MPRA

Munich Personal RePEc Archive

A Proposal of Portfolio Choice for
Infinitely Divisible Distributions of
Assets Returns

Kliber, Pawel

Poznan University of Economics

2008

Online at https://mpra.ub.uni-muenchen.de/22541/
MPRA Paper No. 22541, posted 08 May 2010 06:37 UTC



A PROPOSAL OF PORTFOLIO CHOICE FOR INFINITELY
DIVISIBLE DISTRIBUTIONS OF ASSET RETURNS

Pawet KLIBER"

Abstract. In the paper we present a proposal of augmenting portfolio analysis for the
infinitely divisible distributions of returns - so that the prices of assets can follow Lévy
processes. In the classical portfolio analysis (by Markovitz or Sharp) the portfolio is
evaluated according to two criteria: mean return and variance of returns. Such an approach
is cumbersome second moments of assets’ returns do not exist or if the interdependence
between the returns of different assets can not be described only by covariation. In this
article we propose a model in which asset prices follow multidimensional Lévy process and
the interdependence between assets are described by covariance (Gaussian part) and
multidimensional jump measure (Poisson part). Then we propose to choose the optimal
portfolio based on three criteria: mean return, total variance of diffusion and a measure of
jump risk. We also consider augmenting this multi-criteria choice setup for the costs of
possible portfolio adjustments.

Keywords: portfolio analysis, Lévy processes, jump-diffusion models.

1. Introduction

Classical portfolio analysis (as proposed in [14] or [19]) is based on the assumption that
returns are normally distributed. Although this assumption is not explicit, it is hidden in the
fact that the distributions of returns are given by means and variances only. The empirical
research however reveals that distribution of stocks’ returns is vary from being normal (see
[4], [12], [13]). It is believed that the stock prices can be better described using Lévy
processes (and infinitely divisible distributions) instead of Wiener processes (and Gaussian
distributions). Recently more and more papers have been appearing that uses this new
method in modelling stock prices (see for example [1], [4], [5], [6], [8], [10], [11], [16],
[18]).

There are two main problems connected with augmenting portfolio analysis for the
infinitely divisible distributions of returns. Firstly, the criteria of the classical portfolio
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analysis are not adequate now. The criteria are based on moments (first and second) and
they can be undefined in the case of Lévy processes. Thus the problem arises how to
measure the risk of the portfolio. Secondly, the covariances do not suffice to describe
interdependences between returns of different assets. For example the covariance matrix for
several Lévy processes can be diagonal although the processes are not independent (because
the jumps of these processes are dependent).

The article consists of five sections. In the section two we remind some basic
information about Lévy processes and jump-diffusion model. In particular we present there
Lévy-Itd decomposition. In the section three we deal with the problem of modelling
interdependences between asset returns and present some usually used solutions. In the
section four we present our proposal how to deal with the jump-diffusion models in
portfolio analysis. The section five contains exemplary computations for generalized
portfolio analysis.

2. Lévy processes and jump-diffusion models

Lévy process L, is a stochastic cadlag’ process which starts at zero (L, =0) and fulfils the

following conditions.
1. Its increments are independent and stationary, i.e. for any ¢ <t, <..<t, the

variables, —L, , .., L, —L, are independent and the distribution of L, , — L,

t, t,
depends only on /4 (noton ¢t ).
2. The process is stochastically continuous, that is V& >0 ng P(]L LI| > €)= 0,

t+h

which means that the jumps of the process are random — the probability that the
process jumps at any given moment ¢ equals 0.

The Lévy processes are closely connected with infinitely divisible distributions, i.e. with
distributions that can be represented as a sum # of identically distributed random variables
for all n. The infinitely divisible distributions are the broadest class of distributions that
can appear in limit theorems for the sum of independent variables®. It is true that the
distribution of Lévy process at any moment of time is infinitely divisible’. On the other
hand — for any infinitely divisible distribution f there is such a Lévy process L, that

X,~ f (the distribution of random variable X, is f). Thus the Lévy processes are the

widest class of processes which can be interpreted as a result of many small and
independent random increments.

! That is its trajectories are right-continuous and have left limits (fr. - continue d droite,
limite a gauche, see for example [20]).

% See [7], chapter XVIL.

* See for example [17].



2.1. Lévy-Khinchin representation

According to Lévy-Khnitchin theorem (see [2], [4], [11]) any Lévy process L, is
completely described by its characteristic exponent, that is by the logarithm of the
characteristic function of L,. We have

E[eiuL, 1= eV , (1)
where the function y (characteristic exponent) is given by
w(u) = —%oju2 + i+ J.(e”‘x -1- iuxl‘x‘g )dv(x) , 2)

R
where o’ € R,, neR,and v is ameasure on R (so called Lévy measure) which fulfils
Ix2dv(x) <o and (1,00) U (~o0,~1]) < oo. 3)
‘x‘sl
The measure v describes jumps of the process — the value v(R) is the number of jumps
in the unit of time. The value v([c,d]) denotes relative frequency of jumps in the size
between ¢ and d . If the v fulfils

J.|x|dv(x) <o, )
‘X‘S]
then (2) can be reformulated as
w(u) :_%a%ﬂ +iuu+J.(em “1lv(x) (5)

R
and u denotes drift of the process.

2.2. Lévy-Ito decomposition

According to Lévy-Ito theorem (see [2], [4], [11]) any Lévy process can be decomposed
into a sum of a linear trend, a Wiener process, a Poisson process of large jumps and a
completely discontinuous martingale:

L =ut+oW,+P +M, (6)
where W is a standard Wiener process, P is a Poisson process with jumps in

(—0,1]U[l,0) and M? is a completely discontinuous martingale with jumps in (-1,1) If
the Lévy measure fulfils (4), then we can rewrite (6) as

L =ut+oW,+Y AL, @)

s<t

where AL, =L, —limL_ .

st



2.3. Jump-diffusion models

We assume that a asset return process is a Lévy process. Thus the asset price at the moment
t equals S, =S, exp(L,) . Alternatively, one can assume that the asset price is stochastic

exponent of Lévy process and fulfils stochastic differential equation dS, = S,_dL, (where
S

. =1mS,). It was shown in [9] that both approaches are equivalent. In both cases
u—>t"

logarithmic returns of asset are infinitely distributed.
Both approaches are referred to as jump-diffusion models. Although in the literature this
term denotes most often models with finite measure of jumps (v(R) < ), we understand

this term more broadly. Examples of such models are Merton model (see [15]) or Kou
model (see [10]). In jump-diffusion models the returns of asset are described by three

parameters: mean  , variance of Gaussian part o and jump measure V. The method of

portfolio analysis proposed in this paper can be applied also if distributions of returns are o-
stable or are Student-distributed or belong to generalized hyperbolic family of distributions
(these assumptions are frequent in financial literature and models based on them fit to data
very good, see for example [12] or [13]).

3. Interdependence between assets’ returns

In portfolio analysis one has to take into account interdependences between returns of
assets. In classical approach it suffices to take into account covariances between returns of
assets. However if there are jumps in the processes of returns, one should also model
interdependences of jumps.

To describe interdependences between n Lévy processes we should specify covariance
matrix Q and joint measure of jumps V. Matrix Q contains covariances for Gaussian

parts of processes and v is a measure on R” which describe intensity of jumps for
multidimensional process (L, L,,...,L,). The margins of v are the jump measure for one-

dimensional processes L, ..., L, . There are two methods of specifying such measure.

In the first method (see [4]) one decomposes jumps of assets into “market” and
idiosyncratic parts. The jump processes are thus given by

...... ®)
Li=R"+S7,

where Lf is discontinuous part of returns for asset i, R? describes “market” jumps and

S describes jumps connected with specific asset i (idiosyncratic jumps).



The second method consists on application of Lévy copulas (see [4]). If U,(x) and

U,(x) are upper tails of jump measures v, and v, (that is U,(x)= Fz(dy)) and
U(x,,x,) is upper tail of joint measure v (U(x,,x,) = rr v(dy,dz) ) then there exists a

function F*" (Lévy copula) such that U(x,,x,)=F"" (U, (x,),U,(x,)). To fully describe
interdependence of jumps for two processes we need to specify four copulas — for positive

tails (F*") , for negative tails (F ) and for “mixed” tails (F*~, F"). If there are more
processes we have to specify more copulas and the method becomes rather cumbersome.

4. Portfolio analysis

Let a =(,,a,,...,a,) denote the structure of the portfolio, that is the value ¢, denotes the

parts of investor’s wealth invested in asset i . Of course Zai =1.
i=1
In the classical portfolio analysis by Markowitz or Sharpe ([14], [19]) the portfolio is
evaluated according to two criteria: mean return and variance of return. We propose to
introduce third, additional, criterion connected with possible jumps of portfolio’s value. Let

the measure v on R" describes intensity of jumps for all assets. For a given portfolio
structure o  let us define the mapping F“:R"—>R" as follows:

Fo(X, %5000 X,) = (ozlxI s Oy Xy gy O, X ) By v“ we denote a measure on R" defined as

Ve (B) = v(( ")’%B)): lxe R Fe(x) e B)).

The jump measure for the returns of the whole portfolio is a measure 17“ on R defined

as follows:

0 (B) =[x [dx, [dv,... [dv, v (dx,,dx,....dx, . dx—dy, ..~ dx, )
B -0

—o0 -

n-1

Let u: R — R, be a function which describes investor’s attitude toward sudden changes

of asset prices. We interpret it so that the higher the value of # the worst it is for investor.
We propose that investor should rate his or her portfolio according to following three
criteria.

1. Mean return:

K@) =Y aum .
i=1

2. Variance of return:



K, (a) :iiaiajo;j .

i=1 j=1

3. Jumps’ risk:

0

Ky(@) = [u(x)n“ dv). ©

Portfolio optimization starts with finding the set of effective portfolios (that is the
portfolios for which one cannot improve any criterion K,, K,, K, without worsen some
other criterion — we try to maximise criterion K, and to minimize criteria K, and K,).

Then the investor has to choose portfolio from this set according to his or her preferences
(which include his or her attitude toward risk and/or desirable mean return).
Alternatively, we can search the solution to the problem

max K, (@)~ 4,K, (@)~ 1,K; (@) | (10)

subject to

ia,:l, (11)
i=l

where constants 4, and A, describe investor’s attitude toward risk of diffusion and risk of
jumps. (If short sale is not allowed, then we should add « >0 to the constrain (11)).

The third criterion K, can be sometimes hard in computation when using the
formula (9). We can propose two possible solutions. Sometimes it is possible to find the
analytical formula for K, . In other cases one can use Monte Carlo simulations.

Let us consider for example generalized Merton model, in which jump measure has
multidimensional normal distribution, v~ N(0,), where W is covariance matrix. The

measure 77 is also Gaussian: 7%~ N(0,0.) where

n

2 _
oo =Wy,

a
i,j=1

(w; are the elements of the matrix W ). If we appropriately choose the function u, it is

easy to compute K . For example taking u(x) = x> we obtain K,(a)= o . The problem
(10) is then a problem of quadratic programming and can be solved using standard methods.

We can also compute K, using Monte Carlo simulation. If we know jump measures for
all assets and interdependence between them, then we can generate multidimensional
process (X,,...,X,) , which simulates the jumps of assets. The simulation of the jump for the
whole portfolio is ¥ = X, + @,X, +...+@,X,. Then we compute the value u(x). We

repeat this many times and obtain numerical approximation for the true value of K :



K (a) z%zu@,

where we sum all m simulated values.

5. Examples

We give two examples of portfolio analysis with the new method. The first one concerns
multidimensional Merton model, in which jump measure has multidimensional normal

distribution N(0, E) . The function measuring jumps’ risk is #(x) = x*, so that the criterion

K, is given by formula K, =a'Wa .

Figure 1. The surface of effective portfolios in space of criteria — an example for
multidimensional Merton model

The figure 1 presents the surface of efficient portfolios in the space (KX, ,K,,K;). The
portfolios consist of five assets and the mean returns £/, covariance matrix Q and matrix

W were chosen randomly. The investor chooses the optimal portfolio from the set of
efficient portfolios according to his or her attitude to risk and gain. For example if he or she



wants to have mean return no lower then 0.378 with variance of diffusion part (K, ) no

greater then 0.241, then according to the figure 1 mean square of jumps of the portfolio
(K, ) cannot be lower then 0.281. The computations were performed in Excel with package

Solver.
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Figure 2. An exemplary isoquants of X, (jumps’ risk) in the Kou model

The second example concerns multidimensional Kou model. We assume that jump
measure for each asset is exponentially distributed. The interdependences between assets’
jumps are described using decomposition into “market” jumps and idiosyncratic jumps as
in (8). We have analyzed portfolios of three assets. The means of their idiosyncratic jumps
were 0.5, 0.2 and 0.4 respectively and the mean of “market” jump was 0.4. The function
measuring jumps’ risk was u(x) = x*. The derivation of analytical formulas for K , can be
very complicated (although possible) in this model. The values of K, can be easily
computed numerically with Monte Carlo method. Figure 2 presents isoquants of K, for

different portfolio structures (horizontal axis represents the share of the first asset and
vertical axis — of the second). The computations were performed in Matlab (ver. 7.0). This
results can be used to calculate the optimal portfolio. For example if the mean returns of the
assets are p,=0.3, u,=0.2, u,=0.1, the standard deviations of the diffusion parts of
returns are o,=0.1, 0,=0.2, 0,=0.3 and correlations between the diffusion parts of returns

are p,,=0.7, p,;=-0.5, p,;=-0.3, then we can calculate the optimal portfolio by solving



the problem (10) with 4, and A, chosen by investor according to his or her preferences.
For example if A,=1 and A, =0.1, then the optimal portfolio is (0.11, 0.73, 0.16).

6. Conclusions

In the article we presented the method of choosing the optimal portfolio according to three
criteria: mean return, variance of return and jumps’ risk. The choice of the portfolio can be
made either by obtaining the set of effective portfolios (and then choosing the portfolio
from this set according to investor’s preferences) or by solving the problem (10) with
appropriate weights put to all the criteria.

While the computations of the criteria K, and K, are easy (the first one is linear form

and the second one — quadratic form of the structure of the portfolio), the calculation of the
third criterion K, is more problematic. With some assumption about model and the

function u one can derive analytical formulae for K, — this is the case of the Merton
model with quadratic disutility function. Alternatively one can compute K, numerically

using Monte Carlo method. However calculating the set of the effective portfolios using this
second method of computing K, can be very time-consuming as the required time grows

exponentially with the number of assets. With the three assets and with grid 0.01 (i.e. we
assume that the share of any asset can be multiple of 0.01) we had to consider 50000
possible portfolios (performing Monte Carlo simulation for each of them). If we add fourth
asset then the number of possible portfolios grows to more then 170000, etc. Because of
these computational difficulties we recommend rather to use the first method (with
analytical formulae).
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