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BONDS FUTURES: DELTA? NO GAMMA!

MARC HENRARD

Abstract. Bond futures are liquid but complex instruments. Here they are analysed in a one-
factor Gaussian HJM model. The in-the-model delta and out-of-the-model delta and gamma

are studied. An explicit formula is provided for in-the-model delta. The out-of-the-model delta
and gamma are equivalent to partial derivatives with respect ot discount factors. In particular

cases the derivative can not be obtain by standard techniques. The same situations lead to cases
where the gammas (second order partial derivatives) do not exists.
Copyright c© 2006 by Marc Henrard.

1. Introduction

Bond futures are very liquid instruments and are often consider as vanilla products, after all
they are just futures. Behind this simplifying name a lot of complexity is hidden. One of them
is the delivery option: the short side of the futures can deliver any bonds in a pre-defined basket.
This embedded option creates a real complexity in the pricing and risk management of the product.
Bond futures are exotic products.

With the EUR very long term rates close to 4%, the BUXL futures is almost at-the-money.
The USD bond and notes rates have crossed the 5% level and their futures may also be soon
at-the-money. It is probably the good moment to ensure that the delivery option embedded in the
bond futures is well understood and managed.

This note should be read as a sequel to the article Henrard (2006a). A semi-explicit valuation
formula for the delivery option in the Gaussian HJM one-factor model was proposed. Beyond the
price of the instrument is their hedging. In a model with deterministic volatility, the theoretical
hedging is done only with the underlyings. In term structure models the underlyings are (zero-
coupon) bonds. As the model used here is one-factor any bond can be used to hedge any option.
This hedging with the underlying is called delta hedging or, to emphasize the fact that the hedging is
coherent with the model, in-the-model delta hedging. This risk measure is the only one theoritically
justified.

There are other measures of rate or price dependency used in practice: the out-of-the-model
delta and gamma. They correspond to the first and second order derivatives of the price with
respect to the (zero-coupon) bond prices (or rates). Those figure are used in practice and easy to
compute (approximativelly) by symmetrical difference. Neverthless those figure have no theoretical
justification and even their existence is not garanted.

The in-the-model delta is computed in the main theorem of the note. The formula is obtained
in two different ways. The first one through partial derivatives computations. This is a standard
approach for example used in (Lamberton and Lapeyre, 2000, Section 4.3.3) for Black-Sholes
formula or in Henrard (2003) for the swaptions in the same model that is used here. In that
proof one encounters some technical difficulties. It is not clear that the partial derivatives always
exist. Generically they do but in some singular cases some part of the formula is not differentiable
(infinite slope). The fact that some part of a composition is not differentiable does not prove
that the total composition is non-differentiable but creates a significant technical difficulty. The
theorem is proved when the technical difficulty does not appear.
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2 M. HENRARD

A second proof using the structure of the model and no partial derivatives is provided. The
proof is valid for all cases. The proof is using heavily the structure of the problem created by the
model. It does not require technical conditions to be valid but require higher level view of the
valuation formula and of the structure of the problem.

With the second proof the theoretical approach is cleaned but not the practical one. It is
still not clear if the partial derivatives always exists. The definitive answer is not provided here.
Nevertheless through the example of the last section it is shown that the technical condition of the
first proof is not only technical but results from difficulties in the problem it-self. It is shown that
in a specific example the second order partial derivative with respect to one of the prices does not
exist. The example is quite simple as it involves only two bonds in the delivery basket with only
one cash-flow each.

The conclusion of the example is that the gamma (which is always out-of-the-model) is not
always well defined. It can tend to infinity in some points (even away from the expiry date) and
can be discountinuous. This can be the start of thoughs on the usage of gamma as a risk measure
and an indicator for limits.

2. Futures and HJM model

The notation and description are the same as in Henrard (2006a).
Suppose there are N bonds in the basket. Each of them (1 ≤ i ≤ N) has ni coupons after the

delivery date t0; the cash flows amount are ci,j and are paid in ti,j . Let Ai denote the accrued
interests at delivery and Ki the convertion factor. The fixing take place in θ ≤ t0. The price in t
of a zero coupon bond with maturity u is denoted P (t, u). The time t futures price is denoted by
Ft

The futures price is

Fθ = min
1≤i≤N





ni
∑

j=1

ci,j

Ki

P (θ, ti,j)

P (θ, t0)
− Ai

Ki



 .

The valuation of the futures in this framework is done using the Gaussian HJM one-factor
model. Preliminary results on that model can be found in the above paper.

When the discount curve P (t, .) is absolutely continuous, which is something that is always the
case in practice as the curve is constructed by some kind of interpolation, there exists f(t, u) such
that

(1) P (t, u) = exp

(

−
∫ u

t

f(t, s)ds

)

.

The idea of Heath et al. (1992) was to exploit this property by modeling f with a stochastic
differential equation

df(t, u) = µ(t, u)dt + σ(t, u)dWt

for some suitable (stochastic) µ and σ and deducing the behavior of P from there. To ensure the
arbitrage-free property of the model, a relationship between the drift and the volatility is required.
Here the volatility, the drift, the rate and the Brownian motion are 1-dimensional. The model
technical details can be found in the original paper or in the chapter Dynamical term structure
model of Hunt and Kennedy (2004). The notation of the later is used.

The probability space is (Ω, {Ft},F , P). The filtration Ft is the (augmented) filtration of the
standard Brownian motion (Wt)0≤t≤T . To simplify the writing in the rest of the paper, the bond
volatility is denoted

ν(t, u) =

∫ u

t

σ(t, s)ds.

Let Nt = exp(
∫ t

0
rsds) be the cash-account numeraire with (rs)0≤s≤T the short rate given by

rt = f(t, t). The equations of the model in the numeraire measure N associated to Nt are

df(t, u) = σ(t, u)ν(t, u)dt + σ(t, u)dWt
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or
dPN (t, u) = −PN (t, u)ν(t, u)dWt

The notation PN (t, s) designates the numeraire rebased value of P , i.e. PN (t, s) = N−1
t P (t, s).

Like in the case of swaption analysed in Henrard (2006b), a separability condition is used to
obtain explicit results. The condition is similar to the condition to have Markovian short rate
obtained by Carverhill (1994).

H: The function σ satisfies σ(t, u) = g(t)h(u) for some positive function g and h.

The condition is satisfied by the extended Vasicek model.
The two following technical lemmas were presented in Henrard (2006b) for the Gaussian one-

factor HJM. Similar formulas can be found in (Brody and Hughston, 2004, (3.3),(3.4)) in the
framework of coherent interest-rate models and in Nunes and de Oliveira (2004) for multi-factor
Gaussian HJM.

Lemma 1. Let 0 ≤ t ≤ u ≤ v. In HJM framework the price of the zero coupon bond is

P (u, v) =
P (t, v)

P (t, u)
exp

(

−
∫ u

t

(ν(s, v) − ν(s, u)) dWs −
1

2

∫ u

t

(

ν(s, v)2 − ν(s, u)2
)

ds

)

.

The discount factor ratio in the futures price can be written as

P (θ, ti,j)

P (θ, t0)
=

P (t, ti,j)

P (t, t0)
βi,j exp(−α2

i,j − αi,jX)

with

βi,j = βi,j(t, θ) = exp

(

−
∫ θ

t

ν(s, t0)(ν(s, ti,j) − ν(s, t0))ds

)

,

α2
i,j = α2

i,j(t, θ) =

∫ θ

t

(ν(s, ti,j) − ν(s, t0))
2ds,

and X a N-standard normal random variable. The separability condition (H) is used to prove that
the same variable X can be used for all bonds and coupons.

Using the notation

di,j = di,j(t, θ) =
ci,j

Ki

βi,j ,

ei = Ai/Ki, ti,0 = t0 and di,0(t, θ) = −ei the future price is

Fθ = min
1≤i≤N





ni
∑

j=0

di,j(t, θ)
P (t, ti,j)

P (t, t0)
exp(−1

2
α2

i,j(t, θ) − αi,j(t, θ)X)



 .

The functions in the minimum are denoted

fi(x) = fi(x; t, θ)) =

ni
∑

j=0

di,j

P (t, ti,j)

P (t, t0)
exp(−1

2
α2

i,j − αi,jx).

3. Delta

In bond futures the value that should be attained is not the futures price but its gain process.
The futures price is only a screen number. It drives the marginning process but the price is not
a pay-off. The pay-off that should be attained in the hedging process is the gain associated to
the futures denoted Gt(F,N) (see (Hunt and Kennedy, 2004, Chapter 12)). The numeraire used
here is the cash account (denoted ζ−1 in Hunt and Kennedy (2004)). With that numeraire the
discounted gain process satisfies (Hunt and Kennedy, 2004, Equation 12.6)

Gt(F,N) =

∫ t

0

N−1
u dFu.

If the process is written as

Gt =

∫ t

0

φudBN
u
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for some asset Bu, then the random process φ is a hedging strategy. To obtain this the futures
process is written as

dFt = NtφtdBN
t .

The hedging bond is described below and the hedging strategy is described in the following theorem.
Let B be a bond with cash-flow dates si (1 ≤ i ≤ l) and cash-flow amounts bi. The discounting

value of the bond BN
t satisfy the equation

dBN
t = −

l
∑

i=1

biP
N (t, si)ν(t, si)dWt.

Theorem 1. In the separable one-factor gaussian HJM model, the hedging strategy in t for the
bond futures is to hold the quantity

∆t =
1

P (t, t0)

∑k

i=1

∑nmi

j=0 dmi,jP (t, tmi,j) (N(κi + αmi,j) − N(κi−1 + αmi,j)) ν(t, tmi,j) − FtP (t, t0)ν(t, t0)
∑l

i=1 biP (t, si)ν(t, si)

of the bond B.

Proof (Using partial derivatives). Let x = P (t) = (P (t, t0), . . . , P (t, tmi,j), . . .) = (. . . , P(i,j), . . .) =
P . The order in which the bonds P(i,j) (1 ≤ i ≤ k, 1 ≤ j ≤ nmi

) are sorted in th vector is irrelevant
for the argument that follows. The value of the bond is

Ft = F (t, P, κ).

Note that κi satifies fi(κi, P ) = 0 for
(2)

fi(x, P ) =

nmi
∑

j=0

dmi,jP(i,j) exp(−1

2
α2

mi,j
−αmi,jx)−

nmi+1
∑

j=0

dmi+1,jP(i+1,j) exp(−1

2
α2

mi+1,j−αmi+1,jx).

The dependency of F on P appears directly and indirectly through κ. It is first proved that

d

dP(i,j)
F (t, P, κ(P )) =

∂

∂P(i,j)
F (t, P, κ).

The (total) derivative of F with respect to P (t, t0) is denote D(0)F and the one with respect to
P(i,j) by D(i,j)F .

Generically the quantity D1f 6= 0 and one can use the implicit function theorem to obtain the
existence and derivability of κ as a function of P . One can then compute D(i,j)F by composition
rule.

The result is proved for p > 0, the other case is similar. Using the explicit formula for the future
price (Henrard, 2006a, Equation 2)

D(p,q)F =
1

P (t, t0)

(

dmp,qN(κp + αmp,q) − dmp,qN(κp−1 + αmp,q)
)

(3)

+
k−1
∑

i=1

nmi
∑

j=0

dmi,jP(i,j)N
′(κi + αmi,j)D(p,q)κi

−
k−1
∑

i=1

nmi+1
∑

j=0

dmi+1,jP(i+1,j)N
′(κi + αmi+1,j)D(p,q)κi

The normal density can be split in

N ′(κi + αmi,j) = exp(−1

2
α2

mi,j
− αmi,jκi)

1√
2π

exp(−1

2
κ2

i ).

By using that split, grouping the factors of D(p,q)κi and the using Equation 2 one proves that only
the first line of Equation 3 is non null.
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The derivative is given by

D(p,q)F =
1

P (t, t0)
dmp,q

(

N(κp + αmp,q) − N(κp−1 + αmp,q)
)

and

D(0)F = − 1

P 2(t, t0)

k
∑

i=1

nmi
∑

j=1

dmi,jP(i,j)(N(κi + αmi,j) − N(κi−1 + αmi,j)) = − 1

P (t, t0)
Ft.

Like in Henrard (2003) the hedging is given by

φt =

∑k

i=1

∑nmi

j=0 P(i,j)ν(t, tmi,j)D(i,j)F + P(0)ν(t, t0)D(0)F
∑l

i=1 P (t, si)ν(t, si)bi

The result follows using the description of D(i,j)F and D(0)F given above. �

There exists examples where the non-degenaracity condition D1fi(κi, P ) 6= 0 is not satisfied. In
those conditions the proof given does not hold anymore. Also in this context a small perturbation
of the initial conditions P can modify (substantially) the number of crossing.

The non-robustness too small perturbation is not in contradition with the strong robustness
result proved in Henrard (2006a) for all movements admissible in the gaussian HJM model. Here
the initial condition are perturbed in a way non compatible with the model. The individual
derivatives computed D(p,q)F are out-of-the-model derivatives while the one in the proof on options
on futures are in-the-model rate movements.

Proof (Using model structure). The discount factor ratios are

P (t, ti,j)

P (t, t0)
=

P (0, ti,j)

P (0, t0)
βi,j(0, t) exp(−1

2
α2

i,j(0, t) − αi,j(0, t)Xt)

with Xt a N-normally distributed random variable.
For each value of X, the ratios are different. The sequences κi and mi associated are also

potentially different.
If the mi and k of (Henrard, 2006a, Theorem 2) were actually different it would complicate

substantially the task. One would have a number of terms in the sum that represents the value of
the futures Ft which is stochastic.

With a technique similar to the one used in (Henrard, 2006b, Theorem 4) it can be proved that
the number of terms k and their order mi is constant for all value of X. The constance is proved
by showing that the number and order of intersection points between all the fi curves pairs are
always the same.

The intersection between two curves is at point κp,q(Xt) that satisfies
np,q
∑

j=0

dp,q,j(t, θ)
P (0, tp,q,j)

P (0, t0)
exp

(

−1

2
α2

p,q,j(0, θ) − αp,q,j(0, t)Xt − αp,q,j(t, θ)κ

)

= 0.

The standard deviation coefficients can be written using (H) as

α2
pq,j(u, v) = H2(tpq,j)(G(v) − G(u))

and

αi,j(0, t)Xt =

∫ t

0

ν(s, ti,j) − ν(s, t0)dWs

αi,j(0, t)dXt = ... + (ν(t, ti,j) − ν(t, t0))dWt.

Let Λ be the Xt-independent solution(s) of (Henrard, 2006a, Equation 3).
The solution κpq(Xt) of the initial equation can be written through

κpq(Xt) = κ(Λpq, Xt)

with

κ(Λ, X) =
Λ −

√

−G(0)X
√

G(θ)
.
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All the κp,q (1 ≤ p, q ≤ k) have the same order as the Λp,q. This was proved in Theorem 4 in
Henrard (2006a).

With all these ingredients in place the futures price can be written as

Ft =
k
∑

i=1

nmi
∑

j=0

dmi,j(t, θ)
P (0, ti,j)

P (0, t0)
βmi,j exp(−1

2
α2

mi,j
(0, t) − αmi,j(0, t)Xt)

(N(κ(Λi, Xt) + αmi,j(t, θ)) − N(κ(Λi−1, X) + αmi,j(t, θ))) .

The variation of Ft is then

dFt = · · · −
k
∑

i=1

nmi
∑

j=0

dmi,j(t, θ)
P (0, tmi,j)

P (0, t0)
βmi,j exp(−1

2
α2

mi,j
(0, t) − αmi,j(0, t)Xt)

(N(κ(Λi, Xt) + αmi,j(t, θ)) − N(κ(Λi−1, X) + αmi,j(t, θ)))αmi,j(0, t)dXt

+
k−1
∑

i=1

nmi
∑

j=0

dmi,j(t, θ)
P (0, tmi,j)

P (0, t0)
βmi,j exp(−1

2
α2

mi,j
(0, t) − αmi,j(0, t)Xt)

N ′(κ(Λi, Xt) + αmi,j(t, θ))D2κ(Λi, Xt)dXt

+
k−1
∑

i=1

nmi+1
∑

j=0

dmi+1,j(t, θ)
P (0, tmi+1,j)

P (0, t0)
βmi+1,j exp(−1

2
α2

mi+1,j(0, t) − αmi+1,j(0, t)Xt)

N ′(κ(Λi, Xt) + αmi+1,j(t, θ))D2κ(Λi, Xt)dXt.

The dots indicate the constant and dt terms. As the future price is a martingale, the dt terms are
nuls. Using the equations caracterising κi, the two last term of the equation are nul.

Rearranging the terms and using the caracterisitic of αdXt given above lead to the result. �

4. A singular example

An example where the non-degenaracy condition is not satisfied is provided. It is also proved
that for the same example the second order partial derivative (gamma) does not exists.

The example is similar to the third example in Henrard (2006a). There are two bonds with one
cash-flow each. The parameters are given in Table 1.

Singular cross

i j ei di,j αi,j

1 1 0 1 1
2 1 y0 3 1/3
Table Note

Table 1. Constant for two bonds with one singular intersection

The initial discount factors are chosen to be 1. The derivative to the discount factor associated
to the maturity in the second bond is analysed. The constant y0 is chosen in such a way that there
is one degenerate cross-over point. It’s value is 2 ∗ exp(1/6). With those constants one has

f1(P, x) = exp(−1/2 − x)

f2(P, x) = 3P exp(−1/18 − 1/3x) − y0.

The two functions are equal in x = −2/3. This is the only intersection point and for the other
points f1(1, x) > f2(1, x).
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It can be shown that for P < 1 there is no intersection and for P > 1 there are two intersections.
The value of the futures is

P ≤ 1 F0(P ) = 3P − y0

P > 1 F̄0(P ) = 3PN(κ1 + α2) − y0N(κ1) + (N(κ2 + α1) − N(κ1 − α1))

+3P ((1 − N(κ2 + α2)) − y0(1 − N(κ2)).

The function is continuous and limP→<1 F0(P ) = limP→>1 F̄0(P ) = 3 − y0.
The derivative of the two parts of the function can be computed. Using the details in the proof,

P ≤ 1 F ′
0(P ) = 3

P > 1 F̄ ′
0(P ) = 3N(κ1 + α2) + 3(1 − N(κ2 + α2)).

Here also the left and right limits are equal with limP→<1 F ′
0(P ) = 3 = limP→>1 F̄ ′

0(P ). This
proves that the futures price is C1 in P around P = 1.

Nevertheless this can not be deduced directly from the form of F ′
0 as the function κi are not

well defined for P ≤ 1. For P > 1 they exists but their derivative tend to infinity for P → 1. The
graph of the κ’s is displayed in Figure 1(a).
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Figure 1. Price dependence of κ, delta and gamma.

The second derivatives are given by

P ≤ 1 F ′′
0 (P ) = 0

P > 1 F̄ ′′
0 (P ) = 3N ′(κ1(P ) + α2)κ

′
1(P ) − 3N ′(κ2(P ) + α2))κ

′
2(P ).

But κ′
1(P ) → −∞ and κ′

3(P ) → +∞ as P →> 1 and N ′ is positive. So F ′′
0 tends to −∞ as

P →> 1. The graphs of the first and second order derivatives are given in Figure 1(b) and 1(c).
The example proves that the second order partial derivatives does not always exist. Several

questions are still open. The first one is the existence of the first order derivatives. It was proved
that for non degenerate κ they exist. From the example there exists cases where they exist even
if the crossing is degenerate and the κ’s are non differentiable. The general proof of the existence
or the description of the conditions of existence is still an open problem. For the second order
derivatives, the existence is proved for non-degenerate crossing points and an example of non-
existence is given. The precise conditions of non-existence are still open.
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5. Conclusion

The note discuss several rate risk measures for bond futures: in-the-model delta and out-of-the-
model delta and gamma.

A general formula for the in-the-model delta is provided. The best proof of the general result
does not use standard approach through partial derivatives. The stochastic differential with respect
to the factor of the model is used instead. The proof is less standard but is robust and uses more
the structure of the model.

The out-of-the-model delta and gamma or first and second order partial derivatives with respect
to the zero-coupon prices are studied. Under a non-degeneracy condition of the crossing points
those derivatives exists. A relatively simple example proves that in somes cases second order
derivatives does not exists. Between those two results several existence questions in the degenerate
case are still open.

Disclaimer: The views expressed here are those of the author and not necessarily those of the
Bank for International Settlements.
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