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Abstract

The finite state Markov-chain approximation methods developed by Tauchen
(1986) and Tauchen and Hussey (1991) are widely used in economics, finance
and econometrics to solve functional equations in which state variables follow
autoregressive processes. For highly persistent processes, the methods require
a large number of discrete values for the state variables to produce close ap-
proximations which leads to an undesirable reduction in computational speed,
especially in a multivariate case. This paper proposes an alternative method of
discretizing multivariate autoregressive processes. This method can be treated
as an extension of Rouwenhorsts (1995) method which, according to our find-
ing, outperforms the existing methods in the scalar case for highly persistent
processes.The new method works well as an approximation that is much more
robust to the number of discrete values for a wide range of the parameter space.
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1 Introduction

The finite state Markov-Chain approximation methods developed by Tauchen (1986)

and Tauchen and Hussey (1991) are widely used in economics, finance and econometrics

in solving for functional equations where state variables follow autoregressive processes.

The methods choose discrete values for the state variables and construct transition

probabilities so that the characteristics of the generated process mimic those of the

underlying process. The accuracy of the approximation generated by these methods

normally depends on the number of discrete values or grids for the state variables,

called the fineness of the state spaces, and the persistence of the underlying process.

According to Tauchen (1986), Tauchen and Hussey (1991), Zhang (2006) and Flodén

(2008), the methods perform poorly for a process whose persistence is close to unity

when the state space is moderately refined and hence require a finer state space to

achieve a more accurate approximation. However, gaining a closer approximation at

the cost of a finer state space may not always work, especially in a multivariate case.

This paper proposes a new method to approximate a particular multivariate au-

toregressive process, which is referred to as cross-correlated AR(1) shocks. Using ap-

propriate transformations, any vector autoregressive processes can be converted into

the process under consideration. The idea behind this method is to decompose the

underlying process (carefully while maintaining its basic characteristics) into a set of

AR(1) schemes, some of which are independent and the others are perfectly correlated

with the independent ones in terms of their error terms. By virtue of the perfectly

correlated error terms, the method amounts to constructing transition probabilities for

each of the independent AR(1) processes and then generating the other AR(1) pro-

cesses from the error terms of the independent processes. Using methods that work

well in the scalar case, the independent AR(1) processes are accurately approximated.

The new method generates accurate approximations for a wide range of the parameter

space, without requiring a large number of grid points for the state variables.

The independent AR(1) processes under the new method can be approximated by
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existing methods in the literature for the scalar case. As another contribution of the

paper, we compare and contrast the numerical accuracy of these methods. Flodén

(2008) examines the performance of the methods of Tauchen (1986), Tauchen and

Hussey (1991) and Adda and Cooper (2003). Based on a poor performance of these

three methods for highly persistent processes, Flodén modifies Tauchen and Hussey’s

method and obtains better results for a certain range of the parameter space. In

addition to those in Flodén (2008), we include Rouwenhorst’s (1995) method in our

exercise which considers equispaced discrete values for the state variable and builds the

probability transition matrix analytically. The persistence of the process we consider

contains values that are sometimes significantly larger than those in Flodén (2008). We

find that Rouwenhorst’s method outperforms the others for highly persistent processes

in the sense that the accuracy of its approximations are robust to the number of grids

for the state variable. In general, Tauchen’s method tends to overshoot their targets

while those of Tauchen and Hussey and Adda and Cooper undershoot when the state

space is not sufficiently fine. Moreover, we observe that some of the results in Flodén

(2008) are reversed when the process is more persistent than the one he considered.

Specifically, as the degree of persistence gets closer to unity, the original version of

Tauchen and Hussey’s method is able to generate some data which vary over time

while Flodén’s version of the method cannot.

In the scalar case, more accurate approximations can be achieved without increas-

ing the number of grids for the state variable with all the methods except for Rouwen-

horst’s. One can use the monotonic relationship between targets and approximations

- a one-to-one mapping - in the cases of both overshooting and undershooting. For

example, when aiming for the persistence of a process with Tauchen’s method, exper-

iment with values smaller than the target and choose the one that yields the closest

approximation; or experiment with higher values than the target for the methods that

undershoot. However, in the multivariate case, it is difficult to establish the one-to-one

mapping between the simulated and targeted parameters as one must experiment with
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many different coefficients as well as the covariance matrix of the error terms.

The new method can be treated as a multivariate extension of the approximation

methods which can work well in the scalar case. Rouwenhorst’s method has not been

extended to the multivariate case. Therefore, our method can be considered a mul-

tivariate extension of Rouwenhorst’s method. Another interesting feature of the new

method is that instead of applying one method to all the independent AR(1) processes

in consideration, one can indeed mix different methods depending on the persistence

of the individual processes. For instance, we can use the Tauchen and Hussey (1991)

and Rouwenhorst (1995) methods simultaneously (with a moderate-sized state space)

by applying the former to the AR(1) processes with sufficiently low degrees of per-

sistence and the latter to highly persistent ones. The rationale of using Tauchen and

Hussey’s method for low persistent processes is that its approximations of the higher-

order moments of the underlying process tend to be slightly more accurate than those

of Rouwenhorst’s method.

The paper is organized as follows. Section 2.1 shows the shortcoming of the existing

methods through Tauchen’s method.1 Section 2.2 discusses the new method and its

results in comparison with those in Section 2.1. Section 2.3 demonstrates how to use the

new method to approximate VAR(1) processes. Section 3 applies both Tauchen’s and

the new methods to solve a functional equation of a simplified version of the Mortensen

and Pissarides model and compare the results. Finally, Section 4 summarizes the

conclusions of the paper.

1Considering a different method such as Tauchen and Hussey (1991) or a vector extension of Adda
and Cooper (2003) is inconsequential for our purposes as all these methods perform poorly in the case
of highly persistent uncorrelated AR(1) shocks, the special case of our multivariate autoregression.
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2 Model

We consider the following multivariate autoregressive process:

x1,t = ρ1x1,t−1 + ε1,t

x2,t = ρ2x2,t−1 + ε2,t

...
...

...

xn,t = ρnxn,t−1 + εn,t

(1)

where |ρi| < 1 for all i ∈ {1, 2, ..., n}, and the innovations, εt = (ε1,t, ε2,t, ..., εn,t)
T ,

follow a multivariate normal distribution, εt ∼N(0, Ω) with Ω being an n × n positive

definite matrix. It is assumed that εt is serially uncorrelated. Given the above specifi-

cations, the process in (1) is referred to as cross-correlated AR(1) shocks for the rest of

the paper. Using appropriate transformations, any vector autoregressive process can

be converted into this process.

Before outlining the new method, we first discuss the disadvantage of the existing

methods used in approximating the process in (1). We consider Tauchen’s (1986)

method as representative as they all perform poorly in the case of highly persistent

uncorrelated AR(1) shocks which is a special case of (1).

2.1 Tauchen’s method

The method developed in Tauchen (1986) is originally designed to approximate vector

autoregressions with uncorrelated error terms. Since the elements of εt are cross-

correlated, one must convert the process in (1) into Tauchen’s form. For this purpose,

let us consider the decomposition εt = Cet where et = (e1,t, e2,t, ..., en,t)
T is an n × 1

vector of white noise processes whose elements eit are mutually independent with the

standard normal distribution, eit ∼ N(0, 1) for all i, and C is the lower triangular

matrix obtained from the Cholesky decomposition of Ω, CCT = Ω. Also, let R denote

an n-dimensional diagonal matrix whose i-th diagonal entry is ρi. Then, we can rewrite
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(1) as follows:

xt = Rxt−1 + Cet. (2)

Multiplying the both sides of (2) by C−1 and rearranging the outcome yields:2

yt = Ayt−1 + et (3)

where yt = C−1xt and A = C−1RC. The expression in (3) is a VAR(1) process with

uncorrelated error terms.3 We can therefore apply Tauchen’s method to it. First, using

the grid points and the associated transition matrix, we simulate time series for yt for

τ time periods.4 Let {ŷt}τ
t=1 denote the simulated time series. We then obtain the

corresponding time series for xt, {x̂t}τ
t=1, using the relation, xt = Cyt. The accuracy

of the approximation can then be examined by estimating the key parameters of the

initial process in (1). Following Tauchen (1986), we focus on the second order moments

which are ρi and cov(xi, xi′) for all i and i′.

To evaluate the performance of the method for a highly persistent process, we

consider the following set of parameter specifications: n = 2, σ2
x1

= σ2
x2

= 1, the

variances of x1 and x2, ρ2 = 0.99 and γ ≡ corr(ε1,t, ε2,t) = 0.9, but ρ1 ranges from 0.5

to 0.9999. Given the persistence parameters, ρ1 and ρ2, and the correlation of the error

terms, γ, we have α ≡corr(x1,t, x2,t) = γ
√

(1 − ρ2
1)(1 − ρ2

2)/(1 − ρ1ρ2). As in Tauchen

(1986), we initially set N1 = N2 = 9, the number of discrete values that y1,t and y2,t

2Under the assumption that Ω is a positive definite and symmetric matrix, C is invertible. Consid-
ering other decompositions that represent εt as a linear combination of i.i.d. normal random variables
would not affect the main conclusions of the paper.

3It is straightforward to extend the method to a case with correlated error terms at the expense of
multidimensional integration. This type of exercise is done by Knotek and Terry (2008). Nevertheless,
the problem with highly persistent shocks still remains in their approximation. A simple way to see
this is to realize that Tauchen’s method and Knotek and Terry’s version of the method deliver exactly
the same approximation when applied to a VAR with uncorrelated error terms. Alternatively or more
formally, one can see our analytical results in Appendix 1 which show that Tauchen’s method performs
poorly for highly persistent shocks as it calculates the transition matrix using the probability density
function of the error terms. Since Knotek and Terry’s version calculates the transition matrix the
same way, the issue with highly persistent shocks remains in their approximation.

4When we simulate a particular time series, we draw the initial value from its unconditional distri-
bution randomly. After simulating the time series, we discard the first one-tenth of the time periods
before we estimate the parameters. Computer codes used in this paper are available upon request.
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take on respectively from an interval, [−3σyi
, 3σyi

] where σyi
is the standard deviation

of yi for i = 1, 2. We also consider two other cases in which the state space is much

finer: N1 = N2 = 19 and N1 = N2 = 49.

Having generated {x̂1,t}τ
t=1 and {x̂2,t}τ

t=1 for τ = 500, 000 for a simulation, the

parameters ρ1, ρ2, α, σx1
and σx2

are estimated. We repeat the same simulation 50

times before calculating the summary results displayed in Tables 1A and 1B. The

former shows the mean of the estimated parameters relative to their targets while

the latter shows the root mean squared error (RMSE) relative to their true values.

However, to compare high persistent levels using fewer digits, we present our results on

persistence in terms of − lg(1− ρ̂i) using the estimated persistence, ρ̂i for i = 1, 2. The

numbers closer to unity in Table 1A and zero in Table 1B imply better approximations.

When the number of grids for the state variables are not sufficient, the approximations

become less precise as (x1, x2) become more persistent. The reason is as follows.

First, higher persistence of x series means higher persistence of y series.5 Second,

given the linear transformation xt = Cyt, the quality of the approximation of x depends

on that of y. Since Tauchen’s method performs poorly in highly persistent cases,6 the

approximation of x will be less accurate. In Appendix 1, we study analytically why

Tauchen’s method performs poorly in highly persistent shocks. Our finding is that

as persistence increases, the probability that the process switches from one state to

any other state converges to zero much faster than it should. As a consequence, the

generated time series exhibits much more persistence than the original continuous

process.

The results appear to be much better in the cases where N1 = N2 = 19 and

N1 = N2 = 49. However, such improvements come at the cost of very large transition

5In this particular case with n = 2, transforming (1) into (3) as outlined above yields the following
VAR(1):

y1,t = ρ1y1,t−1 + e1,t

y2,t = γ√
1−γ2

(ρ2 − ρ1)y1,t−1 + ρ2y2,t−1 + e2,t

where e1 and e2 are uncorrelated white noise processes. Therefore, persistence of y1 and y2 increases
with that of the x series, at least in the absolute term.

6See Tauchen (1986), Tauchen and Hussey (1991), Zhang (2006) and Flodén (2008).
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matrices. For instance, when N1 = N2 = 9, the size of the probability transition matrix

is 81 × 81 and when N1 = N2 = 49, it becomes 2401 × 2401, etc. More importantly,

Appendix 1 shows that no matter how large the number of grid points is there always

exists a persistence level where Tauchen’s method performs poorly. The situation

becomes even worse as the dimension of the autoregressive process increases.

In summary, for highly persistent processes, Tauchen’s method requires large transi-

tion matrices for which some computer memories may not be sufficient. An alternative

would be to choose the parameters used in the approximation to minimize the distance

between targeted and estimated parameters. This will, however, create serious compu-

tational issues. First, we have to simulate the model for a large number of periods and

measure all the relevant parameters at every step of the minimization procedure. Sec-

ond, the multi-dimensional minimization problem will become increasingly difficult as

the number of variables increases. Third, depending on the minimization procedures,

the resulting approximations may be very different from each other. The reason is that

under Tauchen’s method, changes in certain parameters have a non-monotonic impact

on estimated parameters when it should not. For example, as we see in Figure 2, an

increase in ρ1 has a non-monotonic impact on ρ̂2. This means that in certain cases we

may end up with different sets of estimated parameters for the same process.

2.2 New method

Having seen the shortcoming of the existing methods through Tauchen’s method, we

now discuss a possible solution - a new method. After outlining the new approximation

method for the process in (1), we apply it to the same example considered in the

previous section and contrast the estimated parameters to their targets. Then we

discuss two special, yet very useful, cases of (1) for which the new method becomes

even more straightforward.

The idea of the new method is to decompose the underlying process (carefully while

maintaining its characteristics) into a set of AR(1) schemes: some are independent and
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the others are perfectly correlated with the independent ones in terms of their error

terms. Given the perfect correlation between the error terms, the method approximates

only the independent AR(1) processes and uses their error terms to derive the others.

Using the methods that work well in the scalar case, the independent AR(1) processes

are accurately approximated.

Let ci,j denote the (i, j)-th entry of the lower triangular matrix C. Then, for any i,

the process (1) can be decomposed as

xi,t = ρixi,t−1 +
∑

j≤i

ci,jej,t. (4)

Being a stationary process, xi,t in (4) can be rewritten as functions of only the innova-

tions ej,t for all t as

xi,t =
∑

j≤i

ci,jej,t + ρi

∑

j≤i

ci,jej,t−1 + ρ2
i

∑

j≤i

ci,jej,t−2 + ...

=
∑

j≤i

ci,j(ej,t + ρiej,t−1 + ρ2
i ej,t−2 + ...). (5)

According to (5), each xit can be represented as a weighted sum of i different AR(1)

processes with the common persistence ρi but with different innovations, (e1, e2, ..., ei):

xi,t = ci,1ui,1,t + ci,2ui,2,t + ... + ci,iui,i,t (6)

where ui,j for j ≤ i ≤ n are determined by the following schemes:

ui,j,t = ρiui,j,t−1 + ej,t. (7)

According to (7), each ui,j is perfectly correlated with uj,j for j < i in terms of ej. For

example, u2,1 (and ui,1 for 3 ≤ i ≤ n) is correlated with u1,1 as both have a common

error term e1 - i.e., u1,1,t = ρ1u1,1,t−1 + e1,t. and u2,1,t = ρ2u2,1,t−1 + e1,t. Similarly,

u3,2 (and ui,2 for 4 ≤ i ≤ n) is correlated with u2,2 as u2,2,t = ρ2u2,2,t−1 + e2,t and
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u3,2,t = ρ3u3,2,t−1 + e2,t. The implication is that we need only n independent processes

and use their error terms to construct the remaining processes. We let ui,i for i ≤ n

be the independent ones. Collecting ui,j for j < i, we rewrite (6) as follows:

xi,t = vi,t + ci,iui,i,t (8)

where

v1,t = 0

vi,t = ρivi,t−1 +
∑

j<i

ci,jej,t for 2 ≤ i ≤ n.

The intuition of this decomposition is that we can discretize only ui,i for i ≤ n by

using any Markov-chain approximation methods and generate time series for {ûi,i,t}τ
t=1.

Then, we calculate the associated error terms as

êi,t = ûi,i,t − ρiûi,i,t−1. (9)

Given the simulated error terms, {êi,t}τ
t=0, we then construct time series for {v̂i,t}τ

t=1

in accordance with

v̂i,t = ρiv̂i,t−1 +
∑

j<i

ci,j êj,t. (10)

The expression in (10) implies that we know the value of v̂i,t with certainty conditional

on v̂i,t−1, {û1,1,t−1, û2,2,t−1, ..., ûi,i,t−1} and {û1,1,t, û2,2,t, ..., ûi,i,t}. Given the time series

for {ûi,i,t}τ
t=1 and {v̂i,t}τ

t=1 for i ≤ n, we can construct time series for {x̂i,t}τ
t=1 according

to (8).

In summary, we have expressed n cross-correlated AR(1) shocks using 2n−1 single

AR(1) processes of which n are independent and the others are linear combinations

of the error terms generated from these n independent processes.7 As a consequence,

we need n individual transition matrices (one for each ui,i) to construct the transition

7In some cases, the number of AR(1) processes after the decomposition is smaller than 2n−1. Below
we show that n equally persistent cross-correlated AR(1) shocks are approximated by n individual
AR(1) schemes.
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probabilities for n cross-correlated shocks, {x1, x2, ..., xn}. Under such circumstances,

the quality of the simulated data is determined by the quality of the transition matrix

built for each ui,i.

2.2.1 On the methods used in the scalar case

In this section, we compare the performances of the existing methods used in the scalar

case as another contribution of the paper. This exercise provides a rationale for choos-

ing one or a set of different methods that can be used to approximate the independent

AR(1) shocks under the new method to produce more precise approximations. For this

purpose, we include Tauchen’s (1986), the original and Flodén’s versions of Tauchen

and Hussey’s (1991), Adda and Cooper’s (2003) and Rouwenhorst’s (1995) methods.

Using these methods, we approximate an independent AR(1) process with zero mean

and unit variance, and its persistence, ρ, ranges from 0.5 to 0.9999. We consider three

choices for the number of discrete values: N = 9, N = 19 and N = 49. The process is

simulated by each method for 50 times and each simulation contains 10,000,000 peri-

ods. Each simulation gives the estimates of the parameters, ρ, the standard deviation,

σ, and the kurtosis, κ, of the process which are summarized in Tables 2A and 2B.

The results suggest that Rouwenhorst’s method outperforms the other methods in

all dimensions when the persistence is high. The reason is that it constructs the tran-

sition probabilities so as to match the unconditional mean, variance and the first-order

autocorrelation of the underlying process.8 The other methods, on the other hand,

require a much finer state space for highly persistent processes to yield comparable

results to the Rouwenhorst method in all three dimensions. When the state space is

not sufficiently fine, Tauchen’s and Flodén’s version of Tauchen and Hussey’s methods

perform worse than other two. Flodén (2008) finds that his version of Tauchen and

Hussey’s method is more accurate than the original version of the method for highly

persistent processes. Our results suggest that Flodén’s conclusion is subjected to the

8Later works of Kopecky and Suen (2009) and Lkhagvasuren (2009) calculate other key moments
of the AR(1) process generated by the Rouwenhorst method.
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number of grids for the state variable when the process is more persistent than what he

considered. In other words, when the number of grids is not sufficient, his conclusion

is reversed. Specifically, as the degree of persistence gets closer to unity, the original

version of Tauchen and Hussey’s method can generate some data while Flodén’s version

of the method cannot.

The results in Tables 2A and 2B suggest that one could also use Tauchen’s and

Tauchen and Hussey’s methods to simulate ui,i,t individually by either considering a

sufficiently fine state space or exploiting the one-to-one mapping between the targets

and approximations. Still, it would be numerically much more accurate than applying

Tauchen’s method to vector autoregressions discussed in Section 2.1. Another insightful

observation from the results in Tables 2A and 2B is that, to improve the quality of the

approximation along other dimensions such as higher order moments of the distribution

of the underlying process, one can actually mix different methods to approximate the

independent AR(1) shocks. Suppose that there are two shocks to be approximated

- one has a sufficiently low degree of persistence and the other has extremely high

one. In this case, one could use Tauchen and Hussey’s method for the one with low

persistence and Rouwenhorst’s method for the other. The rationale for using Tauchen

and Hussey’s method for low persistent ones is that for higher order moments such as

kurtosis, it preforms slightly better than Rouwenhorst’s method (see Tables 2A and

2B for ρ = 0.5).

2.2.2 Example

This section examines the accuracy of the new method for the same process approx-

imated by Tauchen’s method in Section 2.1. We first approximate two independent

AR(1) shocks, ui,i with persistence ρi and var(ui,i) = 1
1−ρ2

i
. In doing so, we specify

the state spaces for u1,1 and u2,2 and obtain the corresponding transition probabilities

using an accurate method. Given the transition probabilities, we simulate u1,1,t and
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u2,2,t over τ time periods. Using the simulated {û1,1,t}τ
t=1, we then generate {v̂2,t}τ

t=1 as

v̂2,t = ρ2v̂2,t−1 + γ
√

1 − ρ2
2 (û1,1,t − ρ1û1,1,t−1). (11)

Given û1,1,t, û2,2,t and v̂2,t, we generate the time series for x̂1,t and x̂2,t according to the

following decomposition:

x1,t =
√

1 − ρ2
1 u1,1,t (12)

x2,t = v2,t +
√

1 − γ2

√

1 − ρ2
2 u2,2,t. (13)

Using the properties of u1,1,t, v2,t and u2,2,t, it is straightforward to show from (12) and

(13) that the decomposition is consistent in the sense that it delivers σ2
x1

= σ2
x2

= 1

and α ≡corr(x1,t, x2,t) = cov(ε1,t,ε2,t)

1−ρ1ρ2

.

We choose Rouwenhorst’s method to simulate u1,1,t and u2,2,t. Again we consider

N1 = N2 = 9, N1 = N2 = 19 and N1 = N2 = 49 for u1,1,t and u2,2,t as their discrete

values. We simulate the process 50 times and each simulation generates 500,000 obser-

vations for x̂1,t and x̂2,t and gives the estimates of the parameters, ρ1, ρ2, α, σx1
and

σx2
. Tables 3A and 3B display the results. The former shows the mean of the estimated

parameters relative to their targets while the latter shows their RMSE relative to their

true values. As can be seen from the results, the new method works much better than

Tauchen’s method and the approximations are very accurate even in the cases where

Tauchen’s method struggles. More importantly, the accuracy of the approximations

by the new method is robust to the number of grids for the state variables. This is a

highly desirable feature as it does not require large computational memories. Based

on the results in Tables 1 and 3, Figure 2 provides a further piece of evidence on the

performance of Tauchen’s and the new methods where we use N1 = N2 = 9 for the

both methods.
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2.2.3 Special cases

The preceding sections deal with a general case where each process in (1) is allowed

to have different degrees of persistence. We now consider two very useful special cases

for which the new method is even simpler.

Equally-Persistent Shocks. When the underlying process is governed by equally

persistent correlated AR(1) shocks - i.e., ρi = ρ for all i, the expressions in (7) and (9)

imply

ûi,j,t − ûj,j,t = ρ(ûi,j,t−1 − ûj,j,t−1)

for all j < i. Since |ρ| < 1, it implies that ûi,j,t = ûj,j,t for all j < i. Consequently, the

expression in (6) becomes

xi,t = ci,1u1,1,t + ci,2u2,2,t + ... + ci,iui,i,t (14)

where each ui,i,t is an independent AR(1) shock with persistence ρ. In other words, we

have expressed n cross-correlated AR(1) shocks as a linear combination of n equally-

persistent independent AR(1) processes. If we discretize each process with the same

number of grids, we will need to construct only one transition probability matrix of a

single AR(1) shock for the entire system.

Equally-Persistent, Symmetric Shocks. Let us consider the following simple au-

toregressive process:

x1,t = ρx1,t−1 + ε1,t

x2,t = ρx2,t−1 + ε2,t

(15)

where corr(ε1, ε2) = γ and σ2
x1

= σ2
x2

= 1. The shocks x1 and x2 are symmetric

in the sense that the moment conditions such as var(x2
1) = var(x2

2) and var(x2
1x2) =

var(x1x
2
2) hold. In the multivariate case, such symmetry can be easily distorted by

discretization methods in the form of asymmetric grid points. Tauchen’s method has
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this disadvantage.

To show this, we apply Tauchen’s method to (15) as outlined in Section 2.1. It

follows that y1,t and y2,t follow an independent AR(1) process - i.e., a11 = a22 = ρ and

a12 = a21 = 0. Having discretized y1,t and y2,t, we obtain x1,t and x2,t as x1,t = c11y1,t

and x2,t = c21y1,t + c22y2,t. Since y1 and y2 take pre-specified discrete values and the

elements of C are real numbers, the grid points of x1,t can be different from those of

x2. The implication is that two shocks that have symmetric moment conditions in

their continuous representation can have very different estimated moments due to the

asymmetric grid points.

Unlike Tauchen’s method, the new method allows us to preserve the underlying

symmetry in the multivariate case. To discretize the process in (15), we can decompose

x1 and x2 using three independent finite state AR(1) processes, u1, u2 and u3, as:

x1 =
√

1 − |γ|u1 +
√

|γ|u3

x2 =
√

1 − |γ|u2 +
γ

√

|γ|
u3.

First of all, if we choose the same state space for each of the three shocks, they will

have the same transition matrix. Given the same absolute magnitude of the weights,
√

|γ| and γ/
√

|γ|, the symmetry is always guaranteed by this decomposition along

both grid points and transition probabilities.9

In order to support this argument, we consider ρ = 0 and γ = 0.5 for the process in

(15). We choose N = 8 for Tauchen’s method while N = 4 for the new method which

are reasonable given the persistence of the process. The choice, ρ = 0, is deliberate as

we want to show that the asymmetry in the simulated grids can arise primarily due

to a underlying discretization method. Each method generates 50,000 observations

for x̂1,t and x̂2,t - i.e., {x̂1,t, x̂2,t}τ

t=1 where τ = 50, 000 which are sufficient given the

9This technique of handling symmetric AR(1) shocks is used in Lkhagvasuren (2008) to simulate
and estimate a dynamic stochastic model of internal migration where the correlation of the match-
specific productivity shocks are assumed to be symmetric across different labor markets.
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persistence of the process. Then we transform them monotonically into time series
{

x̂2
1,t, x̂

2
2,t, x̂

3
1,t, x̂

3
2,t, x̂

4
1,t, x̂

4
2,t

}τ

t=1
. Using the standard deviation of each time series, we

look at the following three ratios:
std(x̂2

1
)

std(x̂2

2
)
,

std(x̂3

1
)

std(x̂3

2
)

and
std(x̂4

1
)

std(x̂4

2
)
. Given the underlying

symmetry between x1 and x2, the true values of these three ratios are all one. We

repeat this experiment 50 times. The results are summarized in Table 4 which shows

that the new method captures the underlying symmetry much better than Tauchen’s

method. Since persistence is low, this difference is primarily due to the differences in

how the two methods construct their grid points. To make the point clearer, we scatter

x̂1 against x̂2 in Figure 3 for both methods. As can be seen, the grid points from new

method is symmetric while those from Tauchen’s method is not.

Let us now consider three equally-persistent AR(1) shocks with the following sym-

metry restrictions:

Ω =













1 η2 η2

η2 1 η2 ± ζ2

η2 η2 ± ζ2 1













where η2 + ζ2 < 1. In this case, we can use the following decomposition:













x1

x2

x3













=













ηu1

ηu1

ηu1













+













0

ζu2

±ζu2













+













√

1 − η2u3

√

1 − η2 − ζ2u4

√

1 − η2 − ζ2u5













where ui for all i denotes an independent finite state AR(1) process. Analogously, one

can choose the appropriate decompositions depending on the nature of the symmetry.

2.3 Approximating a VAR(1) process

It is important to note that Tauchen (1986) is, in fact, not written to approximate

the cross-correlated AR(1) shocks, but rather designed to discretize a VAR(1) with

uncorrelated error terms. The new method, introduced in the previous section, can

also be applied to such a process. In this section, we suggest a procedure that converts

16



a VAR(1) process with uncorrelated error terms into a cross-correlated AR(1) process

as in (1). Using this procedure, we apply the new method to some VAR(1) processes

including the one considered in Tauchen (1986) and compare the results of the two

methods.

Example 1. Tauchen (1986) considers a VAR(1) process of two variables in the form

of (3) that is characterized by

A1 =







0.7 0.3

0.2 0.5






(16)

and σ2
e1

= σ2
e2

= 0.1. Given this information set, the variance-covariance matrix of yt

is calculated as:

Σ1 =







0.332 0.126

0.126 0.185






. (17)

First we apply Tauchen’s method to this process. As in Tauchen (1986), we set N1 =

N2 = 9, the number of discrete values that y1,t and y2,t take on respectively from an

interval, [−3σyi
, 3σyi

] for i = 1, 2. The method generates 5,000,000 observations for ŷ1,t

and ŷ2,t. The estimation based on the induced representation ŷt = Âŷt−1 + êt reveals

the following results:

Â1
Tauchen =







0.699 0.298

0.200 0.497






, Σ̂1

Tauchen =







0.372 0.138

0.138 0.200







which are very close to those reported in Tauchen (1986), showing the accuracy of the

method in the approximation of Â1
Tauchen to A1. The approximation of Σ̂1

Tauchen to Σ1

is, on the other hand, not so accurate and it needs a finer state space. The state spaces

determined by N1 = N2 = 19, for example, make Σ̂1
Tauchen very close to Σ1, without

changing Â1
Tauchen significantly. This suggests that if one cares more about the accuracy

of Σ̂1
Tauchen to Σ1, more refined state spaces are required.
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To apply the new method to this process, we convert the VAR(1) in (3) into cross-

correlated AR(1) shocks in (1). Given that A is diagonalizable, A = V RV −1 where

R is an n × n diagonal matrix and its diagonal elements, ρi for i ∈ {1, 2, ..., n}, are

the eigenvalues of A and, V is an n × n matrix and its columns are the eigenvectors

associated with eigenvalues ρ1 to ρn. Thus the VAR(1) process in (3) can be rewritten

as yt = V RV −1yt−1+et. Multiplying the both sides by V −1 and rearranging the outcome

yields the expression in (1) where we define xt = V −1yt and εt = V −1et.

Given the procedure, A1 in (17) and σ2
e1

= σ2
e2

= 0.1 imply

x1,t = 0.865x1,t−1 + ε1,t

x2,t = 0.335x2,t−1 + ε2,t

where σ2
x1

= 0.41, σ2
x2

= 0.117, α ≡corr(x1,t, x2,t) = 0.124 and γ ≡corr(ε1,t, ε2,t) =

0.186. Tauchen’s VAR(1) process is now represented by the cross-correlated AR(1)

shocks. Therefore, we now approximate the process by the new method. We set

N1 = N2 = 9, the number of discrete values that u1,1,t and u2,2,t in (12) and (13) take

on respectively and obtain 5,000,000 observations for x̂1,t and x̂2,t. Using yt = V xt,

we convert the time series for x̂1,t and x̂2,t into those of ŷ1,t and ŷ2,t. Estimating the

induced representation ŷt = Â1ŷt−1 + êt yields the following results:

Â1
New =







0.6997 0.2995

0.1984 0.5014






, Σ̂1

New =







0.3296 0.1243

0.1243 0.1845






.

As can be seen from the results, the new method gives more accurate approximations

than Tauchen’s method.

Example 2. In Example 1, the approximation Â1
Tauchen to the target A1 is very

accurate as the underlying process has a sufficiently low degree of persistence. Let us

now apply the both methods to a process whose persistence is higher. Suppose that
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the VAR(1) process of two variables is characterized by:

A2 =







0.952 0.05

0.052 0.94






, Σ2 =







10.574 9.126

9.126 8.77






(18)

where σ2
ǫ1

= σ2
ǫ2

= 0.1. The results from both methods are as follows:

Â2
Tauchen=







0.9999 0.0001

0.0007 0.9991






, Σ̂2

Tauchen=







8.359 6.823

6.823 7.1







and

Â2
New=







0.952 0.05

0.051 0.94






, Σ̂2

New=







10.3557 8.9229

8.9229 8.5798






.

In this case, Tauchen’s method yields large inaccuracies when compared to the perfor-

mance of the new method in all dimensions. Moreover, if we consider a11 = 0.953 while

keeping everything else equal, and simulate the process with Tauchen’s method, the

diagonal elements of Â1
Tauchen will be unity and the elements of Σ̂1

Tauchen will therefore

be nowhere near the target.

3 On solving functional equations

By construction, the simulated values {v̂i,t}τ
t=1 are not restricted to belong to a pre-

specified finite state space. The explanation is the following. Let Ni be the number

of grid points used to approximate each independent ui,i and Mi be the number of

pre-specified grid points for vi for all i. Now set the values of ui,j for all j ≤ i ≤ n

at some u1
i,j at time 1 - i.e., ûi,j,1 = û1

i,j. At any t, since the approximation of ûi,i,t

takes on one of Ni different values, the error term êi,t = ûi,i,t − ρûi,i,t−1 takes on one

of N2
i possible values. Given the law of motion in (9), the number of values that ûi,j,1

can take on in period 1 will be N2
j . But in period 2, it will rise to N4

j and so forth.

In fact, the number of values that ûi,j,t for j < i can take on increases exponentially
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with t, leading to non-discrete state spaces. Therefore, unless ρi = 0 or ρi = ρj for

all j < i, the number of values that v̂it =
∑

j<i ci,jûi,j,t can take on will also increase

exponentially with t. Consequently, the simulated values of v̂i,t may not be restricted

to the finite state space of Mi grid points.10

Since the realized values of v-s are not necessarily a finite set, it may suggest that

we may need to evaluate the underlying functions over a certain interval when we apply

the new method to solving functional equations. However, it should be noted that the

distribution of vi,t given vi,t−1 and ui,i,t for 1 ≤ i ≤ n is degenerate. Therefore, condi-

tional on vi,t−1 and ui,i,t where 1 ≤ i ≤ n, one has to evaluate the underlying functions

at only one point which is not necessarily one of the pre-specified grid points of vi.

Essentially, what we need for solving functional equations is conditional distributions

rather than unconditional ones. Below, using a simple example, we demonstrate that

one can effectively apply numerical interpolation to evaluate the underlying functions

in such circumstances. Specifically, we solve a simple dynamic model using the method

developed here and compare the simulated results with those obtained using Tauchen’s

method.

3.1 A simple dynamic model

We consider a simplified version of the Mortensen-Pissarides search and matching

model (e.g., Mortensen and Pissarides, 1994). Our focus is on the discretization meth-

ods and their associated solutions derived from the model. Since we study the model

under different persistence levels, some of the parameters we consider do not necessarily

have empirical justification.

The economy has an infinite number of firms. Each firm employs at most one

worker. The objective of each firm is to maximize the expected discounted value of

profits. A firm entering the market incurs a per-period vacancy cost δ while looking

10Earlier we showed that for equally persistent cases, i.e ρi = ρ0 for all i in (1), all v-s are restricted
to belong to a finite state space.
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for a worker. Matches are formed randomly at an endogenous rate q(θ) where θ is the

ratio of the aggregate measures of unemployed workers and vacancies, and dissolved

at an exogenous rate λ. Per-period profit of a firm in a match is p − w where p

is labor productivity and w is the wage rate. We focus on two sources of shocks:

the productivity, p, and the separation rate, λ. Specifically, we consider two strictly

monotonic functions P and Λ such that p = P (x1) and λ = Λ(x2) where x1 and x2

evolve according to (1).

Each period consists of three stages. At the beginning of each period, some of the

old matches are dissolved. In the second stage, the new values of p and λ are realized.

Given the market condition, (p, λ), a firm decides whether to post a vacancy or not.

In the third stage, matches are formed as a result of job search and vacancy posting.

To remain focused on our numerical method, we make a simplifying assumption that

wage is rigid, i.e. w is constant. The values of a filled job J and a vacancy V are given

by

J(p, λ) = p − w + β(1 − λ)Ep,λJ(p′, λ′) (19)

V (p, λ) = −δ + βEp,λ (q(θ)J(p′, λ′) + (1 − q(θ))V (p′, λ′)) (20)

where β is the discount factor and Ep,λ is the mathematical expectation conditional on

p and λ. Since there is an infinite number of firms, the value of entering the market is

zero, i.e. V (p, λ) = 0 for all p and λ. Therefore, the expression in (20) becomes

δ = βq(θ)Ep,λJ(p′, λ′). (21)

3.2 Numerical experiments

Given the firms’ entry decision, one can study the extent to which the parameters in

(1) affect the vacancy filling rate q(θ). Generally, the answer to this question is not

available in a simple closed form. We approach the question numerically and solve

the above functional equations using the value function iteration technique. For this
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purpose, we consider the following specifications for P and Λ:

P (x1) = 1 + 0.01x1

Λ(x2) = 0.01(1 + 2
π

arctan(x2

2
))

(22)

where11 x1 and x2 follow (1) with var(x1)=var(x2) = 1. We set w = 0.9 and β = 0.99

and experiment with different values for ρ1, ρ2 and γ ≡ corr(ε1, ε2).

Let q0 and J0 be the steady state values of q(θ) and J , respectively. From (21), we

obtain δ = βq0J0 where J0 = 1−w
1−β(1−0.01)

. Using q0, J0 and (21), we derive

q(θ)

q0

=
J0

Ep,λJ(p′, λ′)
.

To evaluate the two methods, we focus on the volatility and serial autocorrelation of

rt = q(θt)
q0

: cv(rt) = std(rt)
mean(rt)

and corr(rt, rt+1). The numerical algorithm of solving the

problem is as follows:

1. Construct the grid points and transition probabilities for {p, λ} using those of

{x1, x2}.

2. Apply the value function iteration technique for J using (19) until the differences

in value functions between two consecutive iterations become less than 10−6 at

each grid point.

3. Simulate the time series for {pt, λt} for τ = 2, 000, 000 periods using the transition

probabilities.

4. Given {pt}τ
t=1 and {λt}τ

t=1 simulate {Jt}τ
t=1 and then {rt}τ

t=1.

In order to approximate (x1, x2) with the new method, we generate three AR(1)

shocks (u1,1, u2,2, v2) in which u1,1 are u2,2 are independent and v2 is constructed as

the error terms of u1,1. Let N1, N2, and M2 be the number of grid points used for

11This specification guarantees that 0 < Λ(x2) < 1 for any value of x2.
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discretizing u1,1, u2,2 and v2, respectively. We set N1 = N2 = M2 ≡ N. Similarly we

set N1 = N2 ≡ N when using Tauchen’s method. The value function J has to be

solved for N
4

points in Tauchen’s method while N
3

points in the new method. Under

the new method, when we evaluate the value function on the values of v2 that are not

one of N grid points, we use a linear interpolation technique. Given the degenerate

conditional distribution of v̂2,t and the grids for û1,1,t and v̂2,t−1, there is a finite number

of off-grid values of v̂2,t. On the other hand, the values obtained by linear interpolation

is a weighted sum of the values of the functions on the grid points. Therefore, if we

associate each of the finite number off-grid values to the values of the N grid points

using a matrix constructed form the interpolation weights, evaluation of the conditional

expectation in (19) amounts to simple matrix multiplication.12

The results are shown in Table 5. First of all, when the persistence is low there

is not much difference between the two methods. Second, when the persistence is

high, the estimated parameters from Tauchen’s method are highly sensitive to the

number of grids. Third, the approximation is very stable with the new method even

when the persistence is very high. As we increase the number of grids in Tauchen’s

method, the two parameters are becoming closer to those obtained by the new method.

This indicates that Tauchen’s method is less robust to the number of grid points than

the new method. In this exercise, we deliberately consider relatively lower levels of

persistence than those reported in Tables 1 and 3. The obvious reason is that, for

higher levels of persistence, Tauchen’s method fails to generate data for the numbers of

grid points considered here and therefore does not allow us to evaluate the two methods

quantitatively.

12In Appendix 2, we describe the procedure of iterating J for each method.
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4 Conclusion

In this paper, we develop a method which can be used to approximate both cross-

correlated continuous AR(1) shocks and VAR(1) processes with uncorrelated error

terms. The main idea of the method is to decompose the initial process into a set

of AR(1) shocks of which some are purely independent while the rest are perfectly

correlated with the independent ones in terms of their error terms. We simulate the

independent processes with any methods that can generate accurate approximations.

By virtue of the perfect correlation between the error terms, we then generate data for

the dependent processes from the simulated error terms of the independent processes.

Through this decomposition, the method yields a very accurate approximation to the

initial process. The new method has been motivated by the fact that highly persistent

vector autoregressions cannot be approximated accurately by the existing methods in

the literature when the state spaces are moderate-sized. The paper has considered

Tauchen’s (1986) method as representative of those methods.

Another contribution of the paper is that it compares and contrasts the accuracy of

existing methods in the literature for the scalar case. We include Rouwenhorst’s (1995)

method in addition to those considered in Flodén (2008), namely Tauchen (1986),

different versions of Tauchen and Hussey (1991) and Adda and Cooper (2003) methods.

We consider a broader range of persistence levels than Flodén (2008). Our findings

suggest that Rouwenhorst’s method gives much more accurate approximations than

the others for high degrees of persistence. We reach a conclusion opposite to Flodén

(2008) that the original Tauchen and Hussey method is better than Flodén’s version

of the method when the level of persistence is larger than what Flodén considered.

The new method can be understood as a multivariate extension of any methods that

can work well in approximating independent AR(1) shocks. For example, the method in

Rouwenhorst (1995), to our knowledge, has not been extended to a multivariate case.

Our method is one way of extending Rouwenhorst (1995) to vector autoregressions.

Moreover, as each independent process in our method is approximated individually,
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one can mix different methods to gain a further improvement in higher-order moments.

Suppose that one set of the shocks considered follows sufficiently low persistent AR(1)

processes, while the other set follows highly persistent AR(1) processes. According to

the new method, we can effectively apply Tauchen’s or Tauchen and Hussey’s methods

to the former and Rouwenhorst’s method to the latter.
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Appendix 1: Overshooting

In this appendix, we discuss the overshooting problem generated by Tauchen’s method

for highly persistent processes. For simplicity, we present our discussion for the scalar

case. It is straightforward to extend our results to the multivariate case. Consider the

following scalar autoregressive scheme:

yt = ρyt−1 + εt (23)

where 0 < ρ < 1 and εt is a white noise process with variance σ2
ε . Without loss of

generality, assume that E(εt) = 0 and normalize the standard deviation of yt to one so

that σ2
ε = 1 − ρ2. Since we focus on highly persistent shocks, we set ρ = 1 − 1

K
where

K is a large positive number.

Tauchen’s method uses equispaced grid points for y and the transition probabilities

are calculated as areas under the probability density function of the error terms ε. Let
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y1 < y2 < ... < yN denote the grid points. Let w = (y2−y1)/2 - i.e., 2w is the distance

between two subsequent points. According to Tauchen’s method, the probability that

the process switches from state j to any other state is given by

QT
j = 1 − Prob(|ε − yj

K
| < w).

Let K be large enough that 0 < yj

K
< w for all j. Then, it is straightforward to show

that

QT
j ≤ 1 − Prob(|ε| < w) = 2(1 − Φ(

w
√

1 − ρ2
)) < 2

(

1 − Φ
(

w
√

K/2
))

for any j where Φ denotes the CDF of the standard normal distribution. The result

suggests that as persistence increases or equivalently, as K increases, the probability

that the process switches from a particular state to any other state goes to zero. This is

not surprising as higher persistence means a higher probability that the current state

repeats itself. What is relevant to our discussion is how fast QT
j goes to zero as K

increases. For this purpose, we consider Rouwenhorst’s method discussed in Section 2

as a benchmark. The main reason is that Rouwenhorst’s method also uses equispaced

grid points and its transition probabilities are constructed so that the persistence of

the underlying process is perfectly matched.

Using Rouwenhorst’s transition matrix and ρ = 1 − 1
K

, it can be shown that the

probability that the current state repeats itself is (1− 1
2K

)N + D0
1

K2 where D0 is some

nonnegative, finite number. Therefore, with Rouwenhorst’s method, the probability

that the process switches from a particular state to all other states is QR
j = N

2K
+ D1

K2

where |D1| < ∞.

Comparing QT
j and QR

j and using l’Hôspital’s rule one can show that

lim
K→∞

QT
j

QR
j

< lim
K→∞

w

2
√

π

1
(

1
2K3/2

+ 2D1

K5/2

)

e
w2K

4

= 0.
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This shows that, for any N , the probability that the process switches from one state

to any other state decreases exponentially in Tauchen’s method relative to that in

Rouwenhorst’s method as ρ approaches to unity. Therefore, as persistence increases,

all the diagonal elements of the transition matrix constructed by Tauchen’s method

go to unity much faster than that constructed by Rouwenhorst’s method. This is why

Tauchen’s method delivers much higher persistence than targeted and thus sometimes

generates no transition at all when ρ is high (See Figure 1). Using this result, it is

also straightforward to see that no matter how large N is, there always exists a high

persistence level where Tauchen’s method performs poorly.

Appendix 2: Value Function Iteration

Tauchen’s method

Substituting x1 = c11y1 and x2 = c21y1 + c22y2 into (22), we obtain the following two

functions:

P̃1(y1, y2) = P (c11y1) − w

Λ̃1(y1, y2) = β(1 − Λ(c21y1 + c22y2)).

Let y1
i < y2

i < ... < yN
i denote the grid points for yi, i ∈ {1, 2}. Then, the firm’s asset

pricing equation can be rewritten in the discrete space as

J1(y
i
1, y

j
2) = P̃1(y

i
1, y

j
2) + Λ̃1(y

i
1, y

j
2)

N
∑

i′=1

N
∑

j′=1

J1(y
i′

1 , yj′

2 )Π(i′, j′|i, j)

where Π(i′, j′|i, j) is the probability that the process switches to any state (i′, j′) con-

ditional on the current state (i, j). The size of the transition probability matrix is

N
2 × N

2
.
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New method

For brevity, let ui = ui,i for i = 1, 2. Then substituting (8) into (22), we obtain

P̃2(u1, u2, v2) = P (c1,1u1) − w

Λ̃2(u1, u2, v2) = β(1 − Λ(v2 + c2,2u2)).

Let {ui
1, u

i
2, v

i
2}N

i=1 denote the grid points for u1, u2 and v2. Then, the firm’s asset

pricing equation can be rewritten in the discrete space as:

J2(u
i
1, u

j
2, v

k
2) = P̃2(u

i
1, u

j
2, v

k
2) + Λ̃2(u

i
1, u

j
2, v

k
2)

N
∑

i′=1

N
∑

j′=1

J2(u
i′

1 , uj′

2 , vi,i′,k
2 )Π1(i

′|i)Π2(j
′|j)

where vi,i′,k
2 = ρ2v

k
2+c2,1(u

i′

1 −ρ1u
i) and Π1 and Π2 denote the transition probabilities of

u1 and u2 respectively. The size of the transition probability matrices of ui, i ∈ {1, 2}

is N × N . When ρ1 = ρ2, v2 = c2,1u1 and thus there is no need for interpolation.

An alternative specification

We now present an alternative way of using the new method which simplifies its appli-

cation. Let us denote d = v2 − c2,1u1. Then we can write

P̃3(u1, u2, d) = P (c1,1u1) − w

Λ̃3(u1, u2, d) = β(1 − Λ(d + c2,1u1 + c2,2u2)).

Let d
1

< d
2

< ... < d
N

denote the grid points for d. The functional equation, in this

case, becomes

J3(u
i
1, u

j
2, d

k
) = P̃3(u

i
1, u

j
2, d

k
) + Λ̃3(u

i
1, u

j
2, d

k
)

N
∑

i′=1

N
∑

j′=1

J3(u
i′

1 , uj′

2 , di,k)Π1(i
′|i)Π2(j

′|j)
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where di,k = ρ2d
k

+ c2,1u
i
1(ρ2 − ρ1). As is seen di,k is determined only by the current

values of d and u1. Therefore, using d instead of v2 makes the method numerically even

simpler by reducing the number of grid points over which the function is interpolated.

When ρ1 = ρ2, d = 0 and thus there is no need for interpolation.
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Figure 1. A highly-persistent AR(1) process
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Notes. It compares the simulated time series of a continuous AR(1) process with
those generated by Tauchen’s and Rouwenhorst’s methods for two different levels of
persistence: ρ = 0.99 and ρ = 0.999. The number of grid points for the state variable,
y, is nine - i.e., N = 9 and std(y) = 1 in all cases.
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Figure 2. A highly-persistent vector autoregression
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Notes. Using the results in Tables 1 and 3, we plot the approximations by both
Tauchen’s and the new methods against their targets.
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Figure 3. Discretization of symmetric shocks
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Notes. These are the scatter diagrams of the series generated by both Tauchen’s and
the new methods. See the discussion in Section 2.2.3 for details.
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Table 1A. Approximation by Tauchen’s method: Mean

N ρ
lg(1−ρ̂1)
lg(1−ρ1)

lg(1−ρ̂2)
lg(1−ρ2)

α̂
α

σ̂x1

σx1

σ̂x2

σx2

0.5 0.990 0.919 0.785 1.015 0.893
0.9 0.983 0.861 0.851 1.065 0.742

9 0.99 1.272 1.281 1.002 1.220 1.227
0.999 NA NA NA NA NA
0.9999 NA NA NA NA NA

0.5 1.000 0.97 0.842 1.008 1.042
0.9 0.999 0.930 0.867 1.032 0.859

19 0.99 1.031 1.031 1.001 1.215 1.213
0.999 1.706 2.715 2.154 0.356 1.156
0.9999 NA NA NA NA NA

0.5 1.000 1.000 0.947 1.002 1.056
0.9 1.000 0.997 0.959 1.008 1.036

49 0.99 1.000 1.000 1.001 1.076 1.075
0.999 1.158 1.773 1.810 1.297 3.632
0.9999 NA NA NA NA NA

Table 1B. Approximation by Tauchen’s method: RMSE

N ρ
lg(1−ρ̂1)
lg(1−ρ1)

lg(1−ρ̂2)
lg(1−ρ2)

α̂
α

σ̂x1

σx1

σ̂x2

σx2

0.5 0.010 0.082 0.216 0.015 0.111
0.9 0.017 0.144 0.165 0.065 0.264

9 0.99 0.272 0.281 0.006 0.221 0.228
0.999 NA NA NA NA NA
0.9999 NA NA NA NA NA

0.5 0.004 0.026 0.158 0.008 0.043
0.9 0.003 0.070 0.133 0.032 0.141

19 0.99 0.032 0.032 0.003 0.215 0.213
0.999 0.715 1.724 1.155 0.662 0.527
0.9999 NA NA NA NA NA

0.5 0.003 0.003 0.053 0.003 0.056
0.9 0.002 0.006 0.041 0.009 0.037

49 0.99 0.005 0.004 0.003 0.077 0.075
0.999 0.159 0.773 0.812 0.304 2.632
0.9999 NA NA NA NA NA

Notes. Table 1A displays the mean of the estimated parameters of the data generated
by Tauchen’s method relative to their corresponding targets. Table 1B displays the
RMSE of the estimated parameters relative to their true values. lg denotes logarithm
with base 10. NA denotes the cases where the method cannot generate any data. See
the text for details.
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Table 2A. Approximated AR(1) process: Mean

Tauch. T-H T-H-F A-C Rouwn.

N ρ
lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

0.5 0.997 1.028 0.976 1.000 1.000 1.000 1.000 1.000 1.000 0.942 0.976 0.773 1.000 1.000 0.917

0.9 0.993 1.1043 0.948 0.944 0.928 0.832 0.998 0.994 0.962 0.909 0.976 0.773 1.000 1.000 0.917

9 0.99 1.432 1.286 0.875 0.622 0.398 0.623 1.220 0.906 0.729 0.799 0.976 0.773 1.000 1.000 0.916

0.999 NA NA NA 0.426 0.130 0.601 NA NA NA 0.701 0.976 0.773 1.000 1.000 0.915

0.9999 NA NA NA 0.320 0.041 0.599 NA NA NA 0.651 0.976 0.774 1.000 1.001 0.918

0.5 0.996 1.003 0.973 1.000 1.000 1.000 1.000 1.000 1.000 0.977 0.991 0.875 1.000 1.000 0.963

0.9 0.995 1.016 0.960 0.998 0.997 0.981 1.000 1.000 1.000 0.960 0.991 0.875 1.000 1.000 0.963

19 0.99 1.000 1.153 0.900 0.777 0.585 0.660 1.027 1.000 0.940 0.899 0.991 0.875 1.000 1.000 0.963

0.999 1.723 1.261 0.913 0.543 0.200 0.609 1.897 0.652 1.480 0.790 0.991 0.875 1.000 1.001 0.964

0.9999 NA NA NA 0.409 0.063 0.605 NA NA NA 0.718 0.990 0.875 0.998 0.993 0.964

0.5 0.996 0.998 0.973 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.997 0.945 1.000 1.000 0.986

0.9 0.995 0.997 0.962 1.000 1.000 1.000 1.000 1.000 1.000 0.988 0.997 0.945 1.000 1.000 0.986

49 0.99 0.994 1.018 0.942 0.917 0.822 0.753 1.000 1.000 0.999 0.964 0.997 0.945 0.997 0.994 0.986

0.999 1.012 1.172 0.873 0.669 0.316 0.621 1.225 1.044 0.985 0.895 0.997 0.945 1.000 0.999 0.984

0.9999 1.569 0.409 5.986 0.507 0.102 0.608 NA NA NA 0.806 1.007 0.946 1.001 1.005 0.986

Notes. Table 2A compares the accuracy of different approximation methods for an independent AR(1) process in terms of the
mean of estimated parameters relative to their true values. Tauch. is Tauchen’s (1986) method, T-H is Tauchen and Hussey’s
(1991) method, T-H-F is Flodén’s alternative of Tauchen and Hussey’s (1991) method, A-C is Adda and Cooper’s (2003) method
and Rouwn. is Rouwenhorst’s (1995) method. lg denotes logarithm with base 10. NA denotes the cases where the corresponding
method cannot generate any data.
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Table 2B. Approximated AR(1) process: RMSE

Tauch. T-H T-H-F A-C Rouwn.

N ρ
lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

lg(1−ρ̂)
lg(1−ρ)

σ̂
σ

κ̂
κ

0.5 0.003 0.028 0.024 0.001 0.000 0.000 0.001 0.000 0.001 0.058 0.024 0.227 0.001 0.000 0.083

0.9 0.007 0.104 0.052 0.056 0.072 0.167 0.003 0.006 0.038 0.091 0.024 0.227 0.001 0.001 0.083

9 0.99 0.432 0.286 0.125 0.378 0.602 0.378 0.219 0.094 0.281 0.201 0.024 0.227 0.001 0.002 0.084

0.999 NA NA NA 0.574 0.870 0.399 NA NA NA 0.299 0.024 0.227 0.002 0.007 0.085

0.9999 NA NA NA 0.680 0.959 0.401 NA NA NA 0.349 0.024 0.226 0.004 0.020 0.086

0.5 0.004 0.003 0.027 0.001 0.000 0.000 0.001 0.000 0.001 0.023 0.009 0.125 0.001 0.000 0.037

0.9 0.005 0.016 0.040 0.002 0.003 0.019 0.001 0.001 0.001 0.038 0.009 0.125 0.001 0.001 0.037

19 0.99 0.001 0.153 0.100 0.222 0.414 0.340 0.027 0.003 0.060 0.101 0.009 0.125 0.001 0.002 0.037

0.999 0.724 0.273 0.164 0.457 0.801 0.391 0.900 0.371 2.464 0.209 0.009 0.125 0.002 0.007 0.037

0.9999 NA NA NA 0.591 0.936 0.396 NA NA NA 0.282 0.011 0.124 0.005 0.024 0.047

0.5 0.004 0.002 0.027 0.001 0.000 0.001 0.001 0.000 0.001 0.007 0.003 0.055 0.001 0.000 0.014

0.9 0.005 0.003 0.037 0.001 0.001 0.001 0.000 0.001 0.001 0.012 0.003 0.055 0.001 0.001 0.014

49 0.99 0.006 0.018 0.058 0.083 0.178 0.247 0.001 0.002 0.004 0.036 0.003 0.055 0.001 0.002 0.014

0.999 0.012 0.172 0.127 0.330 0.684 0.379 0.226 0.084 0.087 0.105 0.005 0.055 0.002 0.008 0.019

0.9999 0.575 0.614 11.97 0.493 0.898 0.392 NA NA NA 0.194 0.009 0.055 0.004 0.020 0.037

Notes. Table 2B displays the RMSE of the estimated parameters relative to their true values. Tauch. is Tauchen’s (1986) method,
T-H is Tauchen and Hussey’s (1991) method, T-H-F is Flodén’s alternative of Tauchen and Hussey’s (1991) method, A-C is Adda
and Cooper’s (2003) method and Rouwn. is Rouwenhorst’s (1995) method. lg denotes logarithm with base 10. NA denotes the
cases where the corresponding method cannot generate any data.
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Table 3A. Approximation by the new method: Mean

N ρ
lg(1−ρ̂1)
lg(1−ρ1)

lg(1−ρ̂2)
lg(1−ρ2)

α̂
α

σ̂x1

σx1

σ̂x2

σx2

0.5 1.001 0.999 1.000 1.000 0.998
0.9 1.000 0.999 1.000 1.000 0.998

9 0.99 0.998 0.999 0.999 0.996 0.997
0.999 1.000 0.999 1.001 1.002 0.999
0.9999 0.996 0.999 0.992 0.984 0.997

0.5 0.999 0.999 1.000 1.000 0.999
0.9 1.000 1.000 1.000 1.000 1.000

19 0.99 0.999 0.999 0.999 0.998 0.998
0.999 1.000 1.000 0.995 1.001 0.999
0.9999 1.002 1.000 0.989 1.011 1.001

0.5 1.000 1.001 1.000 1.000 1.003
0.9 1.000 1.000 1.000 1.000 1.000

49 0.99 0.999 0.999 0.998 0.998 0.997
0.999 1.003 1.001 0.992 1.010 1.022
0.9999 1.007 1.001 0.920 1.037 0.999

Table 3B. Approximation by the new method: RMSE

N ρ
lg(1−ρ̂1)
lg(1−ρ1)

lg(1−ρ̂2)
lg(1−ρ2)

α̂
α

σ̂x1

σx1

σ̂x2

σx2

0.5 0.004 0.004 0.004 0.001 0.009
0.9 0.003 0.004 0.003 0.003 0.008

9 0.99 0.005 0.005 0.003 0.011 0.010
0.999 0.008 0.004 0.012 0.027 0.012
0.9999 0.021 0.004 0.054 0.082 0.030

0.5 0.004 0.004 0.004 0.001 0.009
0.9 0.003 0.004 0.003 0.003 0.009

19 0.99 0.005 0.004 0.003 0.011 0.01
0.999 0.008 0.003 0.014 0.026 0.009
0.9999 0.017 0.004 0.061 0.078 0.024

0.5 0.004 0.004 0.004 0.001 0.010
0.9 0.003 0.004 0.003 0.003 0.009

49 0.99 0.005 0.005 0.004 0.012 0.011
0.999 0.011 0.004 0.015 0.039 0.010
0.9999 0.025 0.004 0.116 0.123 0.013

Notes. Table 3A displays the mean of the estimated parameters of the data generated
by the new method relative to their targets. Table 3B displays the RMSE of the
estimated parameters relative to their true values. lg denotes logarithm with base 10.
See the text for details.
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Table 4. Symmetric shocks

Ratios Tauchen New True
Mean

std(x̂2
1)/std(x̂2

2) 0.9774 1.0009 1
std(x̂3

1)/std(x̂3
2) 0.9471 1.0006 1

std(x̂4
1)/std(x̂4

2) 0.8544 1.0005 1

RMSE

std(x̂2
1)/std(x̂2

2) 0.0239 0.0084 0
std(x̂3

1)/std(x̂3
2) 0.0595 0.0095 0

std(x̂4
1)/std(x̂4

2) 0.1465 0.0116 0

Notes. Table 4 shows the simulation results based on the example considered in Section
2.2.3. See the text for details.
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Table 5. Results from value function iteration

N cv(rt) corr(rt, rt+1)

Tauchen New Tauchen New

ρ1 = 0.5, ρ2 = 0.7, γ = 0.9

5 0.0040 0.0040 0.7399 0.7623
9 0.0044 0.0043 0.7582 0.7635
19 0.0044 0.0043 0.7629 0.7633
29 0.0044 0.0044 0.7630 0.7639
49 0.0044 0.0044 0.7634 0.7639

ρ1 = 0.5, ρ2 = 0.7, γ = −0.9

5 0.0070 0.0072 0.6309 0.6483
9 0.0076 0.0076 0.6492 0.6519
19 0.0077 0.0076 0.6529 0.6529
29 0.0077 0.0076 0.6529 0.6533
49 0.0077 0.0077 0.6532 0.6539

ρ1 = 0.99, ρ2 = 0.97, γ = 0.9

5 0.1063 0.0395 0.9998 0.9890
9 0.0952 0.0411 0.9971 0.9895
19 0.0613 0.0418 0.9916 0.9896
29 0.0518 0.0419 0.9904 0.9896
49 0.0459 0.0422 0.9895 0.9897

ρ1 = 0.99, ρ2 = 0.97, γ = −0.9

5 0.3166 0.1131 0.9998 0.9823
9 0.2571 0.1117 0.9961 0.9813
19 0.1518 0.1124 0.9839 0.9812
29 0.1315 0.1126 0.9816 0.9812
49 0.1205 0.1130 0.9810 0.9814

Notes. Table 5 shows the results from the value function iteration where cv(rt) and
corr(rt, rt+1) are the volatility and the serial correlation of the vacancy filling rate
respectively.
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