.022 97

Prescott, AZ CBSA 0.073 32 0.193 12

Fayetteville, NC CBSA 0.073 33 0.007 113

Yuma, AZ CBSA 0.072 34 0.067 62

Miami-Fort Lauderdale-Pompano Beach, FL CBSA 0.072 35 0.098 39

Charlottesville, VA CBSA 0.072 36 0.093 42

Hanford-Corcoran, CA CBSA* 0.071 37 0.139 23

San Jose-San Francisco-Oakland, CA CSA 0.070 38 0.276 5

Portland-Lewiston-South Portland, ME CSA 0.070 39 0.129 27

Charleston-North Charleston-Summerville, SC CBSA 0.068 40 0.040 75

Salem, OR CBSA* 0.068 41 0.126 31

Fort Collins-Loveland, CO CBSA 0.065 42 0.088 47

Logan, UT-ID CBSA* 0.062 43 0.008 111

Lewiston, ID-WA CBSA* 0.060 44 0.081 52
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Bend-Prineville, OR CSA* 0.060 45 0.244 8

Los Angeles-Long Beach-Riverside, CA CSA 0.060 46 0.216 10

Colorado Springs, CO CBSA 0.058 47 -0.006 132

Albany-Corvallis-Lebanon, OR CSA* 0.058 48 0.146 21

Williamsport-Lock Haven, PA CSA* 0.058 49 0.043 73

Tallahassee, FL CBSA* 0.056 50 0.036 76

Lawrence, KS CBSA 0.055 51 0.025 87

Lawton, OK CBSA 0.055 52 -0.019 152

Abilene, TX CBSA 0.054 53 -0.058 210

Tucson, AZ CBSA 0.052 54 0.077 55

Bloomington, IN CBSA 0.052 55 -0.021 154

Alexandria, LA CBSA* 0.052 56 -0.037 175

Grand Junction, CO CBSA 0.051 57 0.095 40

Anniston-Oxford, AL CBSA 0.051 58 -0.009 136

Columbus-Auburn-Opelika, GA-AL CSA 0.049 59 -0.016 146

Salt Lake City-Ogden-Clearfield, UT CSA 0.049 60 0.023 91

Port St. Lucie-Sebastian-Vero Beach, FL CSA 0.048 61 0.060 64

Longview, WA CBSA* 0.048 62 0.173 15

Gulfport-Biloxi-Pascagoula, MS CSA 0.047 63 -0.028 159

Spokane, WA CBSA 0.047 64 0.051 68

Springfield, MO CBSA 0.047 65 0.016 101

Asheville-Brevard, NC CSA 0.047 66 0.072 57

Gadsden, AL CBSA* 0.046 67 -0.013 141

Clarksville, TN-KY CBSA* 0.046 68 0.001 120

Elmira, NY CBSA* 0.045 69 -0.029 161

Dothan-Enterprise-Ozark, AL CSA 0.044 70 -0.004 128

Redding, CA CBSA* 0.044 71 0.177 14

Tulsa-Bartlesville, OK CSA 0.044 72 -0.014 145

Lake Havasu City-Kingman, AZ CBSA 0.043 73 0.131 26

Waterloo-Cedar Falls, IA CBSA 0.043 74 0.022 94

Palm Bay-Melbourne-Titusville, FL CBSA* 0.042 75 0.031 81

Myrtle Beach-Conway-Georgetown, SC CSA 0.041 76 0.045 71

Barnstable Town, MA CBSA* 0.040 77 0.186 13

Mobile-Daphne-Fairhope, AL CSA 0.040 78 -0.001 124

Wheeling, WV-OH CBSA* 0.040 79 -0.043 189

Altoona, PA CBSA* 0.040 80 -0.006 133

Sioux Falls, SD CBSA* 0.040 81 0.012 108

Athens-Clarke County, GA CBSA* 0.035 82 0.014 103

Great Falls, MT CBSA* 0.035 83 0.071 59

San Angelo, TX CBSA 0.034 84 -0.044 193

Provo-Orem, UT CBSA* 0.034 85 0.018 99

Wilmington, NC CBSA 0.034 86 0.061 63

Flagstaff, AZ CBSA 0.033 87 0.087 49

Tampa-St. Petersburg-Clearwater, FL CBSA 0.033 88 0.018 98

Dubuque, IA CBSA 0.032 89 0.025 86

Lubbock-Levelland, TX CSA 0.031 90 -0.055 207

Lafayette-Acadiana, LA CSA 0.031 91 -0.013 143

Santa Fe-Espanola, NM CSA* 0.030 92 0.086 50
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Pocatello, ID CBSA* 0.029 93 -0.013 142

Hattiesburg, MS CBSA 0.029 94 -0.038 180

Little Rock-North Little Rock-Pine Bluff, AR CSA 0.028 95 -0.020 153

Billings, MT CBSA* 0.028 96 0.017 100

Joplin, MO CBSA 0.028 97 -0.034 170

Fayetteville-Springdale-Rogers, AR-MO CBSA 0.027 98 0.007 112

Ames-Boone, IA CSA 0.027 99 0.013 105

Bellingham, WA CBSA 0.026 100 0.140 22

College Station-Bryan, TX CBSA* 0.024 101 -0.031 164

Jonesboro-Paragould, AR CSA 0.024 102 -0.028 160

Iowa City, IA CBSA* 0.024 103 0.002 119

Boston-Worcester-Manchester, MA-RI-NH CSA 0.024 104 0.132 25

Columbia, MO CBSA 0.023 105 -0.037 177

Idaho Falls-Blackfoot, ID CSA 0.023 106 0.001 121

Lexington-Fayette--Frankfort--Richmond, KY CSA 0.022 107 0.005 116

Jacksonville, FL CBSA 0.022 108 0.000 123

Pittsfield, MA CBSA 0.022 109 0.086 51

Sheboygan, WI CBSA 0.022 110 0.055 65

Montgomery-Alexander City, AL CSA 0.021 111 -0.060 216

New York-Newark-Bridgeport, NY-NJ-CT-PA CSA 0.020 112 0.139 24

Sacramento--Arden-Arcade--Yuba City, CA-NV CSA 0.020 113 0.126 29

Boise City-Nampa, ID CBSA* 0.020 114 0.042 74

Cheyenne, WY CBSA 0.020 115 0.005 117

Eau Claire-Menomonie, WI CSA 0.018 116 -0.005 130

Reno-Sparks-Fernley, NV CSA 0.018 117 0.075 56

Lakeland-Winter Haven, FL CBSA* 0.018 118 -0.004 129

La Crosse, WI-MN CBSA* 0.018 119 0.022 96

Virginia Beach-Norfolk-Newport News, VA-NC CBSA 0.017 120 0.012 107

Lynchburg, VA CBSA* 0.017 121 0.015 102

Valdosta, GA CBSA 0.014 122 -0.034 171

Naples-Marco Island, FL CBSA* 0.014 123 0.126 28

Ocala, FL CBSA* 0.013 124 0.051 67

Brunswick, GA CBSA* 0.012 125 0.045 70

Harrisonburg, VA CBSA 0.012 126 0.024 88

Farmington, NM CBSA 0.011 127 0.087 48

Champaign-Urbana, IL CBSA 0.010 128 -0.030 162

Fargo-Wahpeton, ND-MN CSA 0.009 129 -0.006 131

Dalton, GA CBSA* 0.009 130 -0.014 144

Janesville, WI CBSA 0.009 131 0.006 114

Madison-Baraboo, WI CSA* 0.008 132 0.026 84

Dover, DE CBSA 0.008 133 -0.059 214

Nashville-Davidson--Murfreesboro--Columbia, TN CSA 0.007 134 -0.025 158

Albuquerque, NM CBSA 0.005 135 -0.011 138

Lima-Van Wert-Wapakoneta, OH CSA 0.005 136 -0.003 127

Killeen-Temple-Fort Hood, TX CBSA 0.005 137 -0.058 213

Richmond, VA CBSA 0.005 138 -0.008 135

Bismarck, ND CBSA* 0.005 139 -0.047 201

Huntington-Ashland, WV-KY-OH CBSA* 0.005 140 -0.047 197
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Oklahoma City-Shawnee, OK CSA 0.004 141 -0.060 217

Wichita Falls, TX CBSA* 0.004 142 -0.129 280

Parkersburg-Marietta-Vienna, WV-OH CBSA* 0.003 143 -0.042 185

Lincoln, NE CBSA* 0.003 144 -0.022 156

Evansville, IN-KY CBSA 0.003 145 -0.058 212

Hickory-Lenoir-Morganton, NC CBSA 0.002 146 -0.001 125

Battle Creek, MI CBSA* 0.002 147 -0.042 187

Longview-Marshall, TX CSA* 0.001 148 -0.035 174

St. Joseph, MO-KS CBSA 0.001 149 -0.046 195

Seattle-Tacoma-Olympia, WA CSA 0.000 150 0.092 46

Cape Coral-Fort Myers, FL CBSA -0.001 151 0.027 83

Scranton--Wilkes-Barre, PA CBSA* -0.001 152 0.002 118

Lancaster, PA CBSA -0.001 153 -0.007 134

Rome, GA CBSA -0.002 154 -0.038 178

Amarillo, TX CBSA -0.003 155 -0.067 225

Fort Smith, AR-OK CBSA -0.004 156 -0.044 192

Duluth, MN-WI CBSA* -0.004 157 0.022 93

Wichita-Winfield, KS CSA -0.004 158 -0.059 215

Philadelphia-Camden-Vineland, PA-NJ-DE-MD CSA -0.005 159 -0.003 126

Florence, SC CBSA* -0.007 160 -0.038 182

Tyler-Jacksonville, TX CSA -0.008 161 -0.074 235

Niles-Benton Harbor, MI CBSA* -0.008 162 0.033 79

Florence-Muscle Shoals, AL CBSA -0.008 163 -0.071 232

Danville, VA CBSA* -0.008 164 -0.087 249

Lafayette-Frankfort, IN CSA -0.008 165 -0.102 266

Kalamazoo-Portage, MI CBSA -0.010 166 -0.032 166

Goldsboro, NC CBSA* -0.010 167 0.013 106

San Antonio, TX CBSA -0.010 168 -0.066 223

El Paso, TX CBSA -0.011 169 -0.019 151

Baton Rouge-Pierre Part, LA CSA -0.012 170 -0.081 244

Harrisburg-Carlisle-Lebanon, PA CSA* -0.013 171 -0.012 140

Knoxville-Sevierville-La Follette, TN CSA -0.013 172 -0.034 173

Albany, GA CBSA -0.014 173 -0.047 200

Washington-Baltimore-Northern VA, DC-MD-VA-WV CSA -0.015 174 0.006 115

Greenville, NC CBSA -0.015 175 -0.046 196

Allentown-Bethlehem-Easton, PA-NJ CBSA* -0.015 176 0.022 95

Denver-Aurora-Boulder, CO CSA -0.016 177 -0.019 150

Austin-Round Rock, TX CBSA -0.016 178 -0.066 224

Greenville-Spartanburg-Anderson, SC CSA -0.017 179 -0.043 188

Birmingham-Hoover-Cullman, AL CSA -0.017 180 -0.080 241

Minneapolis-St. Paul-St. Cloud, MN-WI CSA -0.017 181 -0.022 155

Cedar Rapids, IA CBSA -0.017 182 -0.033 167

Greensboro--Winston-Salem--High Point, NC CSA -0.017 183 -0.051 206

Savannah-Hinesville-Fort Stewart, GA CSA -0.017 184 -0.043 190

Modesto, CA CBSA* -0.018 185 0.098 38

Jackson, MI CBSA* -0.018 186 -0.011 139

Binghamton, NY CBSA* -0.018 187 -0.057 209

Louisville--Elizabethtown--Scottsburg, KY-IN CSA -0.018 188 -0.025 157
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Wenatchee, WA CBSA* -0.018 189 0.125 32

Corpus Christi-Kingsville, TX CSA -0.019 190 -0.114 272

Laredo, TX CBSA* -0.019 191 -0.034 172

Yakima, WA CBSA* -0.019 192 0.031 80

Texarkana, TX-Texarkana, AR CBSA* -0.019 193 -0.073 234

Jackson-Yazoo City, MS CSA -0.019 194 -0.101 265

Stockton, CA CBSA* -0.020 195 0.102 37

Syracuse-Auburn, NY CSA -0.021 196 -0.049 204

Huntsville-Decatur, AL CSA -0.021 197 -0.071 231

Bakersfield, CA CBSA -0.023 198 0.044 72

Atlanta-Sandy Springs-Gainesville, GA-AL CSA -0.025 199 -0.100 263

Charleston, WV CBSA -0.025 200 -0.069 230

Phoenix-Mesa-Scottsdale, AZ CBSA -0.025 201 -0.018 149

Tuscaloosa, AL CBSA -0.025 202 -0.058 211

Grand Forks, ND-MN CBSA* -0.026 203 -0.081 243

Rochester-Batavia-Seneca Falls, NY CSA -0.026 204 -0.057 208

Davenport-Moline-Rock Island, IA-IL CBSA -0.027 205 -0.031 165

Raleigh-Durham-Cary, NC CSA -0.027 206 -0.065 221

Omaha-Council Bluffs-Fremont, NE-IA CSA -0.028 207 -0.063 219

Shreveport-Bossier City-Minden, LA CSA -0.028 208 -0.085 247

Utica-Rome, NY CBSA* -0.028 209 -0.066 222

Grand Rapids-Muskegon-Holland, MI CSA -0.029 210 -0.039 183

Fresno-Madera, CA CSA -0.029 211 0.071 58

Topeka, KS CBSA -0.033 212 -0.090 253

Columbia-Newberry, SC CSA -0.033 213 -0.099 261

Johnson City-Kingsport-Bristol (Tri-Cities), TN-VA CSA -0.033 214 -0.038 181

Albany-Schenectady-Amsterdam, NY CSA -0.034 215 -0.033 168

Rochester, MN CBSA -0.034 216 -0.088 251

Victoria, TX CBSA -0.034 217 -0.090 254

Hagerstown-Martinsburg, MD-WV CBSA* -0.035 218 0.013 104

Houma-Bayou Cane-Thibodaux, LA CBSA* -0.035 219 -0.068 226

Chattanooga-Cleveland-Athens, TN-GA CSA -0.037 220 -0.048 203

Pittsburgh-New Castle, PA CSA -0.038 221 -0.061 218

Kansas City-Overland Park-Kansas City, MO-KS CSA -0.039 222 -0.085 248

Mansfield-Bucyrus, OH CSA -0.039 223 -0.044 191

Visalia-Porterville, CA CBSA* -0.040 224 0.050 69

Cumberland, MD-WV CBSA* -0.041 225 0.000 122

Erie, PA CBSA -0.041 226 -0.034 169

Casper, WY CBSA* -0.041 227 -0.048 202

Cleveland-Akron-Elyria, OH CSA -0.042 228 -0.050 205

Macon-Warner Robins-Fort Valley, GA CSA* -0.042 229 -0.114 273

Dayton-Springfield-Greenville, OH CSA -0.043 230 -0.068 227

Johnstown, PA CBSA -0.044 231 -0.018 147

Bloomington-Normal, IL CBSA -0.045 232 -0.079 240

Ocean City, NJ CBSA* -0.046 233 0.154 19

Gainesville, FL CBSA -0.048 234 -0.041 184

Hartford-West Hartford-Willimantic, CT CSA -0.048 235 0.009 110

Jefferson City, MO CBSA -0.049 236 -0.068 228
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Augusta-Richmond County, GA-SC CBSA -0.049 237 -0.087 250

Charlotte-Gastonia-Salisbury, NC-SC CSA -0.049 238 -0.093 258

Lansing-East Lansing-Owosso, MI CSA* -0.050 239 -0.083 246

Pueblo, CO CBSA -0.050 240 -0.047 199

McAllen-Edinburg-Mission, TX CBSA -0.050 241 -0.101 264

Peoria-Canton, IL CSA -0.050 242 -0.076 237

Weirton-Steubenville, WV-OH CBSA* -0.050 243 -0.037 176

Lake Charles-Jennings, LA CSA -0.051 244 -0.116 276

Fond du Lac-Beaver Dam, WI CSA* -0.051 245 -0.010 137

Saginaw-Bay City-Saginaw Township North, MI CSA* -0.052 246 -0.074 236

Roanoke, VA CBSA -0.053 247 -0.078 239

Sioux City-Vermillion, IA-NE-SD CSA -0.054 248 -0.094 259

Atlantic City-Hammonton, NJ CBSA* -0.055 249 0.029 82

Canton-Massillon, OH CBSA* -0.056 250 -0.042 186

Jackson-Humboldt, TN CSA -0.058 251 -0.124 279

Springfield, MA CBSA* -0.059 252 0.023 90

Monroe-Bastrop, LA CSA* -0.061 253 -0.082 245

Chicago-Naperville-Michigan City, IL-IN-WI CSA -0.062 254 -0.038 179

Norwich-New London, CT CBSA -0.062 255 0.010 109

Sumter, SC CBSA -0.062 256 -0.107 270

Buffalo-Niagara-Cattaraugus, NY CSA -0.063 257 -0.073 233

Springfield, IL CBSA -0.064 258 -0.123 278

Waco, TX CBSA -0.064 259 -0.143 284

Midland-Odessa, TX CSA -0.064 260 -0.157 288

Green Bay, WI CBSA -0.064 261 -0.045 194

Columbus-Marion-Chillicothe, OH CSA -0.065 262 -0.091 255

Rockford-Freeport-Rochelle, IL CSA -0.066 263 -0.080 242

Muncie, IN CBSA* -0.066 264 -0.106 269

York-Hanover-Gettysburg, PA CSA -0.067 265 -0.068 229

Memphis, TN-MS-AR CBSA -0.069 266 -0.147 286

Danville, IL CBSA -0.070 267 -0.092 256

Dallas-Fort Worth, TX CSA -0.071 268 -0.147 287

Indianapolis-Anderson-Columbus, IN CSA -0.071 269 -0.135 283

Youngstown-Warren-East Liverpool, OH-PA CSA -0.072 270 -0.099 262

Des Moines-Newton-Pella, IA CSA -0.073 271 -0.114 274

Terre Haute, IN CBSA -0.075 272 -0.104 267

St. Louis-St. Charles-Farmington, MO-IL CSA -0.077 273 -0.108 271

Salisbury-Ocean Pines, MD CSA* -0.078 274 -0.030 163

South Bend-Elkhart-Mishawaka, IN-MI CSA -0.083 275 -0.145 285

Merced, CA CBSA* -0.085 276 0.079 54

Rocky Mount, NC CBSA* -0.085 277 -0.089 252

Milwaukee-Racine-Waukesha, WI CSA -0.085 278 -0.047 198

Wausau-Merrill, WI CSA -0.089 279 -0.076 238

Fort Wayne-Huntington-Auburn, IN CSA -0.090 280 -0.158 289

Kennewick-Pasco-Richland, WA CBSA -0.092 281 -0.105 268

Decatur, IL CBSA* -0.092 282 -0.173 291

Brownsville-Harlingen-Raymondville, TX CSA -0.093 283 -0.115 275

Beaumont-Port Arthur, TX CBSA -0.099 284 -0.188 292
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Las Vegas-Paradise-Pahrump, NV CSA -0.099 285 -0.096 260

Appleton-Oshkosh-Neenah, WI CSA* -0.103 286 -0.064 220

Cincinnati-Middletown-Wilmington, OH-KY-IN CSA -0.110 287 -0.130 281

Houston-Baytown-Huntsville, TX CSA -0.116 288 -0.201 293

Toledo-Fremont, OH CSA* -0.117 289 -0.116 277

Detroit-Warren-Flint, MI CSA -0.122 290 -0.133 282

El Centro, CA CBSA* -0.123 291 0.025 85

Owensboro, KY CBSA* -0.130 292 -0.093 257

Kokomo-Peru, IN CSA* -0.176 293 -0.158 290

* Indicates that non-housing prices are imputed for the CBSA/CSA.       
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Table 3: Summary Statistics for QOL Estimates, 2000 

  Rent-based QOL Estimate Value-based QOL Estimate 

Mean -0.005 -0.007 

Standard Deviation 0.074 0.083 

Max - Min 0.390 0.446 

90th - 10th percentile 0.189 0.210 

75th - 25th percentile 0.104 0.102 

N=293. 

   



27 

 

Table 4: Quality of Life Estimates and Rankings, 2000 

CBSA/CSA Name Rent-based Rent-based Value-based Value-based

  QOL Est. QOL Rank QOL Est. QOL Rank 

Missoula, MT CBSA 0.202 1 0.224 4 

Prescott, AZ CBSA 0.195 2 0.244 2 

Morgantown, WV CBSA* 0.182 3 0.102 33 

Medford, OR CBSA* 0.178 4 0.247 1 

Cheyenne, WY CBSA 0.171 5 0.150 15 

Bend-Prineville, OR CSA 0.166 6 0.226 3 

Idaho Falls-Blackfoot, ID CSA 0.145 7 0.146 16 

Billings, MT CBSA 0.142 8 0.150 14 

Flagstaff, AZ CBSA 0.140 9 0.132 20 

St. George, UT CBSA 0.140 10 0.142 18 

Eugene-Springfield, OR CBSA 0.133 11 0.174 9 

State College, PA CBSA* 0.131 12 0.111 29 

Santa Barbara-Santa Maria-Goleta, CA CBSA* 0.122 13 0.219 5 

Great Falls, MT CBSA 0.121 14 0.160 11 

Burlington-South Burlington, VT CBSA 0.118 15 0.141 19 

Bismarck, ND CBSA 0.113 16 0.098 34 

Lake Havasu City-Kingman, AZ CBSA 0.109 17 0.125 22 

Tallahassee, FL CBSA 0.109 18 0.084 40 

Charlottesville, VA CBSA* 0.107 19 0.078 43 

Columbia, MO CBSA 0.103 20 0.067 51 

* Indicates that non-housing prices are imputed for the CBSA/CSA.       
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Table 5: Summary Statistics for Natural Amenities 

  Mean Std. Dev. Min Max 

January Temperature 35.729 12.444 3.8 66.7 

January Sun 151.081 39.509 52 266 

July Temperature 76.197 5.511 61.8 93.7 

July Humidity 0.561 0.166 0.14 0.80 

% Water Area 0.066 0.115 0.00 0.70 

Topography 2 0.134 0.342 0 1 

Topography 3 0.107 0.310 0 1 

Topography 4 0.221 0.415 0 1 

Topography 5 0.128 0.334 0 1 

Atlantic Coast 0.072 0.260 0 1 

Pacific Coast 0.024 0.154 0 1 

Gulf Coast 0.059 0.235 0 1 

N=290. 
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Table 6: Estimated Amenity Values Based on 2007 Rent-Based QOL Estimates 

  Coefficient Standard Error 

January Temperature 0.0011** 0.0004 

January Sun 0.0003*** 0.0001 

July Temperature -0.0030*** 0.0010 

July Humidity -0.0010 0.0216 

% Water Area 0.0018 0.0313 

Topography 2 0.0016 0.0094 

Topography 3 0.0240** 0.0111 

Topography 4 0.0395*** 0.0085 

Topography 5 0.0534*** 0.0119 

Atlantic Coast 0.0258* 0.0136 

Pacific Coast 0.0145 0.0249 

Gulf Coast 0.0255* 0.0151 

Constant 0.1264* 0.0691 

Notes: N=290. * Significant at 10%; ** Significant at 5%; *** Significant at 1%. 

 


