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Abstract

An important aspect of empirical research based on the vector autoregres-
sive (VAR) model is the choice of the lag order, since all inferences in this
model depend on the correct model speci�cation. There have been many stud-
ies on how to select the lag order of a nonstationary VAR model subject to
cointegration restrictions. In this work, we consider an additional weak-form
(WF) restriction of common cyclical features in the model to analyze the ap-
propriate way to select the correct lag order. We use two methodologies: the
traditional information criteria (AIC, HQ and SC) and an alternative crite-
rion (IC(p; s)) that selects the lag order p and the rank structure s due to
the WF restriction. We use a Monte Carlo simulation in the analysis. The
results indicate that the cost of ignoring additional WF restrictions in vector
autoregressive modeling can be high, especially when the SC criterion is used.
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1 Introduction

In the modeling of economic and �nancial time series, the vector autoregressive

(VAR) model has become the standard linear model used in empirical works. An

important aspect of empirical research on the speci�cation of VAR models is deter-

mination of the lag order of the autoregressive lag polynomial, since all inferences

in the VAR model depend on the correct model speci�cation. Several works have

demonstrated the e¤ect of lag length selection. Lütkepohl (1993) indicated that

selecting a higher order lag length than the true one causes an increase in the

mean square forecast errors of the VAR and that under�tting the lag length often

generates autocorrelated errors. Braun and Mittnik (1993) showed that impulse

response functions and variance decompositions are inconsistently derived from the

estimated VAR when the lag length di¤ers from the true length. When cointegra-

tion restrictions are considered in the model, the e¤ect of lag length selection on

the cointegration tests has been demonstrated. For example, Johansen (1991) and

Gonzalo (1994) pointed out that VAR order selection can a¤ect proper inference

about cointegrating vectors and rank.

Recently, empirical works have considered other kinds of restrictions in the VAR

model (e.g., Engle and Issler, 1995; Caporale, 1997; Mamingi and Sunday, 2003). En-

gle and Kozicki (1993) showed that VAR models can have other types of restrictions,

called common cyclical features, which are restrictions on the short-run dynamics.

These restrictions are de�ned in the same way as cointegration restrictions, but while

cointegration refers to relations among variables in the long run, common cyclical

restrictions refer to relations in the short run. Vahid and Engle (1993) proposed the

serial correlation common feature (SCCF) as a measure of common cyclical features.

SCCF restrictions might be imposed in a covariance stationary VAR model or in a

cointegrated VARmodel. The concept of serial correlation common features appears

to be useful. It means that stationary time series move together in a way such that

there are linear combinations of these variables which yield white noise processes

and that their impulse response functions are collinear. In several practical applica-
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tions the existence of short-run comovements between stationary time series (e.g.,

between �rst-di¤erenced cointegrated I(1)) has been analyzed. For instance, Engle

and Issler (1995) found common cycle comovement in U.S. sectoral output data;

Hecq (2002) and Engle and Issler (1993) found common cycles in Latin American

countries; and Carrasco and Gomes (2009) found common international cycles in

GNP data for Mercosur countries.

When short-run restrictions are imposed in cointegrated VAR models, it is pos-

sible to de�ne a weak version of SCCF restrictions. Hecq, Palm and Urbain (2006)

de�ned a weak version of SCCF restrictions, which they denominated weak-form

(WF) common cyclical restrictions. A fundamental di¤erence between SCCF and

WF restrictions is the form in which each one imposes restrictions on the represen-

tation of the vector error correction model (VECM)1. When SCCF are imposed, all

matrices of a VECM have rank less than the number of variables analyzed. On the

other hand, with WF restrictions, all matrices except the long-run matrix have rank

less than the number of variables being analyzed. Hence, WF restrictions impose less

constraint on VECM parameters. Some advantages emerge when WF restrictions

are considered. First, due to the fact that the weak-form common cyclical method

does not impose constraints on the cointegration space, the rank of common cyclical

features is not limited by the choice of cointegrating rank.

The literature has shown how to select an adequate lag order of a covariance

stationary VAR model and an adequate lag order of a VAR model subject to coin-

tegration restrictions. Among the classical procedures are information criteria, such

as Akaike (AIC), Schwarz (SC) and Hannan-Quinn (HQ) (Lütkepohl, 1993). Kil-

ian (2001) studied the performance of traditional AIC, SC and HQ criteria of a

covariance stationary VAR model. Vahid and Issler (2002) analyzed the standard

information criteria in a covariance stationary VAR model subject to SCCF re-

striction and, more recently, Guillén, Issler and Athanasopoulos (2005) studied the

standard information criteria in VAR models with cointegration and SCCF restric-

1When a VAR model has cointegration restriction it can be represented as a VECM. This
representation is also known as Granger representation theorem (Engle and Granger 1987).
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tions. However, when cointegrated VAR models contain an additional weak form

of common cyclical features, there are no reported works on how to appropriately

determine the VAR model order.

The objective of this paper is to investigate the performance of information cri-

teria in selecting the lag order of a VAR model when the data are generated from a

true VAR with cointegration and WF restrictions, referred to as the correct model.

We carry out the following two procedures: a) the use of standard criteria, as pro-

posed by Vahid and Engle (1993), referred to here as IC(p), and b) the use of an

alternative model selection criterion (see Vahid and Issler, 2002 and Hecq, Palm

and Urbain, 2006), which consists in simultaneously selecting the lag order p and

the number of weak forms of common cyclical features, s, which is referred to as

IC(p; s)2. The most relevant results can be summarized as follows. The information

criterion that selects the pair (p; s) performs better than the model chosen by con-

ventional criteria, especially the AIC(p; s) criterion. The cost of ignoring additional

WF restrictions in vector autoregressive modeling can be high, particularly when

the SC(p) criterion is used.

The rest of this work is organized as follows. Section 2 presents the economet-

ric model. Section 3 discusses the information criteria. Section 4 shows a Monte

Carlo simulation and Section 5 presents the results. Finally, Section 6 contains our

conclusions.

2 The Econometric Model

We show the VARmodel with short-run and long-run restrictions. First, we consider

a Gaussian vector autoregression of �nite order p, called VAR(p), such that:

yt =

pX

i=1

Aiyt�i + "t (1)

where, yt is a vector of n �rst-order integrated series, I(1), Ai, i = 1; : : : ; p are

matrices of dimension n � n, "t � Normal (0;
) ; E ("t) = 0 and E ("t"
0

� ) ={
 , if

2This is quite recent in the literature (see, Hecq et al., 2006).
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t = � and 0n�n, if t 6= � , where 
 is nonsingular}. The model (1) can be written

equivalently as; � (L) yt = "t where L represents the lag operator and � (L) =

In �
Pp

i=1AiL
i such that when L = 1, � (1) = In �

Pp

i=1Ai. If cointegration is

considered in (1) the (n� n) matrix � (�) satis�es two conditions: a) rank (� (1)) =

r, 0 < r < n, such that � (1) can be expressed as � (1) = ���0, where � and

� are (n� r) matrices with full column rank, r; and b) the characteristic equation

j� (L)j = 0 has n�r roots equal to 1 and all others are outside the unit circle. These

assumptions imply that yt is cointegrated of order (1; 1). The elements of � are the

adjustment coe¢cients and the columns of � span the space of cointegration vectors.

We can represent a VAR model as a vector error correction model (VECM). By

decomposing the polynomial matrix � (L) = � (1)L+�� (L)�, where � � (1�L)

is the di¤erence operator, a VECM is obtained:

�yt = ��
0yt�1 +

p�1X

i=1

�i�yt�i + "t (2)

where: ��0 = �� (1), �j = �
Pp

k=j+1Ak for j = 1; ::::; p � 1 and �0 = In. The

VAR(p) model can include additional short-horizon restrictions as shown by Vahid

and Engle (1993). We consider an interesting WF restriction (as de�ned by Hecq,

Palm and Urbain, 2006) that does not impose constraints on long-run relations.

De�nition 1 The weak form (WF) holds in (2) if, in addition to cointegration

restriction, there exists an (n � s) matrix ~� of rank s, whose columns span the

cofeature space, such that ~�
0

(�yt � ���yt�1) = ~�
0

"t ; where ~�
0

"t is an s-dimensional

vector that constitutes an innovation process with respect to information prior to

period t, given by fyt�1; yt�2; :::; y1g :

Equivalent to de�nition 1, we consider WF restrictions in the VECM if there

exists a cofeature matrix ~� that satis�es the following assumption:

Assumption 1 : ~�
0

�j = 0s�n for j = 1; ::::; p� 1.

Therefore, this is a naturally weaker alternative assumption which implies that

the common cyclical part is reduced to white noise by taking a linear combination
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of the variables in the �rst di¤erences adjusted for long-run e¤ects. Imposing WF

restrictions is convenient because it allows for the study of both cointegration and

common cyclical feature without the constraint3 r + s � n.

We can rewrite the VECM with WF restrictions as a model of reduced-rank

structure. In (2) let Xt�1 = [�y
0

t�1; :::::�y
0

t�p+1]
0 and � = [�1; ::::;�p�1]. Therefore,

we obtain:

�yt = ���yt�1 + �Xt�1 + "t (3)

If assumption (1) holds, then matrices �i; i = 1; :::; p are all of rank (n� s) and we

can write � = ~�
?
	 = ~�

?
[	1; ::::;	p�1], where, ~�? is n� (n� s) full column rank

matrix, 	 has dimension (n� s)� n(p� 1); and the matrices 	i; i = 1; :::; p� 1 all

have rank (n � s) � n. Hence, given assumption (1), there exists ~� of n � s such

that ~�
0~�
?
= 0. That is, ~�

?
n � (n � s) is a full column rank orthogonal to the

complement of ~� with rank(~�; ~�
?
) = n. Rewriting model (3) we have:

�yt = ���yt�1 + ~�? (	1;	2; :::;	p�1)Xt�1 + "t (4)

= ���yt�1 + ~�?	Xt�1 + "t (5)

Estimation of (5) is carried out via the switching algorithms (see Centoni et al., 2007;

Hecq, 2006) that use the procedure in estimating reduced-rank regression models as

suggested by Anderson (1951). There is a formal connection between a reduced-rank

regression and the canonical analysis, as noted by Izenman (1975), Box and Tiao

(1977), Tso (1981) and Velu Reinsel andWichern (1986). When all the matrix coe¢-

cients of the multivariate regression are full rank, they can be estimated by the usual

least squares or maximum likelihood procedures. But when the matrix coe¢cients

are of reduced rank they have to be estimated using the reduced-rank regression

models of Anderson (1951). The use of canonical analysis may be regarded as a spe-

cial case of reduced-rank regression. More speci�cally, the maximum likelihood esti-

mation of the parameters of the reduced-rank regression model may solve a problem

3Since the SCCF also imposes constraints on the long-run matrix ��0 = ��(1), which has
dimension n, the cointegration restrictions, r, and SCCF restrictions, s, must satisfy r + s � n.
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of canonical analysis4. Therefore, we can use the expression CanCorrfXt; ZtjXt�1g

which denotes the partial canonical correlations between Xt and Zt: both sets are

concentrated out of the e¤ect of Xt�1 allowing us to obtain canonical correlation

(see Johansen, 1995), represented by the eigenvalues �̂1 > �̂2 > �̂3::::::: > �̂n. The

Johansen test statistic is based on canonical correlation. In model (2) we can use

the expression CanCorrf�yt; yt�1jXt�1g where Xt�1 = [�y
0

t�1; :::::�y
0

t�p+1]
0, which

summarizes the reduced-rank regression procedure used in Johansen approach. This

means that we extract the canonical correlations between �yt and yt�1: both sets

are concentrated out of the e¤ect of lags of Xt�1. In order to test for the signi�cance

of the r largest eigenvalues, we can rely on Johansen�s trace statistic (6):

�r = �T

nX

i=r+1

Ln (1� �̂
2

i ) i = 1; :::; n (6)

where the eigenvalues 0 < �̂n < ::: < �̂1 are the solution to : j�m11�m
�1
10m00m01j =

0, where mij; i; j = 0:1; are the second-moment matrices: m00 =
1
T

PT

t=1 ~u0t~u
0

0t,

m10 =
1
T

PT

t=1 ~u1t~u
0

0t, m01 =
1
T

PT

t=1 ~u0t~u
0

1t, m11 =
1
T

PT

t=1 ~u1t~u
0

1t of the residuals ~u0t

and ~u1t obtained in the multivariate least squares regressions�yt = (�yt�1,:::,�yt�p+1)+

u0t and yt�1 = (�yt�1; :::�yt�p+1)+u1t respectively (see, Hecq et al., 2006; Johansen,

1995). The result of Johansen test is a superconsistent estimation of �. Moreover,

we could also use a canonical correlation approach to determine the rank of the

common feature space due to WF restrictions. This is a test for the existence of

cofeatures in the form of linear combinations of the variables in �rst di¤erences,

corrected for long-run e¤ects which are white noise (i.e., ~�
0

(�yt � ���yt�1) = ~�
0

"t

where ~�
0

"t is a white noise). We use canonical analysis is this work to estimate and

select the lag rank of VAR models, as shown in the subsequent sections.

3 Model Selection Criteria

In model selection we use two procedures to identify the VAR model order: the

standard selection criteria, IC(p), and the modi�ed information criteria, IC(p; s), a

4This estimation is referred to as full information maximum likelihood - FIML. (see Johansen,
1995).
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novelty in the literature, which consists in identifying p and s simultaneously.

The model estimation following the standard selection criteria, IC(p), originally

used by Vahid and Engle (1993), entails the following steps:

1. Estimate p using standard information criteria: Akaike (AIC), Schwarz

(SC) and Hanna-Quinn (HQ). We chose the lag length of the VAR in

levels that minimizes the information criteria.

2. Using the lag length chosen in the previous step, �nd the number of

cointegration vectors, r; using Johansen cointegration test5.

3. Conditional on the results of the cointegration analysis, estimate a

�nal VECM and then calculate the multi-step ahead forecast.

The above procedure is followed when there is evidence of cointegration restric-

tions. We check the performance of IC(p) when WF restrictions are imposed on the

true model. Additionally, we check the performance of IC(p; s) alternative selection

criteria. Vahid and Issler (2002) analyzed a covariance stationary VAR model with

SCCF restrictions. They showed that the use of IC(p; s) performs better than IC(p)

in VAR model lag order selection. In the present work we analyze the cointegrated

VAR model with WF restrictions in order to analyze the performance of IC(p) and

IC(p; s) for model selection. The question investigated is: Does IC(p; s) perform

better than IC(p)? This is an important question we aim to answer in this work.

The procedure to choose the lag order and the rank of the structure of short-run

restrictions is carried out by minimizing the following modi�ed information criteria

(see; Vahid and Issler, 2002; Hecq, 2006).

AIC (p; s) =

TX

i=n�s+1

ln(1� �2i (p)) +
2

T
�N (7)

HQ(p; s) =
TX

i=n�s+1

ln(1� �2i (p)) +
2 ln(lnT )

T
�N (8)

5Cointegration rank and vectors are estimated using the FIML, as shown in Johansen (1991).
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SC(p; s) =

TX

i=n�s+1

ln(1� �2i (p)) +
lnT

T
�N (9)

N = [n� (n� (p� 1)) + n� r]� [s� (n� (p� 1) + (n� s))]

where n is the number of variables in model (2) and N is a number of parameters.

N is obtained by subtracting the total number of mean parameters in the VECM

(i.e., n2�(p�1)+nr), for given r and p, from the number of restrictions the common

dynamics imposes from s�(n�(p�1))�s�(n�s). The eigenvalues �i are calculated

for each p. In order to calculate the pair (p; s) we assume that no restriction exists,

that is, r = n (see Hecq, 2006). We �x p in model (3) and then �nd �i i = 1; 2:::n by

computing the cancorr(�yt; Xt�1 j yt�1). This procedure is followed for every p and

in the end we choose the p and s that minimize the IC(p; s). After selecting the pair

(p; s) we can test the cointegration relation using the Johansen procedure. Finally,

we estimate the model using the switching algorithms as shown in the next section.

Notice that in this simultaneous selection, testing the cointegration relation is the

last procedure followed, so we are inverting the hierarchical procedure followed by

Vahid and Engle (1993) where the �rst step is to select the number of cointegration

relations. This may be an advantage, especially when r is overestimated. Few works

have analyzed the order of VARmodels considering modi�ed IC(p; s). As mentioned,

Vahid and Issler (2002) suggested the use of IC(p; s) to simultaneously choose the

order p and a number of reduced-rank structure s in a covariance stationary VAR

model subject to SCCF restrictions. However, no work has analyzed the order of

the VAR model with cointegration and WF restrictions using a modi�ed criterion,

which is exactly the contribution of this paper.

To estimate the VAR model, considering cointegration and WF restrictions, we

use the switching algorithms model as considered by Hecq (2006). Consider the

VECM given by:

�yt = ��
0yt�1 + ~�?	Xt�1 + "t (10)

A full description of switching algorithms is presented below in four steps:
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Step1 : Estimation of the cointegration vectors �.

Using the optimal pair (�p; �s) chosen by the information criteria (7), (8) or

(9), we estimate � (and so its rank, r = �r) using Johansen cointegration

test.

Step2 : Estimation of ~�
?
and 	.

Taking the estimate of � in step one, we proceed to estimate ~�
?
and 	.

Hence, we run a regression of �yt and of Xt�1on �̂
0

yt�1. We label the

residuals u0 and u1, respectively. Therefore, we obtain a reduced-rank

regression:

u0t = ~�?	u1t + "t (11)

where 	 can be written as 	 =
�
C1; :::; C(�p�1)

�
of (n� �s)� n(�p� 1) and

~�
?
of n� (n� �s). We estimate (11) by FIML. Thus, we can obtain ~�

?

and 	̂.

Step3 : Estimation of the maximum likelihood (ML) function.

Given the parameters estimated in steps 1 and 2 we use a recursive

algorithm to estimate the maximum likelihood (ML) function. We cal-

culate the eigenvalues associated with 	̂, �̂
2

i i = 1; :::; �s and the matrix

of residuals
Pmax

�r; s=�s. Hence, we compute the ML function:

L0max; �r<n; s=�s = �
T

2

"

ln

�����

maxX

�r<n; s=�s

�����
�

�sX

i=1

ln
�
1� �̂

2

i

�#

(12)

If �r = n, instead of (12) we use the derived log-likelihood: Lmax; r=n; s=�s =

�T
2
ln
���
Pmax

�r=n; s=�s

���. The determinant of the covariance matrix for �r = n

cointegration vector is calculated by

ln

�����

maxX

�r=n; s=�s

�����
= ln

��m00 �m01m
�1
11m10

���
�sX

i=1

ln
�
1� �̂

2

i

�
(13)

where mij refers to cross moment matrices obtained in multivariate least

squares regressions from �yt and Xt�1 on yt�1. In this case, estimation
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does not entail using an iterative algorithm yet, because the cointegrating

space spans Rn:

Step4 : Reestimation of �:

We reestimate � to obtain a more appropriate value for the parameters.

In order to reestimate � we compute the CanCorr
h
�yt; yt�1 j 	̂Xt�1

i

and thus using the new �̂ we can repeat step 2 to reestimate ~�
?
and 	.

Then, we calculate the new value of the ML function in step 3. Hence, we

obtain L1max; r=�r; s=�s to calculate �L = (L
1
max; r=�r; s=�s - L

0
max; r=�r; s=�s):

We repeat steps 1 to 4 to choose ~�
?
and 	 until convergence is reached ( i.e.,

�L < 10�7): In the end, the optimal parameters �p, �r and �s are obtained and they

can be used to estimate and forecast a VECM with WF restrictions.

4 Monte Carlo Design

The simple real business cycle models and also the simplest closed economymonetary

dynamic stochastic general equilibriummodels are three-dimensional. Consumption,

saving and output and prices, output and money are notable examples. Motivated by

these applications and according to the previous work of Vahid and Issler (2002), we

construct a Monte Carlo experiment in a three-dimensional environment. Therefore,

the data generating processes considering a VAR model with three variables, one

cointegration vector, and two cofeature vectors (i.e., n = 3, r = 1 and s = 2,

respectively). � and ~� satisfy:

� =

2

4
1:0
0:2
�1:0

3

5 ; ~� =

2

4
1:0 0:1
0:0 1:0
0:5 �0:5

3

5

2

4
"1t
"2t
"3t

3

5
s N

0

@

2

4
0
0
0

3

5 ;

2

4
1:0 0:6 0:6
0:6 1:0 0:6
0:6 0:6 1:0

3

5

1

A

Consider the VAR(3) model: yt = A1yt�1 + A2yt�2 + A3yt�3 + "t. The VECM

representation as a function of the VAR level parameters can be written as:

�yt = (A1 + A2 + A3 � I3)yt�1 � (A2 + A3)�yt�1 � A3�yt�2 + "t (14)
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The VAR coe¢cients must simultaneously comply with the restrictions: a) the coin-

tegration restrictions: ��0 = (A1 + A2 + A3 � I3) ; b) WF restrictions: ~�
0

A3 = 0

(iii) ~�
0

(A2 + A3) = 0 and c) the covariance stationary condition. Considering the

cointegration restrictions, we can rewrite (14) as the following VAR(1):

�t = F �t�1 + vt (15)

�t =

2

4
4yt
4yt�1
�0yt

3

5 ; F =

2

4
�(A2 + A3) �A3 �

I3 0 0
��(A2 + A3) ��0A3 �0� + 1

3

5 and vt =

2

4
"t
0
�0"t

3

5

Thus, equation (15) will be covariance stationary if all eigenvalues of matrix F

lie inside the unit circle. An initial idea to design the Monte Carlo experiment can

consist in constructing the companion matrix (F ) and verifying whether the eigen-

values of the companion matrix all lie inside the unit circle. This can be carried out

by selecting their values from a uniform distribution, and then verifying whether

or not the eigenvalues of the companion matrix all lie inside the unit circle. How-

ever, this strategy could lead to a wide spectrum of search for adequate values for

the companion matrix. Hence, we follow an alternative procedure. We propose an

analytical solution to generate a covariance stationary VAR, based on the choice

of the eigenvalues, and then on the generation of the respective companion matrix.

In the Appendix, we present a detailed discussion of the �nal choice of these free

parameters, including analytical solutions. In our simulation, we constructed 100

data generating processes and for each of these we generated 1,000 samples contain-

ing 1,000 observations. To reduce the impact of the initial values, we considered

only the last 100 and 200 observations. All the experiments were conducted in the

MatLab environment.

5 Results

Figure 1 shows one example of the three-dimensional VAR model with cointegration

and WF restrictions for 100 and 200 observations.
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0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

- 1 0 0

- 9 0

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0
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- 2 0

 T im e

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

 T im e

Figure 1. One example of a VAR(3) model with n=3,r=1 and s=2 for 100 and 200 observations

The values in Table 1 represent the percentage of time the model selection cri-

terion, IC(p), takes to choose the cell corresponding to the lag and number of coin-

tegration vectors in 100,000 runs. The true lag-cointegrating vectors are identi�ed

by boldface numbers and the selected lag-cointegration vectors often chosen by the

criterion are underlined. In Table 1, the results show that, in general, the AIC most

often chooses the correct lag length for 100 and 200 observations. For example, for

100 observations, the AIC, HQ and SC criteria chose the true lag, p, 54.08%, 35.62%

and 17.48% of the times, respectively. Note that all three criteria chose the correct

rank of cointegration (r = 1). When 200 observations were considered, the correct

lag length was chosen 74.72%, 57.75% and 35.28% of the times for AIC, HQ and

SC, respectively. Again, all three criteria selected the true cointegrated rank r = 1.

Table 2 contains the percentage the alternative model selection criterion, IC(p; s),

has in choosing that cell, corresponding to the lag rank and number of cointegrating

vectors in 100,000 runs. The true lag rank cointegration vectors are identi�ed by
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boldface numbers and the best lag rank combination often chosen by each criterion

are underlined. In Table 2, the results show that, in general, the AIC(p; s) criterion

more frequently chooses the lag rank for 100 and 200 observations. For instance,

for 100 observations, the AIC(p; s), HQ(p; s) and SC(p; s) criteria more often choose

the true pair (p; s) = (3; 1), 56.34%, 40.85% and 25.2% of the times, respectively.

For 200 observations, the AIC(p; s), HQ(p; s) and SC(p; s) criteria more frequently

choose the true pair (p; s) = (3; 1), 77.06%, 62.58% and 45.03% of the times, respec-

tively. Note that all three criteria more often choose the correct rank of cointegration

(r = 1) in both samples. What happens when the weak-form common cyclical re-

strictions are ignored? Tables 1 and 2 also show the relative performance of IC(p; s)

vis-à-vis IC(p). For instance, for T = 100 the SC(p; s) has a success rate of 25.2%

in selecting the true p = 3, while the SC(p) only has a success rate of 17.48%. This

represents a gain of more than 44%. For T = 200, the gains are more than 27%. For

T = 100 the HQ(p; s) selects the true p =3 with a 40.85% accuracy while the HQ(p)

only has a success rate of 35.62%. This represents a gain of 14%. For T = 200, the

gains are more than 8%. For T = 100 the AIC(p; s) has a success rate of 56.34%

in choosing the true p = 3, in comparison with a rate of 54.08% for the AIC(p), a

gain of more than 4%. For T=200, the gains are more than 3%. Thus, it appears

that when using the AIC(p,s) criteria the cost of ignoring the weak-form common

cyclical restriction is low.

The most relevant results can be summarized as follows:

� All criteria (AIC, HQ and SC) choose the correct parameters more

often when using IC(p; s) vis-à-vis IC(p).

� There is a cost of ignoring additional weak-form common cyclical re-

strictions in the model especially when the SC(p) criterion is used. In

general, the standard Schwarz, SC(p), or Hannan-Quinn, HQ(p), selec-

tion criteria should not be used for this purpose in small samples due to

the tendency to identify an underparameterized model.
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� The AIC performs better in selecting the true model more frequently

for both the IC(p; s) and the IC(p) criteria.

6 Conclusions

In this work, we considered an additional weak-form restriction of common cycli-

cal features in a cointegrated VAR model in order to analyze the appropriate way

to choose the correct lag order. These additional WF restrictions are de�ned in

the same way as cointegration restrictions. While cointegration refers to relations

among variables in the long run, the common cyclical restrictions refer to relations

in the short run. Two methodologies have been used for selecting lag length; the

traditional information criterion, IC(p), and an alternative criterion (IC(p; s)) that

selects the lag order p and the rank structure s due to the weak-form common

cyclical restrictions.

The results indicate that the information criterion that selects the lag length

and the rank order performs better than the model chosen by conventional criteria.

When the WF restrictions are ignored there is a nontrivial cost in selecting the

true model with standard information criteria. In general, the standard Schwarz

or Hannan-Quinn selection criteria should not be used for this purpose in small

samples, due to the tendency to identify an underparameterized model.

In applied work, when the VAR model contains WF and cointegration restric-

tions, we suggest the use of AIC(p; s) criteria to choose the lag rank, since it provides

considerable gains in selecting the correct VAR model. Since no work in the litera-

ture has analyzed a VAR model with WF common cyclical restrictions, the results of

this work provide new insights and incentives to proceed with this kind of empirical

work.
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Appendix A: Tables

Table 1. Performance of the IC(p ) information criterion in selecting lag order p.
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Table 2. Performance of the IC(p,s) information criterion in selecting p and s.
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Appendix B: VAR Restrictions for the DGPs

Consider the vector autoregressive, VAR(3), model :

yt = A1yt�1 + A2yt�2 + A3yt�3 + "t (16)

with parameters: A1 =

2

4
a111 a112 a112
a121 a122 a122
a131 a132 a132

3

5, A2 =

2

4
a211 a212 a212
a221 a222 a222
a231 a232 a232

3

5 and A3 =

2

4
a311 a312 a312
a321 a322 a322
a331 a332 a332

3

5 : We consider the cointegration vectors � =

2

4
�11
�21
�31

3

5, the cofea-

ture vectors ~� =

2

4
~�11 ~�12
~�21 ~�22
~�31

~�32

3

5 and the adjustment matrix � =

2

4
�11
�21
�31

3

5 : The

long-run relation is de�ned by ��0 = (A1 + A2 + A3 � I3): Thus, the VECM repre-

sentation is:

�yt = ��
0yt�1 � (A2 + A3)�yt�1 � A3�yt�2 + "t (17)

We can rewrite equation (17) as a VAR(1):

�t = F �t�1 + vt (18)

where �t =

2

4
4yt
4yt�1
�0yt

3

5 ; F =

2

4
�(A2 + A3) �A3 �

I3 0 0
��(A2 + A3) ��0A3 �0� + 1

3

5 and vt =

2

4
"t
0
�0"t

3

5

1) Short-run restrictions (WF)

We now impose the common cyclical restrictions (i) and (ii) on model (16).

Let, G = �[R21K + R31], K = [(R32 � R31)=(R21 � R22)], Rj1 = ~�j1=~�11, Rj2 =

~�j2=
~�12 (j = 2; 3) and S = �11G+ �21K + �31

(i) ~�
0

A3 = 0 ==> A3 =

2

4
�Ga331 �Ga332 �Ga333
�Ka331 �Ka332 �Ka333
�a331 �a332 �a333

3

5

(ii) ~�
0

(A2 + A3) = 0 ==> ~�
0

A2 = 0 ==> A2 =

2

4
�Ga231 �Ga232 �Ga233
�Ka231 �Ka232 �Ka233
�a231 �a232 �a233

3

5

2) Long-run restrictions (cointegration)
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The cointegration restrictions are speci�ed by (iv) and (v):

(iv) �0(A2 + A3) = [�(a231 + a
3
31)S � (a232 + a

3
32)S � (a233 + a

3
33)S] and

�0A3 = [�a
3
31S � a332S � a333S]

(v) �0�+1 = � =
�
�11 �21 �31

�
2

4
�11
�21
�31

3

5+1 = �11�11+�21�21+�31�31+1

Taking into account the short- and long-run restrictions, the companion matrix

F can be represented as:

F =

2

4
�(A2 + A3) �A3 �

I3 0 0
��(A2 + A3) ��0A3 �0� + 1

3

5 =

2

66666666
4

�G(a231 + a
3
31) �G(a232 + a

3
32) �G(a233 + a

3
33) �Ga331 �Ga332 �Ga333 �11

�K(a231 + a
3
31) �G(a232 + a

3
32) �G(a233 + a

3
33) �Ka331 �Ka332 �Ka333 �21

�(a231 + a
3
31) �G(a232 + a

3
32) �(a233 + a

3
33) �a331 �a332 �a333 �31

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

�(a231 + a
3
31)S �(a232 + a

3
32)S �(a233 + a

3
33)S �a331S �a332S �a333S b

3

77777777
5

with b = �0� + 1 = �11�11 + �21�21 + �31�31 + 1

3) Covariance stationary restrictions

Equation (18) will be covariance stationary if all eigenvalues of matrix F lie

inside the unit circle. That is, eigenvalue of matrix F is a number � such that:

jF � �I7j = 0 (19)

The solution of (19) is:

�7 + 
�6 +��5 +	�4 = 0 (20)

where the parameters 
, �, and 	 are: 
 = G(a231+a
3
31)+K(a

2
32+a

3
32)+a

2
33+a

3
33�b,

� = Ga331+Ka
3
32� (a

2
33+ a

3
33)b�Gb(a

2
31+ a

3
31)�Kb(a

2
32+ a

3
32) +�31S(a

2
33+ a

3
33) +

S�21(a
2
32+ a

3
32)+S�11(a

2
31+ a

3
31)+ a

3
33 and 	 = �a

3
33b�Ga

3
31b�Ka

3
32b+�31a

3
33S+

a332S�21+a
3
31S�11, and the �rst four roots are �1 = �2 = �3 = �4 = 0:We calculated
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the parameters of matrices A1, A2 and A3 as functions of roots (�5; �6 and �7) and

free parameters. Hence, we have three roots satisfying equation (20)

�3 + 
�2 +��+	 = 0 (21)

for �5, we have: �
3
5 + 
�

2
5 +��5 +	 = 0 ::::::::::::::::::::::::::::::::::Eq1

for �6, we have: �
3
6 + 
�

2
6 +��6 +	 = 0 ::::::::::::::::::::::::::::::::::Eq2

for �7, we have: �
3
7 + 
�

2
7 +��7 +	 = 0 ::::::::::::::::::::::::::::::::::Eq3

Solving equations 1, 2 and 3 yields: 
 = ��7� �6� �5, � = �6�7+ �6�5+ �5�7

and 	 = ��5�6�7. Equating these parameters with the relations above we have:

a231 = �(�Ka
2
32�Ka

2
32b+�31Sa

2
33��

6�7��6��7� a233b��
5�6�7+ b��5�7�

�5�6 � a233 + Sa
2
32�21 � �

5)=(S�11 �G�Gb)

a332 = (�S
2�7�11�31�b

2�7G��6Gb2+b�7S�11+�
6S�11b�a

3
31S�11G+a

3
31S

2�211�

Ga331bS�11��
5Gb2+�5S�11b��

7�6�31SG��
7�5�31SG�S

2�11�
5�31�S

2�11�
6�31+

S�5Gb�31+S�31�
6Gb��5�7�6G+�6�7Gb+�5�7Gb+�5�6Gb�SGb2�31+S

2�11b�31�

S2�11�31a
2
33+S

2�231a
2
33G+SG

2a331�31+S�11a
2
33b+Gb

3�S�11b
2�S2�11Ka

2
32�31�

S2�11�31Ga
3
31+S

2a232�21G�31�Sa
2
32�21Gb+S�31G

2a331b�S�31a
2
33Gb+S�11Ka

2
32b+

S�7Gb�31��
5�6�31SG��

5�7�6�31SG+�
5�7�6S�11)=(S�11K�31�KG�31+bG�21�

K�31Gb� S�11�21 +G�21)=S

a333 = �(Kb
3G��5Gb2K+S�11�

6K�7�5+Kb�7S�11�Kb
2�7G�S2�21�

7�11+

�6GbS�21+S�21�
7Gb��6Gb2K+�6S�11Kb��

6S2�11�21+�
5GbS�21+�

5S�11Kb�

�5S2�11�21��
7�6S�21G+Kb�

7�6G+Kb�7�5G+Kb�5�6G��7�6KG�5�S2�11�21Ka
2
32+

S2�11�21b�S
2�11�21a

2
33+S

2�221a
2
32G�S�11Kb

2+S�21G
2a331�S�21Gb

2+S2a331K�
2
11�

S2�11�21Ga
3
31+S

2�21a
2
33G�31+S�11K^2ba

2
32+S�11Kba

2
33�S�11a

3
31KG�S�11KbGa

3
31�

SKba233G�31+S�21G
2a331b�S�21�

5�6G�S�21�
5�7�6G�S�21Ka

2
32Gb�S�21�

7�5G)=(S�11K�31�

KG�31 + bG�21 �K�31Gb� S�11�21 +G�21)=S

We can calculate a231, a
3
32and a

3
33 �xing the set �1 = �2 = �3 = �4 = 0. The values

of a331; a
2
32; a

2
33; �5; �6 and �7 are sorted independently from uniform distributions
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(�0:9; 0:9). Hence, each parameter of the matrices A1, A2 and A3 are de�ned and we

can generate the DGPs of VAR(3) model with cointegration and WF restrictions.
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