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Abstract

The paper investigates asymptotically efficient inference in general likelihood mod-

els with time varying parameters. Parameter path estimators and tests of parameter

constancy are evaluated by their weighted average risk and weighted average power, re-

spectively. The weight function is proportional to the distribution of a Gaussian process,

and focusses on local parameter instabilities that cannot be detected with certainty even

in the limit. It is shown that asymptotically, the sample information about the parameter

path is efficiently summarized by a Gaussian pseudo model. This approximation leads

to computationally convenient formulas for efficient path estimators and test statistics,
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JEL Classification: C22, C13, C12, C11

Keywords: Time Varying Parameters, Non-linear Non-Gaussian Smoothing,

Weighted Average Risk, Weighted Average Power, Posterior Approximation, Contiguity

∗The authors would like to thank Mark Watson and participants at the NBER Summer Institute, the

Workshop for Nonlinear and Nonstationary Models at the California Institute of Technology, the Unit Root

and Cointegration Testing Conference in Faro, the Econometric Society World Congress in London, and

workshops at the University of Lausanne, New York University, Rutgers University, University of Texas at

Austin, FRB of Atlanta and Iowa State University. Müller gratefully acknowledges financial support from the

NSF through grant SES-0518036.



1 Introduction

One of the central concerns in time series modelling is the stability of parameters through

time. A large body of econometric work has developed around testing the hypothesis that

parameters are time invariant: see, for instance, Nyblom (1989), Andrews (1993), Andrews

and Ploberger (1994), Bai, Lumsdaine, and Stock (1998), Vogelsang (1998), Hansen (2000),

Andrews (2003) and Elliott and Müller (2006) for some more recent contributions, and Stock

(1994) and Dufour and Ghysels (1996) for surveys and additional references. Empirically, there

is substantial evidence of instabilities in the parameters of finance and macroeconomic models

as documented in Stock and Watson (1996), Ghysels (1998), McConnell and Perez-Quiros

(2000), Lettau and Ludvigson (2001), Boivin (2003), Primiceri (2005), Cogley and Sargent

(2005) and Paye and Timmermann (2006), just to name a few.

Once instabilities are suspected, a natural next step is to document their form. Knowl-

edge of the parameter path is useful for a number of purposes. First, the estimated path

is an interesting descriptive tool, as it helps to understand potential sources of the instabil-

ity. Second, the endpoint of the parameter path is useful for forecasting purposes (see, for

instance, Chernoff and Zacks (1964), Sims (1993), Stock and Watson (1996) or Pesaran, Pet-

tenuzzo, and Timmermann (2006)). Third, economic theory might imply certain features of

parameter paths (think, for instance, of convergence models with time varying mean growth

of GDP), for which one might want to test in econometric models. Finally, the time varying

value of the parameter can sometimes be given a useful structural interpretation (cf. Cooley

and Prescott (1976)), such as, in a regression model, the time dependent marginal effect of a

certain regressor.

There are several approaches to estimating the parameter path. One develops frequentist

inference for the break date in models where the parameters are known a priori to be subject

to a small number of sudden shifts, such as Bai (1997), Bai and Perron (1998), and Elliott and

Müller (2004). A Bayesian literature (Hamilton (1989), Chib (1998), Kim and Nelson (1999)

and Sims and Zha (2006), for instance) posits a finite number of regimes for the parameter

values and obtains posterior probabilities for each regime through time. Robinson (1989,

1991) and Cai (2007) develop nonparametric kernel estimators of the time varying parameter.

Finally, a large frequentist and Bayesian literature estimates models under the assumption of a

smooth stochastic evolution of the parameter. When the parameters enter the model linearly

and disturbances are assumed Gaussian, then these models can be written in state space form

and estimated by variants of Kalman filtering and smoothing, as in Cooley and Prescott (1973,
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1976) and Harvey (1989). This is not possible for models with time varying parameters that

affect, say, variances and covariances, and considerably more involved numerical techniques

have been developed to deal with such models: see, for instance, Harvey, Ruiz, and Shephard

(1994), Jacquier, Polson, and Rossi (1995), Durbin and Koopman (1997), Shephard and Pitt

(1997), Uhlig (2001), Primiceri (2005) and Cogley and Sargent (2005) for the estimation

of models with time varying second moments. In general, the estimation of time varying

parameter models outside the Gaussian state space framework requires fairly complicated and

model-specific numerical techniques.

This paper is closely related to this last strand. We consider a general parametric model

with local time variation, in the sense that good tests would detect the instability with prob-

ability smaller than one even in the limit. We analyze estimators and tests that minimize

weighted average risk and maximize weighted average power over the set of possible param-

eter paths, where the weighting function is proportional to the distribution function of a

Gaussian process, and focusses on such local parameter variability. The main contribution

is an asymptotically efficient approximation of the sample information about the parameter

path. This approximation turns the problem of inference about the parameter path in the

general likelihood model into the problem of inference about the parameter path in a linear

Gaussian pseudo model, with the sequence of scores (evaluated at the usual maximum likeli-

hood estimator) as the observations. Asymptotically efficient parameter path estimators and

test statistics thus become straightforward to compute, and the estimation and testing prob-

lem are unified in one coherent asymptotic framework. In the special case of an underlying

parametric model that is stationary for stable parameters, and a weighting that corresponds

to the distribution of a Wiener process, the approximate pseudo model becomes a local level

model in the sense of Harvey (1989), and optimal path estimators are obtained by an expo-

nential smoothing of the sequence of score vectors. From a Bayesian perspective with the

weighting function interpreted as the prior, our results provide an asymptotically accurate

multivariate Gaussian approximation to the posterior distribution of the parameter path.

As already noted, we consider instabilities of the same magnitude as local alternatives

of efficient stability tests. The asymptotic thought experiment hence leads to a limit theory

where there is only limited information about the form of the instability (in contrast, say,

to the set-up in Robinson (1989)). In this way, the asymptotics reflect the difficulties of not

being sure about the precise form or even presence of the instability in small samples in most

econometric models of interest.

Formally, in such asymptotics the magnitude of the instability decreases as the sample
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size increases. This does not mean that the theory developed in this paper only applies to

economically insignificant instabilities. Parameter variations that are ’small’ in the statistical

sense of being nontrivial to detect need not be small in an economic sense. For instance, in

a stylized model, a sudden shift of 1.2 percentage points in yearly GDP mean growth in the

middle of a sample of 180 quarterly observations is detected less than half the time by 5%

level efficient stability tests (Elliott and Müller (2004)), yet such a shift is arguably of major

economic (and policy) relevance. Many instabilities that economists care about, such as those

arising from Lucas-critique arguments (for instance Linde (2001)), the stability of monetary

policy (for instance Bernanke and Mihov (1998)) or reduced form bivariate econometric rela-

tionships between macroeconomic variables in general (Stock and Watson (1996)) have been

difficult (or at least nontrivial) to determine empirically and are hence ’small’ in the statisti-

cal sense. In these instances, accurate approximations are generated by a modelling strategy

in which correspondingly there is only limited statistical information about the instability

asymptotically.

Our results are driven by a quadratic approximation to the log-likelihood of the general

model. Such approximations of the likelihood for models with a finite dimensional parameter

have a long history in statistics and econometrics and allow the substitution of a complex

decision problem by a simpler one; see, for instance, LeCam (1986). Recent applications of

these ideas in time series econometrics include Andrews and Ploberger (1994), Phillips and

Ploberger (1996), Ploberger (2004) and Phillips and Ploberger (2006). The sample information

about the parameter path is more difficult to approximate, as the path is not finite dimen-

sional. Some numerical methods for time series models with latent variables, such as those

developed by Durbin and Koopman (1997) and Shephard and Pitt (1997), employ quadratic

expansions of the log-likelihood at some stage, but without rigorous justification. The recent

results by Carrasco, Hu, and Ploberger (2005) on efficient tests for Markov Switching type pa-

rameter instabilities also rely on higher order expansions of the likelihood; the main difference

to our results concerns the weighting function, which in their case focusses on high frequency

parameter variations. Brown and Low (1996) and Nussbaum (1996) prove the asymptotic

equivalence of some specific infinite dimensional decision problems with the continuous time

problem of observing Gaussian White Noise with some unknown drift. These papers (essen-

tially) establish the asymptotic equivalence of the frequentist risk function for any bounded

loss function. Compared to this literature, our results are more specific, as we only show

equivalence with respect to weighted average risk, where the weighting functions correspond

to the distribution of a (finite mixture of) Gaussian processes. At the same time, our results
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are substantially more general, as they apply to a wide class of parametric time series models.

The remainder of the paper is organized as follows. The next section gives a heuristic

argument for the approximation of the sample information with a linear Gaussian pseudo

model, and provides the computational details for asymptotically efficient parameter path

estimators and tests under a Wiener process weighting function. Section 3 contains the formal

discussion of our results, and Section 4 concludes. All proofs are collected in an appendix.

2 Motivation and Definition of Efficient Parameter

Path Estimators and Stability Tests

Consider a stationary and stable time series model with known log-likelihood function of the

form
PT

t=1 lt(θ), with parameter θ ∈ Θ ⊂ Rk. The corresponding unstable model has the

same likelihood with time varying parameter {θt}Tt=1 = {θ + δt}Tt=1. Suppose the researcher

is interested in obtaining good path estimators under a weighted average risk criterion with a

weighting function that is diffuse for the benchmark value θ, and posits a weighting function

of a Gaussian process of magnitude T−1/2 for the deviations {δt}Tt=1.

The sample information about the path {θ + δt}Tt=1 is fully contained in the functionP
lt(θ + δt), where ’

P
’ denotes a sum over t = 1, · · · , T . Let θ̂ be the maximum likelihood

estimator of θ ignoring parameter instability, i.e. θ̂ maximizes
P

lt(θ). Denote by st(θ) =

∂lt(θ)/∂θ the sequence t = 1, · · · , T of k × 1 score vectors, and by ht(θ) = −∂st(θ)/∂θ0 the
sequence of k × k Hessians. By T second order Taylor expansions

P
(lt(θ + δt)− lt(θ̂)) =

P
[st(θ̂)

0(θ + δt − θ̂)− 1
2
(θ + δt − θ̂)0ht(θ̃t)(θ + δt − θ̂)]

where θ̃t lies on the line segment between θ+δt and θ̂. Suppose the likelihood model is regular

enough to ensure a ’Local Law of Large Numbers’ for the Hessians, such that for sequences

{θt} with θt close to θ̂ for t = 1, · · · , T , T−1
P

ht(θt)− Ĥ
p→ 0, where the matrix Ĥ is defined

as Ĥ = T−1
P

ht(θ̂). Since the deviations {δt}Tt=1 are persistent and of order T
−1/2, and the

maximum likelihood estimator θ̂ is a
√
T consistent estimator of the benchmark value θ, the

sequence {θ + δt − θ̂}Tt=1 is persistent and of order T
−1/2. Also, because the stable model is

assumed stationary, smooth averages of ht(θ̃t) are close to Ĥ in all parts of the sample, so that

P
(θ + δt − θ̂)0ht(θ̃t)(θ + δt − θ̂) '

P
(θ + δt − θ̂)0Ĥ(θ + δt − θ̂) (1)
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and we can write

P
(lt(θ + δt)− lt(θ̂)− 1

2
st(θ̂)

0Ĥ−1st(θ̂))

' −1
2

P
(st(θ̂)− Ĥ(θ + δt − θ̂))0Ĥ−1(st(θ̂)− Ĥ(θ + δt − θ̂)).

(2)

Neither
P

lt(θ̂) nor
P

st(θ̂)
0Ĥ−1st(θ̂) depend on {θ+ δt}Tt=1, so that ignoring these constants,

the log-likelihood of the path {θ + δt}Tt=1 is well approximated by a quadratic form. In fact,

the right-hand side of (2) is recognized as the log-likelihood function of the Gaussian random

variable st(θ̂)+ Ĥθ̂ with mean θ+δt and covariance matrix Ĥ. The information in the sample

about θ + δt can therefore be approximately summarized by the pseudo model

st(θ̂) + Ĥθ̂ = Ĥ(θ + δt) + νt, t = 1, · · · , T (3)

with νt ∼ i.i.d.N (0, Ĥ). For a weighting function for the benchmark value θ that is diffuse,

the weighting on the mean T−1
P

δt in (3) has no bearing on the analysis. For convenience,

one might thus assume a weighting function for {δt}
T
t=1 that corresponds to the distribution of

a demeaned Gaussian process (so that
P

δt = 0 and δt is the the deviation at date t from the

average parameter value θ). Under that assumption, we trivially have
P

δtĤ(θ− θ̂) = 0, and

also
P

st(θ̂) = 0 from the first order condition of the maximum likelihood estimator. Thus,

the right-hand side of (2) becomes

−1
2

P
(st(θ̂)− Ĥδt)

0Ĥ−1(st(θ̂)− Ĥδt)− 1
2
T (θ − θ̂)0Ĥ(θ − θ̂)

and the sample information about θ and {δt}Tt=1 is approximately independent and described

by the pseudo model

θ̂ = θ + T−1/2Ĥ−1ν0 (4)

st(θ̂) = Ĥδt + νt, t = 1, · · · , T (5)

with νt ∼ i.i.d.N (0, Ĥ). The approximation in (4) is the standard result that in large samples,

the likelihood about a parameter converges to that of a Gaussian random variable with mean

θ̂ and covariance matrix T−1Ĥ−1. The focus and contribution of this paper is to argue for

the Gaussian ’local level’ model (5) (or, equivalently, for (3)) as an asymptotically efficient

summary of the sample information about the deviations {δt}Tt=1, at least under Gaussian

weighting functions for {δt}Tt=1 that put almost all of their weight on deviations of the order

T−1/2. For weighting functions for {δt}Tt=1 that are Markovian, the asymptotically efficient

path estimator under a wide range of symmetric loss functions can hence be computed by

variants of the Kalman smoother. Also, asymptotically efficient tests of parameter instability
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in the general likelihood model can be obtained by performing optimal tests in the pseudo

models. The next section formally derives a more general asymptotic equivalence statement

that does not require averages of ht(θ̂) to converge in probability to the same constant in

all parts of the sample under some fairly weak regularity conditions on the likelihood. The

generalization is useful for, say, models with a time trend, for which (1) does not hold.

We now turn to an explicit description of the optimal parameter path estimator and test

statistics assuming (1) holds for a weighting function on δt that is a (demeaned) multivariate

Gaussian random walk. This choice of weighting function (or prior in a Bayesian context)

has been used extensively in econometric applications: see, for instance, Cooley and Prescott

(1976), Harvey (1989), Stock and Watson (1996, 1998, 2002), Boivin (2003) Primiceri (2005)

and Cogley and Sargent (2005). Without loss of generality, let the first p ≤ k parameters

of θ, denoted β, be those whose path is to be estimated (so that the last k − p elements

of δt are zero). Denote by ŝβ,t(θ̂) the corresponding scores, evaluated at maximum likeli-

hood estimator θ̂ (whose first p elements are denoted β̂) that ignores any potential instability,

i.e. ŝβ,t(θ̂) = ∂lt(θ)/∂β|θ=θ̂, t = 1, · · · , T. Let Ĥβ = T−1
P

ŝβ,t(θ̂)ŝβ,t(θ̂)
0, which is computa-

tionally convenient and asymptotically equivalent to −T−1P∂2lt(θ)/∂β∂β
0|θ=θ̂. Under the

theoretically attractive choice of the covariance matrix of the Gaussian random walk for the

first p elements of {δt} to be proportional to Ĥ−1
β (see comment 9 in Section 3 below), an

asymptotically efficient path estimator may be obtained by the following algorithm:

1. Compute the sequence xt = Ĥ−1
β sβ,t(θ̂), t = 1, · · · , T.

2. Let z1 = x1, and compute

zt = rczt−1 + (xt − xt−1), t = 2, · · · , T

where rc = 1 − c/T . That is, generate an p × 1 AR(1) process initialized at x1 and

innovations ∆xt.

3. Compute the residuals {z̃t}Tt=1 of a linear regression of {zt}
T
t=1 on {r

t−1
c Ip}Tt=1.

4. Let z̄T = z̃T , and compute

z̄t = rcz̄t+1 + (z̃t − z̃t+1), t = 1, · · · , T − 1

5. The efficient estimator of the parameter path for β is now given by {β̂ + xt − rcz̄t}Tt=1.

6



6. An asymptotically weighted average power maximizing test for parameter stability of

the first p parameters of θ can be based on the statistic qLL =
PT

t=1(rcz̄t − xt)
0sβ,t(θ̂),

where stability is rejected for small values.

This procedure depends on the positive parameter c, which corresponds to the signal-to-

noise ratio in the smoothing problem: The smaller c, the smoother the estimated parameter

path {β̂+xt−rcz̄t}Tt=1 becomes. One approach is to fix c at some value to obtain point optimal
path estimators and tests. Elliott and Müller (2006) suggest a value of c = 10 for this testing

problem in the context of a linear regression, and their Table 1 contains asymptotic critical

values for the statistic qLL as a function of p. For the path estimation problem, a value of

c = 10 corresponds at least roughly to the magnitude of instabilities found in macro series,

cf. Stock and Watson (1998). Stock and Watson (2002) employ a fixed value of c = 7 in their

smoothing application.

Alternatively, one might posit a weighting function for {δt} that is a mixture of nG Gaussian

random walks with signal-to-noise ratios c ∈ {c1, · · · , cnG}. Let {β̂t(c)}
T
t=1 with β̂t(c) =

β̂ + xt − rcz̄t, t = 1, · · · , T be the path estimator as described above for a given value of c,

and let qLL(c) be the corresponding test statistic. The asymptotically average weighted risk

minimizing path estimator under this composite weighting function with truncated quadratic

loss and large truncation point is then approximately given by

β̂t =

nGX

i=1

wiβ̂t(ci), t = 1, · · · , T

where wi = w̃i/
PnG

j=1 w̃j and w̃i =
q

2cie−ci
1−e−2ci exp(−12 qLL(ci)). We suggest a default choice

c ∈ {0, 5, 10, · · · , 45} with nG = 10, where w̃1 = 1 and β̂t(0) = β̂, t = 1, · · · , T . These values

for c cover the range for the magnitude of most empirically relevant instabilities.

In many applications, it will be of interest to get some sense of the accuracy of this path

estimator. One such measure for the accuracy of β̂t for a particular time period t is given by

Vt = T−1Ĥ−1
β

nGX

i=1

wiκt(ci) (6)

where κt(c) = c(1 + e2c + e2ct/T + e2c(1−t/T ))/(2 − 2e2c) for c > 0 and κt(0) = 1. From a

Bayesian perspective with the weighting function for {δt} and θ interpreted as priors, (6) is

the covariance matrix of the approximate posterior distribution of βt. This approximate pos-

terior distribution is a mixture of multivariate normals N (β̂t(ci), T
−1Ĥ−1

β κt(ci)) with mixing

probabilities wi. The interval [β̂t,i − 2
p
Vt,ii, β̂t,i + 2

p
Vt,ii] with β̂t,i the ith element of β̂t and
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Vt,ii the i, ith element of Vt is thus approximately a 95% credible set for the ith component of β

at time t (one could, of course, also determine the exact 95% credible set for the given mixture

of normals posterior, with typically very similar results). This interval is not a confidence

interval in the frequentist sense, but it can be justified without explicit Bayesian reasoning as

a weighted average risk minimizing set estimator–see Schervish (1995), page 329.

3 Asymptotically Efficient Inference in Unstable Time

Series Models

We begin by introducing some additional notation and definitions. Consider a standard para-

metric model for data yT = (yT,1, · · · , yT,T ) ∈ RmT in a sample of size T , a random vector

defined on the complete probability space (F ,F, P ) , with parameter θ ∈ Θ ⊂ Rk and den-

sity
QT

t=1 fT,t(θ) with respect to some σ-finite measure μT . This form of likelihood arises

naturally in the ’forecasting error decomposition’ of models, where fT,t(θ) is the conditional

likelihood of yT,t given FT,t−1, where FT,t ⊂ F is the σ-field generated by {yT,s}ts=1. In models
with weakly exogenous components in the sense of Engle, Hendry, and Richard (1983), fT,t(θ)

can be decomposed into two pieces fT,t(θ) = f1T,t(θ)f
2
T,t, where f

2
T,t captures the contribution

of the evolution of weakly exogenous components and does not depend on θ. If this is the

case, only f1T,t(θ) needs to be specified. Define lT,t(θ) = ln fT,t(θ), sT,t(θ) = ∂lT,t(θ)/∂θ and

hT,t(θ) = −∂sT,t(θ)/∂θ0. In the following definitions and conditions, we omit the dependence
on T of FT,t, lT,t, sT,t, hT,t and so forth to enhance readability. Let [·] indicate the largest lesser

integer function, let || · || denote the spectral norm, let ’⊗’ be the Kronecker product and let
’
p→’ and ’⇒’ denote convergence in probability and convergence in distribution as T → ∞,
respectively. Measurability is understood in the Borel sense and with respect to the Euclidean

topology, if not indicated otherwise.

We assume the following condition on this model with true and stable parameter θ0.

Condition 1 (MEAS) The functions f1T,t : R
mT × Θ 7→ R are jointly measurable for t =

1, · · · , T .

(DIFF) θ0 is an interior point of Θ, and in some neighborhood Θ0 ⊆ Θ of θ0, lt is twice

continuously differentiable a.s. for t = 1, · · · , T .

(ID) There exists η > 0 such that for all � > 0 there exists K(�) > 0 for which

P (sup||θ−θ0||≥� T
−1P sup||v||<T−1/2+η,θ+v∈Θ(lt(θ + v)− lt(θ0)) < −K(�))→ 1
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(LLLN) (i) For any decreasing ball of θ, i.e. BT = {θ : ||θ−θ0|| < bT} for some sequence of

real numbers bT → 0, T−1
PT

t=1 supθ∈BT ||ht(θ)−ht(θ0)||
p→ 0, (ii) T−1

PT
t=1 ||ht(θ0)|| = Op(1)

and (iii) supλ∈[0,1]

°°°T−1
P[λT ]

t=1 ht(θ0)−
R λ
0
Γ(l)dl

°°° p→ 0 for some nonstochastic matrix function

Γ (possibly indexed by θ0), with Γ(λ) positive definite for all λ ∈ [0, 1].
(MDA) {st(θ0),Ft} is a martingale difference array, there exists � > 0 such

that T−1
PT

t=1E[||st(θ0)||
2+�|Ft−1] = Op(1) and supλ∈[0,1] ||T

−1P[λT ]
t=1 E[st(θ0)st(θ0)

0|Ft−1] −R λ
0
Γ(l)dl||

p→ 0.

Condition 1 is a set of fairly standard high level assumptions on the ’forecast error

decomposition’-part of the likelihood. (DIFF) assumes existence of two derivatives. (ID) is

similar to the global identification condition assumed in Schervish (1995), page 436, somewhat

strengthened to ensure that even a slightly perturbed evaluation of the likelihood at param-

eter values different from θ0 still yields a lower likelihood with high probability. (LLLN) is

a Local Law of Large Numbers for the second derivatives ht. Part (i) controls the average

variability of the second derivative ht as a function of the parameter. It is implied by the

more primitive conditions A.2 and A.3 of Andrews (1987). See Gallant and White (1988) and

Andrews (1992) for further discussion of this assumption. Part (iii) allows the information

accrual to vary over the sample, and Γ(λ) describes the average information at time t = [λT ].

If ht(θ0), t = 1, · · · , T is positive semidefinite almost surely, part (ii) of (LLLN) is implied

by part (iii). (MDA) assumes the sequence of scores to constitute a martingale difference

array with slightly more than two conditional moments, with an average conditional variance

of Γ(λ) at time t = [λT ]. Whenever the relevant conditional moments exist, {st(θ0},Ft}

and {st(θ0)st(θ0)0− ht(θ0),Ft} are martingale difference arrays by construction–see Hall and

Heyde (1980), Chapter 6.2. Phillips and Ploberger (1996) and Li and Müller (2006) make very

similar assumptions to (LLLN) and (MDA).

Now consider an unstable version of this parametric model, with time varying parameter

θt = θ + δt, t = 1, · · · , T , so that the density of the data yT becomes

fT (θ, δ) =
TY

t=1

fT,t(θ + δt), θ + δt ∈ Θ for t = 1, · · · , T (7)

where θ and δt are k×1 and δ = (δ
0
1, · · · , δ

0
T )
0 ∈ RTk. Alternative estimators of {θ+ δt}Tt=1, or

generally actions, are evaluated via a loss function LT : R
k × RTk × AT 7→ [0, L̄] ⊂ R, where

the action space AT is a topological space and LT is assumed Borel-measurable with respect to

the product sigma algebra on Rk ×RTk ×AT . (For reasons that become apparent below, loss

is also defined for parameter values outside Θ.) The bound L̄ is finite and does not depend
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on T ; this assumption of bounded loss usually has little practical importance, but greatly

facilitates the subsequent analysis. When the true parameter evolution is {θ + δt}Tt=1 and

action a ∈ AT is taken, the incurred loss is LT (θ, δ, a). A typical action could be an estimate

of the entire entire parameter path, so that AT = ΘT , or an estimate of the parameter at a

specific point in time, in which case AT = Θ. Decisions â are measurable functions from the

data to AT . The risk of decision â given parameter evolution {θ + δt}Tt=1 is hence given as

r(θ, δ, â) =
R
LT (θ, δ, â)fT (θ, δ)dμT , which in general depends on δ and θ.

Let QT be a measure on R
Tk, and let w : Θ 7→ R+0 be the Lebesgue density of a random

k × 1 vector. For each θ ∈ Θ, let VT (θ) = {δ : δt + θ ∈ Θ∀t} ⊆ RTk. The Weighted Average

Risk of decision â is then given by

WAR(â) =

Z

Θ

w(θ)

Z

VT (θ)

r(θ, δ, â)dQT (δ)dθ (8)

The weighting functions w and QT describe the importance attached to alternative true pa-

rameter paths in the overall risk calculations: The weight function w attaches different weights

to the benchmark value θ, and QT describes the focus on deviations from this baseline value.

In the parametrization {θt}Tt=1 = {θ + δt}Tt=1, the average T
−1P δt and θ are obviously not

uniquely identified. The same weighted average risk criterion may thus be expressed by dif-

ferent choices of w and QT . The parametrization is useful because the weighting schemes

analyzed in this paper assume different asymptotic properties of QT and w as follows.

Condition 2 (GS) The weight function QT is the distribution of {T−1/2G(t/T )}Tt=1, where

G is a k × 1 zero mean Gaussian semimartingale on the unit interval with covariance kernel

E[G(r)G(s)0] = κG(r, s). There exists a finite set of numbers τ = {0, τ 1, · · · , τ q} ⊂ [0, 1] such
that ||∂2κG(r, s)/∂r∂s|| and ||∂2κG(r, s)/∂r2|| are bounded when r, s /∈ τ and r 6= s, κG admits

bounded left and right derivatives with respect to r for all r = s ∈ [0, 1] \τ , and ∂κG(r, s)/∂r

is bounded for r ∈ [0, s)\τ and s ∈ τ .

(CNT) The weight function w does not depend on T and w is continuous at θ0.

Under Condition 2 (GS), the weight function QT focusses on persistent paths of relatively

small variability.

Gaussian processes that satisfy the differentiability assumptions on their kernel are al-

most surely continuous for all s ∈ [0, 1]\τ by Kolmogorov’s continuity theorem, with τ i,

i = 1, · · · , q, describing fixed break dates. This concentration on persistent parameter paths

drives the derivation of the asymptotic equivalence results below, and it is appealing in many

applications, as parameter instability is typical thought of as a low frequency phenomenon.

10



A structural interpretation of a time-varying regression parameter as a time varying marginal

effect, for instance, usually makes more sense if the variation is of a persistent form. As dis-

cussed in Section 2 above, a popular choice in applied work has been the assumption that

parameters vary as a Gaussian Random Walk, which may be achieved by setting G equal

to G(·) = Υ1/2W (·), where W is a k × 1 standard Wiener process. Random walk param-

eter variability that only occurs in, say, the first half of the sample is achieved by letting

G(s) = 1[s ≤ 1/2]Υ1/2W (s) + 1[s > 1/2]Υ1/2W (1/2). An assumption of slowly mean revert-

ing parameters can be expressed by letting G be a stationary Ornstein-Uhlenbeck process,

etc.

Under Condition 2 (GS), the weighted average risk criterion (8) focusses on parameter

paths whose variability is of order of magnitude T−1/2. This choice is motivated by a desire

to develop procedures that work well when there is relatively little information about the

parameter path. For parameter paths of fixed magnitude and persistence, larger samples

naturally contain more information, as more adjacent observations can be used to pinpoint

the value of the slowly varying parameter at a given date. The sample size dependent choice

of the magnitude of {δt} under QT counteracts this effect, making the estimation of the form

of the scaled parameter variation {T 1/2δt} difficult even asymptotically. In this way, the

asymptotic arguments derived below based on the sequence of weights as described Condition

2 (GS) becomes relevant to the small sample problem where there is in fact little information

about the parameter evolution.

The order of magnitude T−1/2 for δt under Condition 2 (GS) corresponds to the local

neighborhood in which efficient stability tests have nontrivial asymptotic power. The null

hypothesis of a stability test is that the parameter path {θt}Tt=1 = {θ+ δt}Tt=1 is constant, i.e.

H0 : δt = 0 for t = 1, · · · , T (9)

against the alternative that the parameter is time varying. For the development of optimal pa-

rameter stability tests, it makes sense to restrict the parameter paths under the alternative such

that the difference to the corresponding stable model is the time variability of the path, rather

than a different average value of the path. The appropriate restriction is achieved by the multi-

variate Gaussian measure Q∗T of {T
−1/2(G(t/T )− (PT

s=1 Γ(s/T ))
−1PT

s=1 Γ(s/T )G(s/T ))}
T
t=1.

When information accrual is constant, that is Γ(s) = H for all s ∈ [0, 1], then the restriction
amounts to a demeaning of δt, such that

P
δt = 0 a.s. under Q∗T . In the general case, the

restriction forces
P

Γ(t/T )δt = 0, so that the information weighed parameter path deviations

sum to zero, just as in the efficient tests derived by Andrews and Ploberger (1994). Intuitively,

11



a model with time varying parameter is closest to the stable model with a parameter that is

the information weighted average of the parameter path.

Possibly randomized parameter stability tests ϕT are measurable functions from the data

to the interval [0, 1], where ϕT (yT ) indicates the probability of rejecting the null hypothesis of

parameter stability when observing yT . Tests of the same size can then usefully be compared

by considering their Weighted Average Power

WAP (ϕT ) =

Z

VT (θ)

Z
fT (θ0, δ)ϕTdμTdQ

∗
T (δ) (10)

as suggested by Andrews and Ploberger (1994). While θ0 is typically unknown, we show below

that there exists a feasible test ϕ∗T that asymptotically maximizes this weighted average power.

With the weighting of parameter paths specified as the distribution of a Gaussian process,

the problem of finding weighted average risk minimizing actions essentially becomes a nonlinear

smoothing exercise. The weighted average risk minimizing decision is to choose the action a

that minimizes R
Θ
w(θ)

R
VT (θ)

fT (θ, δ)LT (θ, δ, a)dQT (δ)dθR
Θ
w(θ)

R
VT (θ)

fT (θ, δ)dQT (δ)dθ
(11)

for each data yT . With the weighting functions normalized to integrate to unity, this is simply

Bayes Rule for minimizing Bayes risk (11), which can be interpreted as finding the action

that minimizes the expected posterior loss, i.e. loss integrated with respect to the posterior

distributions of (θ, δ) under a prior of (θ, δ) that is proportional to the weights in Condition

2.

A large literature has developed around numerically finding exact posterior distributions

in nonlinear filtering/smoothing problems, usually by Monte Carlo simulation techniques.

This paper complements this research by an asymptotic analysis, yielding both a deeper

theoretical understanding of the problem and a computationally simple and asymptotically

efficient procedure for choosing the risk minimizing action.

Note that Condition 1 makes assumptions about the stable model only, that is on its

behavior when the parameter path is constant. Clearly, with a focus on the problem of

estimating the parameter path, we need to argue for the accuracy of approximations also

when the true data generating process has time varying parameters. In general, most models

with time varying parameters generate nonstationary data, to which standard asymptotic

results are not easily applicable. In a Vector Autoregressive Regression model, for instance,

parameter instabilities lead to highly complicated interactions between the evolution of the

lagged variables and the unstable parameters. Our approach is thus to derive asymptotic

12



results for unstable models as an implication of the contiguity of models with time varying

parameters of order T−1/2 to the corresponding stable model, similar to Andrews and Ploberger

(1994), Phillips and Ploberger (1996), Elliott and Müller (2006) and Li and Müller (2006). The

following Lemma follows from Lemma 1 of Li and Müller (2006) and the additional discussion

in their appendix.

Lemma 1 Let π0 : [0, 1] 7→ Rk be a piece-wise continuous function with at most a finite num-

ber of discontinuities. Under Condition 1 the sequence of densities
QT

t=1 fT,t(θ0, T
−1/2π0(t/T ))

is contiguous to the sequence fT (θ0, 0). Furthermore, the two sequences of densitiesR
VT (θ0)

fT (θ0, δ)dQT (δ)/
R
VT (θ0)

dQT (δ) and
R
VT (θ0)

fT (θ0, δ)dQ
∗
T (δ)/

R
VT (θ0)

dQ∗T (δ) are contigu-

ous to the sequence fT (θ0, 0).

The main result of the paper is the following Theorem.

Theorem 1 Let the sequence of positive definite matrices {h̃t}Tt=1 = {h̃T,t}
T
t=1 satisfy

sup
λ∈[0,1]

°°°°°°
T−1

[λT ]X

t=1

h̃t −
Z λ

0

Γ(s)ds

°°°°°°
p→ 0 (12)

in the stable model with parameter θ0.

(i) Assume that the decision â∗ minimizes weighted average risk with weights as in Condi-

tion 2 or a flat weighting of θ and the weight function QT on δ in the pseudo model

st(θ̂) + h̃tθ̂ = h̃t(δt + θ) + νt, νt ∼ independent N (0, h̃t), t = 1, · · · , T. (13)

If Condition 1 and (12) hold for almost all θ0 in the support of w, then for all â,

lim infT→∞[WAR(â)−WAR(â∗)] ≥ 0.
(ii) Let Q̃∗T be the distribution of {T

−1/2G(t/T ) − T−1/2(
PT

s=1 h̃s)
−1PT

s=1 h̃sG(s/T )}
T
t=1

(induced by G), and let ϕ∗T be the level α test of (9) that maximizes weighted average power

with respect to the weighting function Q̃∗T in the pseudo model

st(θ̂) = h̃tδt + νt, νt ∼ independent N (0, h̃t), t = 1, · · · , T. (14)

Then under Conditions 1 and 2, for any other test ϕT of (9) of asymptotic level α,

lim infT→∞[WAP (ϕ∗T )−WAP (ϕT )] ≥ 0.
(iii) Under Condition 1, the total variation difference between the posterior distribution of

(θ, δ) in model (7) with priors as in Condition 2 and the posterior distribution of (θ, δ) in the

pseudo model (13) with either the same priors or with a flat prior on θ and prior QT on δ

converges in probability to zero in both the stable model with parameter θ0 and any unstable

model that satisfies the condition of Lemma 1.
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Theorem 1 asserts that asymptotically efficient decisions and tests are obtained from

combining the sample information from pseudo models (13) and (14), respectively, with

the weighting of Condition 2. Since both of these are Gaussian, the resulting distribu-

tion can be computed explicitly. Let e be the Tk × k matrix e = (Ik, · · · , Ik)0, Dh̃ =

diag(h̃1, · · · , h̃T ), Σδ = Eδ[δδ
0], where Eδ denotes integration with respect to QT of Condition

2, K = Σδ(Dh̃Σδ + ITk)
−1, ŝ = (s1(θ̂)0, · · · , sT (θ̂)0)0 and

Σ = K + (ITk −KDh̃)e(e
0Dh̃e− e0Dh̃KDh̃e)

−1e0(ITk −Dh̃K). (15)

Note that with δ ∼ N (0,Σδ) and the measurements Yt = h̃tδt+νt, νt ∼ independent N (0, h̃t),
t = 1, · · · , T , the distribution of δ conditional on the measurements Y = (Y 0

1 , · · · , Y
0
T ) and Dh̃

is δ|(Y,Dh̃) ∼ N (KY,K). The second term in the definition of Σ results from the uncertainty

concerning the baseline value θ. The matrix Σ remains the same if Σδ is substituted by the

covariance matrix of δ under Q̃∗T , as defined in Theorem 1 (ii).1

Theorem 2 Let Π be the distribution N (eθ̂ + Σŝ,Σ).

(i) The decision â∗ that minimizes expected risk relative to the distribution eθ+ δ ∼ Π for

each yT minimizes weighted average risk in the pseudo model (13) with a flat weighting on θ.

(ii) A test that rejects for large values of ŝ0Σŝ is the optimal stability test in the pseudo

model (14), and under Conditions 1 and 2

ŝ0Σŝ⇒ 2 ln

Ã
EG exp[

R
G∗(s)0Γ(s)1/2dW ∗(s)− 1

2

R
G∗(s)0Γ(s)G∗(s)ds]

EG exp[−12
R
G∗(s)0Γ(s)G∗(s)ds]

!

under the null hypothesis, where G∗(s) = G(s) − (
R
Γ(λ)dλ)−1

R
Γ(λ)G(λ)dλ, the standard

k × 1 Wiener process W ∗ is independent of G and EG denotes integration with respect to the

probability measure of G.

(iii) The posterior distribution of eθ + δ under a flat prior on θ in the pseudo model (13)

is given by Π.

Comments:

1. Part (i) of Theorem 1 establishes that for arbitrary bounded loss functions, the decision

that minimizes weighted average risk in the Gaussian pseudo model (13) is also asymptotically

optimal in the true model. As shown in part (i) of Theorem 2, this amounts to finding the

risk minimizing action relative to a multivariate Gaussian distribution for the parameter path.

1This follows from Theorem 2 (i): combined with the flat weighting on θ, all weighting functions for δt that

imply the same weighting for {δt−T−1
PT

s=1 δs}
T
t=1 yield the same overall weighting function for {θ+ δt}Tt=1.

14



Note that loss may be defined arbitrarily (subject to the bounding condition) for parameter

values outside Θ, allowing the problem in the pseudo model to be made entirely spherical.

For the wide range of bounded bowl-shaped loss functions for which one would choose the

posterior mean in a Gaussian model, an asymptotically efficient parameter path estimator is

hence given by eθ̂ +Σŝ. Note that such loss functions include those that consider a weighted

average of symmetric losses incurred by estimation errors in the parameter value, such as

LT (θ, δ, a) =
TX

t=1

qT,tL0(T (θ + δt − at)
0WL(θ + δt − at)) (16)

where a = (a01, · · · , a
0
T )
0 ∈ RTk, inft≤T qT,t ≥ 0,

PT
t=1 qT,t = 1, WL is a nonnegative definite

k × k matrix and L0 : [0,∞) 7→ [0, L̄] is a monotonically nondecreasing, bounded function

with L0(0) = 0. The scaling by T in (16) ensures that the loss does not become trivial as

T →∞ even for good path estimators, although Theorems 1 and 2 remain true without this

scaling. This class of loss functions (16) contains the special case where one only cares about

the parameter at time T , i.e. qT,T = 1 and qT,t = 0 for all t < T , which arises naturally in a

forecasting problem.

For more general losses and decision problems, the asymptotically efficient decision can

still be obtained by implementing the efficient decision in the Gaussian pseudo model. This

typically represents a dramatic computational simplification.

2. Part (ii) of Theorems 1 and 2 spell out the implications of the approximation for

efficient tests of the null hypothesis of parameter stability (9). Part (i) of Theorem 2 shows

that under symmetric loss, the asymptotically efficient parameter path estimator is eθ̂ + Σŝ

with an asymptotic uncertainty described by a zero mean multivariate normal with covariance

matrix Σ. The asymptotically efficient test statistic ŝ0Σŝ = (Σŝ)0Σ+(Σŝ), where Σ+ denotes

a general inverse, is recognized to be of the usual Wald form: Efficient instability tests are

based on a quadratic form in the efficient estimator of the instability. Efficient estimation and

testing in (potentially) unstable models are hence unified in one coherent framework. This

ensures coherence between the stability test and the path estimator, as ŝ0Σŝ can only be large

if the path estimator eθ̂ + Σŝ shows substantial variation.

3. Part (iii) of Theorems 1 and 2 describe the approximation result in Bayesian terms: The

posterior distribution of the parameter path eθ+δ comes arbitrarily close to the Tk dimensional

multivariate normal distributionN (eθ̂+Σŝ,Σ). This is a considerably stronger statement than

a convergence in distribution of, say, the posterior of T 1/2δ[·T ] viewed as an element of the space

of cadlag functions on the unit interval. With G(s) = 0, so that Σδ = K = 0, Σ becomes
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Σ = e(e0Dh̃e)
−1e0, and one recovers the standard result that the posterior distribution of θ

converges to N (θ̂, T−1H̃−1) where H̃ = T−1
P

h̃t
p→
R
Γ(λ)dλ, the average information.

In practice, part (iii) of Theorem 1 is useful for Bayesian analyses as it provides a simple

to compute approximation to the posterior of the unstable parameter path. Even if the exact

small sample posterior is required, the approximation of Theorem 1 can still be helpful, as

numerical methods typically require a reasonable initial guess of the posterior distribution.

In the appendix, we provide an iterative algorithm for generating random variables with

distribution N (Σŝ,Σ) for the special case where G is a k × 1 Wiener process.

4. The asymptotic distribution of the asymptotically efficient test statistic ŝ0Σŝ is provided

in Theorem 2 (ii). This distribution is nonstandard and depends on the weighting function

G and the evolution of the information Γ. Even with Γ known, a simulation based on this

expression is quite cumbersome due to the integration over the measure of G. The usefulness

of Theorem 2 (ii) is that it shows the existence of an asymptotic distribution. It thus suffices to

consider a computationally convenient stable model that has the same asymptotic distribution,

such as the stable Gaussian location model yt = h̃tθ + Zt, t = 1, · · · , T with Zt independent

and distributed N (0, h̃t). The limiting distribution of Ẑ 0ΣẐ with Ẑ = (Ẑ 01, · · · , Ẑ
0
T )
0 and

Ẑt = Zt − h̃t(
PT

s=1 h̃s)
−1PT

s=1 h̃sZs is therefore the same as the asymptotic null distribution

of ŝ0Σŝ, for data drawn both from the stable model and under all local alternatives for which

Lemma 1 implies (12) to also hold.2 Asymptotically justified critical values of the test statistic

ŝ0Σŝ might hence be obtained by considering the empirical distribution of sufficiently many

draws from the distribution of Ẑ 0ΣẐ, similar to the approach of Hansen (1996). In the

appendix, we provide an iterative algorithm for computing ŝ0Σŝ (and Ẑ 0ΣẐ) that does not

require inversion of Tk × Tk matrices when G is a Wiener process.

5. In contrast to Theorem 1 (ii), part (i) requires Condition 1 to hold for almost all θ0

in the support of w. This restriction can be relaxed for general decision problems that only

involve δ, the deviations of the parameter path from its baseline value, such as assessing their

shape or size. If this is formalized with the same weighting function for δ as employed in the

testing problem (10), i.e.

ŴAR(â) =

Z

VT (θ)

Z
fT (θ0, δ)L̃T (δ, â)dμTdQ

∗
T (δ)

where L̃T : R
Tk × AT 7→ [0, L̄], one obtains asymptotically efficient feasible decisions based

2Formally, this follows from replacing ŝ and s0 by Ẑ and Z = (Z0
1
, · · · , Z0T )

0, respectively, in the derivation

of the asymptotic null distribution in Theorem 2 (ii).
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on the pseudo model (14).3 Asymptotically efficient decisions thus minimize expected risk

relative to the distribution δ ∼ N (Σŝ,Σ). In particular, under a bowl-shaped symmetric loss
function, the asymptotically efficient estimator of δ is Σŝ. This approximation only requires

Condition 1 to hold for the θ0 that generates the data.

6. The approximation results in Theorems 1 and 2 hold for any choice of positive definite

sequences {h̃t}Tt=1 that satisfy (12) in the stable model. For models with almost surely positive

definite ht(θ), t = 1, · · · , T, θ ∈ Θ, a natural choice is given by h̃t = ht(θ̂), which satisfies

(12) under Condition 1, as shown in Lemma 2 (vi) in the appendix. One might gain some

small sample approximation accuracy by iterating with h̃t = ht(θ̂
1

t ), t = 1, · · · , T , where θ̂
1

t is

a preliminary path estimator, although for large enough T , all choices for h̃t satisfying (12)

yield equivalent results.

From a computational point of view, a particular convenient choice would be to rely on

the outer product of scores, h̃t = st(θ̂)st(θ̂)
0, which satisfies (12) under Condition 1 (see

Lemma 2 (v) in the appendix), so that no second order derivatives of the log-likelihood are

required. With this choice, h̃t is of course singular when k > 1. One would be formally

justified in invoking Theorems 1 and 2 with h̃t = st(θ̂)st(θ̂)
0+κT Ik, where κT is any sequence

of positive real numbers converging to zero, at an arbitrarily fast rate. Note, however, that

Σ is a continuous function of the eigenvalues of {h̃t}Tt=1, with a well defined limit as κT → 0

for fixed T . One might thus drop the additional correction κT Ik and set h̃t = st(θ̂)st(θ̂)
0 in

the definition of Σ in (15) without affecting the validity of Theorem 2. (Note, however, that

Theorem 1 is false for singular h̃t; in general, the pseudo model (13) with, say, h̃t = st(θ̂)st(θ̂)
0

leads to a different posterior distribution than the limit of the posterior distributions for

h̃t = st(θ̂)st(θ̂)
0 + κT Ik as κT → 0.)

7. For certain applications it makes sense to make the scale of the weighting function in

the estimation (8) and testing problems (10) a function of the information Γ. In a testing

context, for instance, it often attractive to choose G such that alternatives that are equally

difficult to detect receive a similar weight, as in Wald (1943) and, conditional on the break

date, in Andrews and Ploberger (1994). Typically, of course, Γ is unknown, and needs to

be estimated from the data. Optimal decisions and tests from the pseudo models (13) and

(14) with respect to an estimated weighting function generally continue to be asymptotically

optimal decisions in terms of (8) and (10), i.e. with respect to the data independent weighting

functions described in Condition 2.

3This follows directly from combining the arguments in the proof of Theorem 1 (i) with the results employed

in the proof of Theorem 1 (ii).
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Theorem 3 Suppose {Λ̂T,t}Tt=1 are nonsingular k × k statistics such that supt≤T ||Λ̂T,t −
Ik||

p→ 0 and
PT

t=2 ||Λ̂T,t − Λ̂T,t−1||
p→ 0 in the stable model with parameter

θ0. Then part (ii) of Theorem 1 also holds for Q̃∗T replaced by the distribution of

{T−1/2Λ̂T,tG(t/T )−T 1/2(
PT

s=1 h̃s)
−1PT

s=1 h̃sΛ̂T,sG(s/T )}Tt=1 (induced by G). Furthermore, if

supθ∈Θ,δ∈RTk,a∈AT |LT (θ,diag(ΛT,1, · · · ,ΛT,T )δ, a)−LT (θ, δ, a)|→ 0 for all sequences {ΛT,t}Tt=1

satisfying supt≤T ||ΛT,t − Ik||
p→ 0 and

PT
t=2 ||ΛT,t − ΛT,t−1|| → 0 as T → ∞, then also part

(i) of Theorem 1 holds for QT replaced by the distribution of {T−1/2Λ̂T,tG(t/T )}Tt=1 (induced

by G).

In a typical application of Theorem 3, suppose one aims at computing the asymptotically

efficient test for a Condition 2 weighting function with G(·) = cΓ̄−1/2W (·), where c is a known

scalar constant, but the average information Γ̄ =
R 1
0
Γ(λ)dλ is not known. Then Theorem

3 shows that this test may be computed from the pseudo model (14) with an estimated

weighting function that corresponds to the distribution of cb̄Γ
−1/2

W (·) = cb̄Γ
−1/2

Γ̄1/2G(·), i.e.

based on the statistic ŝ0Σŝ where Σδ in the definition (15) of Σ has i, jth k × k block equal

to T−2c2
Pmin(i,j)

t=1
b̄Γ
−1
, as long as b̄Γ p→ Γ̄ under θ0 stable. In the more general case where

G(·) = Ω(·)G0(·) with G0 a known Gaussian process and Ω : [0, 1] 7→ Rk×k an unknown

fixed and nonsingular matrix function, Theorem 3 requires beyond consistency that the scaled

estimation error Λ̂T,t = Ω̂T,tΩ(t/T )
−1 is smooth by imposing

PT
t=2 ||Λ̂T,t − Λ̂T,t−1||

p→ 0. This

condition is typically satisfied for parametric estimators of Ω when Ω is of bounded variation,

such as, for example, when Ω is a linear trend of unknown slope or when Ω is a step function

with known step locations.

Moreover, optimal decisions from the pseudo model typically retain their weighted average

risk (8) optimality under such estimated weights, such as the path estimator eθ̂ + Σŝ under

the class of loss functions (16) when L0 is Lipschitz continuous. The restriction of the loss

functions in the second claim of Theorem 3 is necessary to rule out a somewhat pathological

focus of LT on the scale of the weighting function for δ.
4

8. Much applied work is based on the special case where the prior or weighting function

of a time varying parameter is a Gaussian random walk, such that G(·) = Υ1/2W (·) for some

positive semidefinite matrix Υ and standard Wiener process W ; see the citations in Section 2.

The Markovian structure of the Wiener process enables the application of an iterative Kalman

smoothing algorithm for the computation of the path estimator eθ̂+Σŝ and the test statistic

4For example, withG(s) =W (s) and ΛT,t = (1+T
−1/4)Ik, LT (θ, δ, a) = (T 1/2 tr(T

P
(∆δt)(∆δt)

0−Ik))2∧1,
limT→∞

R
LT (θ, δ, a)dQT (δ) 6= limT→∞

R
LT (θ, (1 + T−1/4)δ, a)dQT (δ).
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ŝ0Σŝ that avoids matrix computations of dimension Tk×Tk.We provide such an algorithm in

the appendix, which also takes care of the impact of the flat weighting of θ in the smoothing,

along similar lines as Rosenberg (1973) and Jong (1991).

A number of previous papers have considered parameter stability tests against random

walk-type alternatives: Nyblom (1989) derives locally best tests against general martingale

variability in the parameters for general likelihood models, Shively (1988a, 1988b) considers

small sample tests in a linear regression model, and Elliott and Müller (2006) derive asymptotic

results for point optimal parameter instability tests in linear regression models for a class

of weighting functions that includes the Gaussian random walk case. The contribution of

Theorems 1 and 2 with respect to this literature is the generalization of the point optimal

tests to general likelihood models, including nonstationary models with, say, a time trend.

The degree of generality of the results here concerning parameter stability tests is similar to

those of Andrews and Ploberger (1994), but for a different type of weighting functions.

Elliott and Müller (2006) show that efficient tests for a Gaussian random walk in the

parameters and efficient tests for a single break at unknown date have asymptotic power

that is roughly comparable no matter what the true alternative is; the efficient tests for the

Gaussian random walk have the advantage that they avoid the need for trimming the break

dates away from the beginning and end of the sample, and their computational convenience,

at least compared to efficient tests for more than one potential break.

9. An important special case arises when the information accrual is constant, i.e. Γ(s) = H

for all s ∈ [0, 1] in Condition 1. This holds in particular for all stationary models that satisfy
Condition 1. In that case, one might choose h̃t = Ĥ, t = 1, · · · , T with Ĥ

p→ H in the stable

model in an application of Theorem 1, and the pseudo model (13) becomes (3).

When Γ(s) = H for all s ∈ [0, 1] and G(·) = Υ1/2W (·), a theoretically appealing choice

for Υ is Υ = c2H−1 for some scalar c. This choice equates the degree of uncertainty about

the time variation of δt in any given direction (in R
k) with the average sample information

about that direction, as under Condition 1, H−1 is the information matrix of θ. It hence leads

to equal signal-to-noise ratios in all unstable directions. It is also the only choice for Υ that

yields asymptotic results that do not depend on a particular parametrization. Nyblom (1989),

Stock and Watson (1998) and Elliott and Müller (2006) argue for the same choice for their

testing procedures. By an application of Theorem 3, a consistent estimator of Ĥ is sufficient to

implement asymptotically efficient tests and most weighted average risk minimizing estimators

under the weighting G(·) = cH−1/2W (·) for a given c.

When only the first p ≤ k elements β of θ are (potentially) time varying, Υ =
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diag(Ip, 0k−p)c2H−1 diag(Ip, 0k−p) remains an attractive choice, as it yields asymptotic results

that remain invariant to reparametrizations of β. The algorithm described in Section 2 of this

paper exploits the additional computational simplifications when h̃t = Ĥ, t = 1, · · · , T . In

particular, the smoothing algorithm and formulas provided in Section 2 follow by combining

our results with those of Elliott and Müller (2006): applying the matrix identity (21) in the

appendix, Σ in (15) becomes (IT −Gc)⊗ (diag(Ip, 0k−p)c2Ĥ−1 diag(Ip, 0k−p)) in their notation,

such that the asymptotic distribution of −ŝ0Σŝ simplifies to the one given in their Theorem
4, and the expression for κt(c) in Section 2 follows from their proof of Lemma 6, as the t, tth

element of IT − Gc equals ι
0
t(IT − Gc)ιt, where ιt is the T × 1 vector with a one as the tth

element and zeros elsewhere.

10. For some purposes, it makes sense to consider weighting functions that are more

agnostic about the magnitude and/or form of the parameter instability than is possible under

Condition 2. One way to achieve this without foregoing the computational advantages of

a Gaussian weighting function is to consider weighting functions (or priors) for δ that are

a weighted average of distributions of different Gaussian processes. The following Theorem

shows how parts (i) and (iii) of Theorems 1 and 2 need to be adapted in the case of such a

finite mixture.

Theorem 4 Let Gi, i = 1, · · · , nG be processes satisfying Condition 2 (GS). If QT is the

distribution of the mixture of {T−1/2Gi(t/T )} with mixing probabilities pi, then parts (i) and

(iii) of Theorems 1 and 2 hold with Π replaced by the mixture of nG multivariate normal

distributions N (eθ̂ + Σiŝ,Σi) with mixing probabilities proportional to

w̃i = pi|Dh̃Σδ(i) + ITk|
−1/2|e0Dh̃e− e0Dh̃KiDh̃e|

−1/2 exp[1
2
ŝ0Σiŝ], i = 1, · · · , nG, (17)

where Ki, Σδ(i) and Σi are defined as K, Σδ and Σ in (15) with Σδ replaced by Σδ(i), the

covariance matrix of T−1/2(Gi(1/T )
0, Gi(2/T )

0, · · · , Gi(1)
0)0 for i = 1, · · · , nG.

Theorem 4 is a simple consequence of the fact that the Gaussian pseudo model (13) re-

mains an accurate approximations of the sample information for each of the nG weighting

functions, such that the likelihood ratios can be explicitly computed. The weighted average

risk minimizing parameter path estimator under mixture weightings generally depends much

more on the loss function than in the single Gaussian process case, as mixture of normal

distributions are not generally symmetric around their mean. Under truncated quadratic loss

(16) with L0(x) = min(x, L̄), the weighted average risk minimizing path estimator converges

to
PnG

i=1 w̃iΣiŝ/
PnG

i=1 w̃i as L̄→∞. In the appendix, we provide a computational convenient
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way of computing the determinants appearing in (17) when the Gaussian processes Gi of The-

orem 4 are Wiener processes of some covariance matrix. If in addition information accrual is

linear, i.e. Γ(·) = H in Condition 1, the determinants are computed in closed from in Elliott

and Müller (2006), and these expressions are given in Section 2 above.

11. Theorems 1—4 make asymptotic efficiency claims about estimators and tests in correctly

specified parametric models. It is plausible that the resulting test statistics remain asymptot-

ically valid for a larger class of data generating processes, as long as the score remains a valid

moment condition, and the variance estimator is of the outer product form h̃t = st(θ̂)st(θ̂)
0,

t = 1, · · · , T . Elliott and Müller (2006) provide such results in linear time series regressions for

the special case where Γ(·) = H and G(·) = Υ1/2W (·). It seems likely that similar statements

hold true for the wider class of efficient tests considered here, but we leave such extensions to

future research.

4 Conclusions

Most economic relationships are potentially unstable over time. In empirical work, this trans-

lates into time varying parameters of estimated models. It has long been recognized (cf. Cooley

and Prescott (1976)) that it would often be desirable to keep track of this potential instability.

Going beyond time variation in the coefficients of Gaussian linear regression models, however,

typically leads to substantial numerical and computational complications.

This paper considers a general likelihood model and focusses on parameter instabilities of

a magnitude that are nontrivial to detect, which seems a relevant part of the parameter space

for many instabilities economists care about. The main contribution is an asymptotically

justified approximation to the sample information about the time varying parameter, so that

under a Gaussian weighting, weighted average risk minimizing path estimators and weighted

average power maximizing parameter stability tests become straightforward to compute. We

believe these results are not only of theoretical interest, but they add useful tool to the

applied econometrician’s toolbox: At least for a ’first look’ at model with potentially unstable

parameters, the procedures suggested here constitute an attractive alternative to numerical

approximations to the exact solution, as they are computationally straightforward, they have

rigorous asymptotic justifications, and they embed efficient tests of parameter stability and

efficient parameter path estimators in one coherent framework.
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5 Appendix

5.1 Iterative formulas for the path estimator and related statistics

when G(·) = Υ1/2W (·):

With ŝt = st(θ̂), compute

ât = ât−1 + Pt−1(h̃tPt−1 + Ik)
−1(ŝt − h̃tât−1)

Ât = Ât−1 + Pt−1(h̃tPt−1 + Ik)
−1(h̃t − h̃tÂt−1)

Pt = Pt−1 + T−2Υ− Pt−1(h̃tPt−1 + Ik)
−1h̃tPt−1

for t = 1, · · · , T with â0 = 0, Â0 = 0 and P0 = T−2Υ. Further, compute

b̂t = ât + (Ik − T−2ΥP−1t )(b̂t+1 − ât)

B̂t = Ât + (Ik − T−2ΥP−1t )(B̂t+1 − Ât)

Rt = Pt −Υ+ (Ik − T−2ΥP−1t )(Rt+1 − Pt)(Ik − T−2ΥP−1t )0

for t = T − 1, · · · , 1 with b̂T = âT , B̂T = ÂT and RT = PT − T−2Υ. The tth k × 1 block of

eθ̂ + Σŝ is then given by

θ̂ + b̂t − (Ik − B̂t)

Ã
TX

s=1

h̃s(Ik − B̂s)

!−1 TX

s=1

h̃sb̂s

and the t, tth k× k block of Σ is given by Rt + (Ik − B̂t)
³P

s h̃s(Ik − B̂s)
´−1

(Ik − B̂0
t). Also,

ŝ0Σŝ =
PT

t=1 ŝ
0
tb̂t+(

PT
t=1 ŝ

0
tB̂t)

³PT
t=1 h̃t(Ik − B̂s)

´−1PT
t=1 h̃tb̂t, |Dh̃Σδ+ITk| =

QT
t=1 |h̃tPt−1+

Ik| and |e0Dh̃e − e0Dh̃KDh̃e| = |
PT

t=1 h̃t(Ik − B̂t)|. To compute Ẑ 0ΣẐ, replace ŝt by Ẑt

throughout.

To generate a draw fromN (eθ̂+Σŝ,Σ), one may proceed as follows: Draw b̃T ∼ N (âT , PT−
T−2Υ), and then draw iteratively for t = T − 1, · · · , 1

b̃t ∼ N (b̃t+1 − T−2ΥP−1t (b̃t+1 − ât), T
−2Υ− T−4ΥP−1t Υ).

Draw d̃ ∼ N (0,
³P

s h̃s(Ik − B̂s)
´−1

) independent of {b̃t}Tt=1. Then {θ̂ + b̃t + (Ik − B̂t)d̃}Tt=1

constitutes a draw from N (eθ̂ + Σŝ,Σ).

If Υ is singular, then P−1t is to be replaced by the Moore-Penrose generalized inverse of Pt

in the above computations.
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5.2 Proofs

5.2.1 Notation

For notational ease, extend the domain of fT by letting fT (θ) = 0 for θ /∈ Θ, and let st(θ) = 0 for
θ /∈ Θ0, t = 1, · · · , T .

The following notation is used in the following Lemmas and proofs:

� the Tk × k vector e = (Ik, · · · , Ik)
0

� the k × k matrices Γt = Γ(t/T ), H̃ = T−1
P

h̃t and Γ̂ = T−1
P
Γt

� the Tk × Tk matrices DΓ = diag(Γ1, · · · ,ΓT ), Dh̃ = diag(h̃1, · · · , h̃T ) and F = T−1/2F0 ⊗ Ik,

where F0 is a T × T matrix with zeros above the main diagonal and ones elsewhere

� the k × 1 vectors u = T 1/2(θ − θ0), û = T 1/2(θ̂ − θ0), ŝt = st(θ̂), t = 1, · · · , T and δ̄ =

Γ̂−1T−1
PT

t=1 Γtδt

� the Tk × 1 vectors ŝ = (ŝ01, · · · ŝ
0
T )
0 and s0 = (s1(θ0)

0, · · · , s1(θ0)0)0

� the indicator functions ST = 1[T
1/2 supt≤T ||δt|| < T η], where η is defined in Condition 1 (ID)

and we assume η < 1/2 without loss of generality and AT = 1[||u|| < aT ] with aT →∞ defined

in Lemma 3 below

� the real valued functions LRT (u, δ) = fT (θ0+T
−1/2u,δ)

fT (θ0,0)
, dLRT (u, δ) = exp[

P
ŝ0tδt −

1
2

P
δ0th̃tδt + T−1/2(û− u)

P
h̃tδt − 1

2u
0H̃u+ û0H̃u] and LRT (δ) = exp[

P
ŝ0tδt − 1

2

P
δ0th̃tδt +

1
2(T

−1/2P δ0th̃t)H̃
−1T−1/2

P
h̃tδt]

� the scalars mT =
R
Eδw(θ0 + T−1/2u)LRT (u, δ)du, m̂T = w(θ0)

R
Eδ
dLRT (u, δ)du and MT =

Eδ
QT

t=1 1[(θ0 + δt) ∈ Θ]

5.2.2 Proofs of Theorems in the Main Text

The general strategy for the proof of Theorem 1 is as follows: Given Lemma 1, it suffices to prove

convergences in probability for data generated under the stable model. All following probability

calculations are thus made under the stable Condition 1 model, if not explicitly noted otherwise. We

rely on a number of Lemmas that are stated and proven in Section 5.2.3 below.

We first establish part (iii) of Theorem 1, from which part (i) follows rela-

tively easily. The main thrust of the proof of part (iii) is the argument that
R
Eδ

¯̄
¯w(θ0 + T−1/2u)LRT (u, δ)− w(θ0)dLRT (u, δ)

¯̄
¯ du converges in probability to zero. Lemma 3 (i)

shows that replacing LRT (u, δ) by STATLRT (u, δ) in this expression induces a negligible approxi-

mation error. The approximation via Taylor series expansions is performed in Lemma 7 (i). This
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Lemma requires bounds for integration with respect to the weight function for δ for various approx-

imation terms, which are provided by Lemma 6. Very similar arguments are also at the core of the

proof of part (ii) of Theorem 1.

Proof of Theorem 1:

(iii) We focus on the claim for a flat weighting on θ, the claim for a weighting w on θ follows very

similarly.

Let f̂T (θ, δ) be the density of the observations in the pseudo model (13), so that dLRT (u, δ) =

f̂T (θ0 + u, δ)/f̂T (θ0, 0). The total variation distance between the posterior distributions computed

from the true model density fT and the pseudo model density f̂T is then given by

Z
Eδ

¯̄
¯̄
¯
w(θ0 + T−1/2u)LRT (u, δ)

mT
− w(θ0)dLRT (u, δ)

m̂T

¯̄
¯̄
¯ du

≤ m̂−1T

Z
Eδ

¯̄
¯w(θ0 + T−1/2u)LRT (u, δ)− w(θ0)dLRT (u, δ)

¯̄
¯ du+ m̂−1T |mT − m̂T |

where mT =
R
Eδw(θ0 + T−1/2u)LRT (u, δ)du > 0 a.s. and m̂T = w(θ0)

R
Eδ
dLRT (u, δ)du > 0 a.s.

Since

|m̂T −mT | ≤
Z

Eδ

¯̄
¯w(θ0 + T−1/2u)LRT (u, δ)− w(θ0)dLRT (u, δ)

¯̄
¯ du (18)

it suffices to show that
R
Eδ

¯̄
¯w(θ0 + T−1/2u)LRT (u, δ)−w(θ0)dLRT (u, δ)

¯̄
¯ du p→ 0 and m̂−1T = Op(1).

Now by Fubini’s theorem and a direct calculation

Z
Eδ
dLRT (u, δ)du = (2π)

k/2|H̃|−1/2 exp[12 û
0H̃û]EδLRT (δ). (19)

Lemma 2 (iii) shows û = Op(1), so that also exp[−12 û0H̃û] = Op(1). By Lemma 8, EδLRT (δ) ≥ 0
has an absolutely continuous limiting distribution, so that by the continuous mapping theorem,

(EδLRT (δ))
−1 = Op(1), and m̂−1T = Op(1) follows.

Furthermore, with ST and AT as defined in Lemma 3,

Z
Eδ

¯̄
¯w(θ0 + T−1/2u)LRT (u, δ)− w(θ0)dLRT (u, δ)

¯̄
¯ du

≤
Z

Eδ

¯̄
¯ATSTw(θ0 + T−1/2u)LRT (u, δ)−w(θ0)dLRT (u, δ)

¯̄
¯ du

+

Z
Eδ(1−ATST )w(θ0 + T−1/2u)LRT (u, δ)du.

The last term converges in probability to zero by Lemma 3, part (i). Also

Z
Eδ

¯̄
¯ATSTw(θ0 + T−1/2u)LRT (u, δ)−w(θ0)dLRT (u, δ)

¯̄
¯ du

≤
Z
|w(θ0 + T−1/2u)− w(θ0)|EδATSTLRT (u, δ)du+ w(θ0)

Z
Eδ

¯̄
¯ATSTLRT (u, δ)−dLRT (u, δ)

¯̄
¯ du.
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The last term converges in probability to zero by Lemma 7, part (i). For the first term after the

inequality, we compute

Z
|w(θ0 + T−1/2u)− w(θ0)|EδATSTLRT (u, δ)du

≤ sup
||u||<aT

|w(θ0 + T−1/2u)− w(θ0)|

µZ
Eδ|ATSTLRT (u, δ)−dLRT (u, δ)|du+w(θ0)

−1m̂T

¶
.

But T−1/2aT → 0 and the continuity of w at θ0 imply sup||u||<aT |w(θ0 + T−1/2u) − w(θ0)| → 0.

Furthermore, as shown above, m̂T = Op(1), and the result follows from Lemma 7 (i).

The convergence in probability under the unstable model follows from Lemma 1.

(i) For brevity, we again focus on the case of a flat weighting on θ only.

By definition of the weighted average risk and Fubini’s Theorem

WAR(â)

=

Z
w(θ0)Eδ

Z
LT (θ0, δ, â)fT (θ0, δ)dμTdθ0

=

Z R
EδLT (θ, δ, â)fT (θ, δ)w(θ)dθR

EδfT (θ, δ)w(θ)dθ

Z
EδfT (θ0, δ)w(θ0)dθ0dμT

=

Z
w(θ0)

Z R
EδLT (θ0 + T−1/2u, δ, â)LRT (u, δ)w(θ0 + T−1/2u)du

mT
EδfT (θ0, δ)dμTdθ0.

Similarly, define

\WAR(â) =

Z
w(θ0)

Z R
Eδw(θ0)dLRT (u, δ)LT (θ0 + T−1/2u, δ, â)du

m̂T
EδfT (θ0, δ)dμTdθ0. (20)

Note that

sup
a∈AT

|WAR(a)−\WAR(a)|

≤ L̄

Z
w(θ0)

Z Z
Eδ

¯̄
¯̄
¯
LRT (u, δ)w(θ0 + T−1/2u)

mT
− w(θ0)dLRT (u, δ)

m̂T

¯̄
¯̄
¯ duEδfT (θ0, δ)dμTdθ0.

Now since mT > 0 and m̂T > 0 a.s., we have

Z
Eδ

¯̄
¯̄
¯
LRT (u, δ)w(θ0 + T−1/2u)

mT
− w(θ0)dLRT (u, δ)

m̂T

¯̄
¯̄
¯ du

≤
Z

Eδ

³
m−1T LRT (u, δ)w(θ0 + T−1/2u) + m̂−1T w(θ0)dLRT (u, δ)

´
du = 2

almost surely. Let MT = Eδ
QT

t=1 1[(θ0 + δt) ∈ Θ] > 0. Since Θ contains an open ball around θ0

and supλ∈[0,1] ||G(λ)|| is bounded almost surely, MT → 1. Note that for all T , M−1
T EδfT (θ0, δ) is a

probability density with respect to μT , so that the convergence in probability

Z
Eδ

¯̄
¯̄
¯
LRT (u, δ)w(θ0 + T−1/2u)

mT
− w(θ0)dLRT (u, δ)

m̂T

¯̄
¯̄
¯ du

p→ 0
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established in part (i) of this proof under the unstable model with density M−1
T EδfT (θ0, δ) implies

via dominated convergence that

MT

Z Z
Eδ

¯̄
¯̄
¯
LRT (u, δ)w(θ0 + T−1/2u)

mT
− w(θ0)dLRT (u, δ)

m̂T

¯̄
¯̄
¯ duM

−1
T EδfT (θ0, δ)dμT → 0

for almost all θ0. Since this is also bounded by 2, by another application of the dominated convergence

theorem, we have

Z
w(θ0)

Z Z
Eδ

¯̄
¯̄
¯
LRT (u, δ)w(θ0 + T−1/2u)

mT
− w(θ0)dLRT (u, δ)

m̂T

¯̄
¯̄
¯ duEδfT (θ0, δ)dμTdθ0 → 0.

Since for any â, \WAR(â)−\WAR(â∗) ≥ 0 by the definition of â∗ and \WAR(â),

WAR(â)−WAR(â∗) =
³
\WAR(â)−\WAR(â∗)

´

+
³
WAR(â)−\WAR(â)

´
+
³
\WAR(â∗)−WAR(â∗)

´

≥
³
WAR(â)−\WAR(â)

´
+
³
\WAR(â∗)−WAR(â∗)

´
→ 0.

(ii) By the Neyman Pearson Lemma and Fubini’s Theorem, the weighted average power maximizing

test of (9) under Condition 2 weighting rejects for large values of EδLRT (0, δ−eδ̄), and the weighted
average power maximizing test in the pseudo model (14) rejects for large values of EδLRT (δ). We

have

|EδLRT (0, δ − eδ̄)−EδLRT (δ)| ≤ Eδ|STLRT (0, δ − eδ̄)− LRT (δ)|

+Eδ(1− ST )LRT (0, δ − eδ̄)
p→ 0

by applying Lemmas 3 (ii) and 7 (ii). Furthermore, the asymptotic distribution of EδLRT (δ) under

the null hypothesis is absolutely continuous by Lemma 8, so that the result follows from the second

claim in Lemma 1 by the same arguments as employed in Andrews and Ploberger (1994) in the proof

of their Theorem 2.

Proof of Theorem 2:

(iii) In matrix form, the pseudo model (13) is ŝ+Dh̃eθ̂|(Dh̃, δ, θ) ∼ N (Dh̃(δ + eθ),Dh̃), so that

conditionally on Dh̃ and θ only,

Ã
ŝ+Dh̃eθ̂

δ

!
|(Dh̃, θ) ∼ N

ÃÃ
Dh̃eθ

0

!
,

Ã
Dh̃ +Dh̃ΣδDh̃ Dh̃Σδ

ΣδDh̃ Σδ

!!
.

Using the identity

(ITk +Dh̃Σδ)
−1 = ITk − (ITk +Dh̃Σδ)

−1Dh̃Σδ (21)
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we find with K = ΣδDh̃(Dh̃ +Dh̃ΣδDh̃)
−1 = Σδ −ΣδDh̃(Dh̃ +Dh̃ΣδDh̃)

−1Dh̃Σδ that

δ|(ŝ+Dh̃eθ̂,Dh̃, θ) ∼ N (K(ŝ+Dh̃e(θ̂ − θ)),K).

Furthermore, with a flat prior, the posterior for θ is proportional to the likelihood, so that (ŝ +

Dh̃eθ̂)|(Dh̃, θ) ∼ N (Dh̃eθ,Dh̃+Dh̃ΣδDh̃) implies θ|(ŝ+Dh̃eθ̂,Dh̃) ∼ N ((e0(D−1h̃ +Σδ)
−1e)−1e0(D−1

h̃
+

Σδ)
−1D−1

h̃
ŝ+ θ̂, (e0(D−1

h̃
+Σδ)

−1e)−1). Thus

Ã
δ

θ

!
|(ŝ+Dh̃eθ̂,Dh̃) ∼ N

ÃÃ
K(ŝ−Dh̃e(e

0(D−1
h̃
+Σδ)

−1e)−1e0(D−1
h̃
+Σδ)

−1D−1
h̃
ŝ)

(e0(D−1
h̃
+Σδ)

−1e)−1e0(D−1
h̃
+Σδ)

−1D−1
h̃
ŝ+ θ̂

!
, Vδθ

!

where Vδθ =

Ã
K +KDh̃e(e

0(D−1
h̃
+Σδ)

−1e)−1e0Dh̃K KDh̃e(e
0(D−1

h̃
+Σδ)

−1e)−1

(e0(D−1
h̃
+Σδ)

−1e)−1e0Dh̃K (e0(D−1
h̃
+Σδ)

−1e)−1

!

and employing once more (21), we conclude δ + eθ|(ŝ+Dh̃eθ̂,Dh̃) ∼ N (eθ̂ +Σŝ,Σ).
(i) Immediate from Theorem 1 (i) and the proof of part (i).

(ii) Let R̄(δ) = exp[−12δ0Dh̃δ +
1
2δ
0Dh̃e(e

0D−1
h̃
e)−1e0Dh̃δ]. Using (19), we find

EδLRT (δ)

EδR̄(δ)
= exp[12 ŝ

0Σŝ].

By Lemma 7 (iv), EδR̄(δ) − Eδ exp[−12δ0DΓ(δ − eδ̄)]
p→ 0. By the CMT, exp[−12δ0DΓ(δ − eδ̄)] ⇒

exp[−12
R
G∗ΓG∗], and since R̄(δ) < 1 a.s., also EδR̄(δ) → EG exp[−12

R
G∗0ΓG∗]. The result now

follows from Lemma 8.

Proof of Theorem 3:

We write Λ̂t for Λ̂T,t to enhance readability.

For the first claim, note that if {h̃t}Tt=1 satisfies (12) under the stable model, so does ȟt = Λ̂th̃tΛ̂
0
t.

Thus, with DΛ̂ = diag(Λ̂1, · · · , Λ̂T ) and Dȟ = diag(ȟ1, · · · , ȟT ),

EδLRT (DΛ̂δ) = Eδ exp[ŝ
0DΛ̂δ − 1

2δ
0Dȟδ +

1
2δ
0Dȟe(e

0Dȟe)
−1e0Dȟδ]

By summation by parts with Λ̂0 = Λ̂1

T−1/2
tX

j=1

Λ̂0jsj(θ̂) = Λ̂
0
tT
−1/2

tX

j=1

sj(θ̂)−
tX

j=1

(Λ̂0j − Λ̂0j−1)(T−1/2
t−1X

j=1

sj(θ̂))

so that by Lemma 2 (iv) and the assumptions on Λ̂t, supt≤T ||T
−1/2Pt

j=1(Λ̂
0
j − Ik)sj(θ̂)|| ≤

(supt≤T ||T
−1/2Pt

j=1 sj(θ̂)||)(
PT

t=1 ||Λ̂t − Λ̂t−1|| + supt≤T ||Λ̂t − Ik||)
p→ 0. Proceeding as in the

proof of Theorem 1 (ii), it is seen that the only additional complication arises through the additional

term
P

st(θ̂)
0(Λ̂t− Ik)δt in the definition of ς

∗
T and ς0T (and thus ς

∗
T , ς

∗
T , ς

0
T and ς0T ) in Lemma 7 (ii)

and (iii). By letting ξt = (Λ̂
0
t− Ik)st(θ̂) while invoking Lemma 6 (ii), it continues to be the case that
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Eδ exp 2ς
∗
T

p→ 1, Eδ exp ς
∗
T

p→ 1, Eδ exp 2ς
0
T

p→ 1 and Eδ exp ς
0
T

p→ 1 even under this new definition,

so the result follows as before.

For the second claim, proceed as in the proof of part (ii) of Theorem 1, but with \WAR(â) in (20)

substituted by

\WARΛ(â) =

Z
w(θ0)

Z R
Eδw(θ0)dLRT (u,DΛ̂δ)L(θ0 + T−1/2u,DΛ̂δ, â)du

m̂Λ,T
EδfT (θ0, δ)dμTdθ0

where m̂Λ,T =
R
Eδw(θ0)dLRT (u,DΛ̂δ)du. We have

|\WARΛ(â)−
Z

w(θ0)

Z R
Eδw(θ0)dLRT (u,DΛ̂δ)L(θ0 + T−1/2u, δ, â)du

m̂Λ,T
EδfT (θ0, δ)dμTdθ0|

≤
Z

w(θ0)

Ã
sup

θ∈Θ,δ∈RTk,a∈AT
|LT (θ,DΛ̂δ, a)− LT (θ, δ, a)|

!
EδfT (θ0, δ)dμTdθ0 → 0

where the convergence follows from supθ∈Θ,δ∈RTk,a∈AT |LT (θ,DΛ̂δ, a)− LT (θ, δ, a)|
p→ 0 in the stable

model, Lemma 1 and the dominated convergence theorem as supθ∈Θ,δ∈RTk,a∈AT |LT (θ,DΛ̂δ, a) −
LT (θ, δ, a)| ≤ 2L̄. It thus suffices to proceed as in the proof of Theorem 1 withdLRT (u, δ) replaced

by

dLRT (u,DΛ̂δ)

= exp(ŝ0DΛ̂δ − 1
2δ
0Dȟδ + T−1/2(û− u)0e0Dh̃DΛ̂δ − 1

2T
−1u0e(e0Dh̃e)

−1u0e+ T−1û0e(e0Dh̃e)
−1u0e).

The difference between ŝ0DΛ̂δ and ŝ
0δ can again be handled by suitably modifying ςT in Lemma 7 (i)

as in the proof of the first claim, and further inspection of the proof reveals that the only important

properties of the Tk × Tk matrices in the innerproducts with respect to (δ, δ), (e, e) and (e, δ) are

that (i) they are block diagonal constructed from k× k matrices satisfying (12) in the stable model,

and (ii) that the ones for (δ, δ) and (e, e) are symmetric and positive definite, both of which remains

the case fordLRT (u,DΛ̂δ).

Proof of Theorem 4:

For the claim regarding the analogous statement of Theorem 1 (iii), proceed up to equation (18)

as in the proof of Theorem 1 (iii) with Eδ now denoting integration with respect to the mixture.

With Eδ(i) denoting integration with respect to the measure of {T
−1/2Gi(t/T )}, it then suffices to

show that
R
Eδ(i)

¯̄
¯w(θ0 + T−1/2u)LRT (u, δ(i))− w(θ0)dLRT (u, δ(i))

¯̄
¯ du p→ 0 for i = 1, · · · , nG and

m̂∗−1T = (w(θ0)
P

i pi
R
Eδ(i)

dLRT (u, δ(i))du)
−1 = Op(1). Without loss of generality, assume p1 > 0.

Then m̂∗T/w(θ0)p1 ≥
R
Eδ(1)

dLRT (u, δ(1))du, and the result m̂
∗−1
T follows from the same reasoning as

in the proof of Theorem 1 (iii). The result now follows by proceeding as in the remainder of the proof

of Theorem 1 (iii) and by invoking invoking Lemmas 3 (i) and 7 (i) for each of the nG components

in the measure of δ.
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The claim regarding the analogous statement of Theorem 1 (i) follows as in the proof of Theorem

1 (i) from this result by substituting integrations with respect to δ by integrations with respect to

the mixture.

For the claim regarding Theorem 2 and the mixing probabilities, note that

Eδ(i)

Z
(2π)−k/2|H̃|1/2 exp[−12 û0H̃û]dLRT (u, δ(i))du

= Eδ(i)

Z
(2π)−k/2|H̃|1/2 exp[ŝ0δ(i) − 1

2δ
0
(i)Dh̃δ(i) + T−1/2(û− u)0e0Dh̃δ(i) − 1

2(u− û)0H̃(u− û)]du

= Eδ(i)LRT (δ(i))

= |Dh̃Σδ + ITk|
−1/2|e0Dh̃e− e0Dh̃KiDh̃e|

−1/2 exp[12 ŝ
0Σiŝ]

so that the posterior odds of model i and model j in the pseudo model are as claimed.

5.2.3 Additional Lemmas

Lemma 2 Under Condition 1:

(i) T−1/2
P[·T ]

t=1 st(θ0)⇒
R ·
0 Γ

1/2(l)dW (l), where W is a k × 1 standard Wiener process

(ii) supt≤T ,{vt}Tt=1∈CTT ,{ṽt}Tt=1∈CTT T−1||
Pt

s=1(2
R 1
0 λhs(θ0 + vs + λṽs)dλ − Γs)|| p→ 0 and

supt≤T ,{vt}Tt=1∈CTT ,{ṽt}Tt=1∈CTT T−1||
Pt

s=1(
R 1
0 hs(θ0 + λ(vs − ṽs))dλ − Γs)|| p→ 0, where CT is an arbi-

trary decreasing neighborhood of θ0, and C
T
T = CT × · · · × CT

(iii) û = T 1/2(θ̂ − θ0) = Op(1)

(iv) supt≤T ||T
−1/2PT

s=t ss(θ̂)|| = Op(1)

(v) supλ∈[0,1] ||T
−1P[λT ]

t=1 st(θ̂)st(θ̂)
0 −
R λ
0 Γ(l)dl||

p→ 0 and T−1
P

st(θ0)st(θ0)
0 = Op(1)

(vi) supλ∈[0,1] ||T
−1P[λT ]

t=1 ht(θ̂)−
R λ
0 Γ(l)dl||

p→ 0

Proof. (i) Fix any k×1 vector v with v0v = 1, and let ηt = v0st(θ0). Then {ηt,Ft} is a martingale

difference array and T−1
PT

t=1E[|ηt|
2+ε|Ft−1] ≤ T−1

PT
t=1E[||st(θ0)||

2+ε|Ft−1] = Op(1) by Condi-

tion 1 (MDA). Let ω2η =
R 1
0 v

0Γ(l)vdl and g(λ) =
R λ
0 v0Γ(l)vdl/ω2η, which is a continuous and strictly

increasing function on the unit interval, so that it has an inverse g−1. By Corollary 3.8 of McLeish

(1974), T−1/2
P[g−1(·)T ]

t=1 ηt ⇒ ωηWη(·), whereWη is a standard scalar Wiener process and the conver-

gence is on the space of cadlag functions on the unit interval, equipped with the Skorohod norm. By

the continuous mapping theorem, we hence obtain T−1/2
P[·T ]

t=1 ηt ⇒ ωηWη(g(·)) ∼ v0
R ·
0 Γ(l)

1/2dW (l)

and the result follows from the Functional Cramer-Wold device (see, for instance, Proposition 7.26

of White (2001)).

(ii) We have

T−1||
tX

s=1

(2

Z 1

0
λhs(θ0 + vs + λṽs)dλ− Γs)||

≤ T−1||
tX

s=1

(2

Z 1

0
λhs(θ0 + vs + λṽs)dλ− hs(θ0))||+ T−1||

tX

s=1

(Γs − hs(θ0))||.
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Now supt≤T T
−1||

Pt
s=1(Γs − hs(θ0))||

p→ 0 by Condition 1 (LLLN) and supλ∈[0,1] ||T
−1P[λT ]

s=1 Γs −R λ
0 Γ(s)ds||→ 0, and

sup
t≤T ,{vt}Tt=1∈CTT ,{ṽt}Tt=1∈CTT

T−1||
tX

s=1

2

Z 1

0
λ(hs(θ0 + vs + λṽs)− hs(θ0))dλ||

≤ 2T−1
TX

t=1

sup
v∈CT

||ht(θ0 + 2v)− ht(θ0))||
p→ 0

by Condition 1 (LLLN). The second claim follows similarly.

(iii) For any ε > 0,

P (||θ̂ − θ0|| ≥ ε) ≤ P ( sup
||θ−θ0||≥ε

T−1
P
[lt(θ)− lt(θ0)] ≥ −K(ε))

≤ 1− P ( sup
||θ−θ0||≥ε

T−1
P

sup
||v||<T−1/2+η

[lt(θ + v)− lt(θ0)] < −K(ε))→ 0

by Condition 1 (ID) and so θ̂
p→ θ0.

Further, as θ̂
p→ θ0, there exists a sequence of decreasing TT neighborhoods of θ0 such that

P (θ̂ ∈ TT ) → 1. For v ∈ Θ0, we have by the fundamental theorem of calculus applied row by row

that st(θ0 + v) − st(θ0) =
³
−
R 1
0 ht(θ0 + λv)dλ

´
v almost surely for t = 1, · · · , T . Let T be large

enough so that TT ⊂ Θ0, and define hSt =
R 1
0 ht(θ0 + λ(θ̂ − θ0))dλ if θ̂ ∈ TT , and hSt = h̃t otherwise,

so that from the first order condition 1[θ̂ ∈ TT ]
P

st(θ̂) = 0, we obtain

1[θ̂ ∈ TT ]
³
T−1/2

X
st(θ0)−

³
T−1

X
hSt

´
T 1/2(θ̂ − θ0)

´
= 0 (22)

almost surely for t = 1, · · · , T . From part (i), T−1/2
P

st(θ0) = Op(1). Applying the result of part

(ii), we obtain T−1
P

hSt − T−1
P
Γt

p→ 0. But T−1
P
Γt →

R
Γ, which is positive definite, so the

result follows from (22) and P (θ̂ ∈ TT )→ 1.

(iv) Proceed as in the proof of part (iii) to obtain

1[θ̂ ∈ TT ]
Ã
T−1/2

tX

s=1

ss(θ̂)− T−1/2
tX

s=1

ss(θ0) +

Ã
T−1

tX

s=1

hSs

!
T 1/2(θ̂ − θ0)

!
= 0

almost surely, so that

sup
t≤T

||T−1/2
TX

s=t

ss(θ̂)|| ≤ sup
t≤T

||T−1/2
TX

s=t

ss(θ0)||+ T 1/2 sup
t≤T

||T−1
TX

s=t

hSs || · ||θ̂ − θ0||+ op(1)

and the result follows from parts (i), (ii) and (iii) of this Lemma and the CMT.

(v) From the proof of part (iii), 1[θ̂ ∈ TT ](st(θ̂) − st(θ0) + hSs (θ̂ − θ0)) = 0, almost surely for

t = 1, · · · , T , so that

sup
λ∈[0,1]

||T−1
[λT ]X

t=1

st(θ̂)st(θ̂)
0 − T−1

[λT ]X

t=1

st(θ0)st(θ0)
0||

≤ 2||û||T−1
X

||hSt ||T
−1/2 sup

t≤T
||st(θ0)||+ T−1||û||2 sup

t≤T
||hSt ||T

−1X ||hSt ||

30



with probability P (θ̂ ∈ TT )→ 1. Now T−1
P
||hSt || = Op(1) and ||û|| = Op(1) from parts (ii) and (iii)

and Condition 1 (LLLN), and T−1/2
P[·T ]

t=1 st(θ0)⇒
R ·
0 Γ

1/2(l)dW (l) implies T−1/2 supt≤T ||st(θ0)||
p→

0, and also T−1 supt≤T ||h
S
t || ≤ T−1 supt≤T ||ht(θ0)|| + T−1 supt≤T,θ∈TT ||ht(θ0) − ht(θ)||

p→ 0 by

Condition 1 (LLLN) (i) and (iii), so that supλ∈[0,1] ||T
−1P[λT ]

t=1 st(θ̂)st(θ̂)
0−T−1P[λT ]

t=1 st(θ0)st(θ0)
0||

p→
0.

Let v ∈ Rk, and define ηt = v0st(θ0). Then from Condition 1 (MDA), {ηt,Ft} is a

martingale difference array with conditional variance process V 2η,t = v0E[st(θ0)st(θ0)
0|Ft−1]v,

and supλ∈[0,1] |T
−1P[λT ]

t=1 V
2
η,t − v0(

R λ
0 Γ(l)dl)v|

p→ 0. Note that T−1
PT

t=1 V
2
η,t ≤

||v||2T−1
PT

t=1E[||st(θ0)||
2+�|Ft−1] = Op(1) implies T−1

P
E[η2t1[|ηt| > T 1/2c]|Ft−1]

p→ 0

for all 0 < c < ∞, so that from Theorem 2.23 of Hall and Heyde (1980),

supt≤T |T
−1Pt

s=1(η
2
s − V 2η,s)| = supλ∈[0,1] |T

−1v0
P[λT ]

t=1 (st(θ0)st(θ0)
0 − E[st(θ0)st(θ0)

0|Ft−1])v|
p→ 0,

so that also supλ∈[0,1] |T
−1v0

P[λT ]
t=1 (st(θ0)st(θ0)

0 −
R λ
0 Γ(l)dl)v|

p→ 0. This holds for arbitrary v ∈ Rk,

so in particular jointly for all vectors vj , j = 1, · · · , 2k with elements that are either zero or one. It

is easy to see that if v0jA0vj = v0jA1vj for all such vj , j = 1, · · · , 2k for two symmetric matrices A0

and A1, then A0 = A1, and both results follow.

(vi) Follows from parts (ii) and (iii).

Lemma 3 Under Conditions 1 and 2, there exists a sequence of real numbers aT with aT →∞ and

T−1/2aT → 0 such that

(i)
R
w(θ0 + T−1/2u)Eδ(1−ATST )LRT (u, δ)du

p→ 0

(ii) Eδ(1− ST )LRT (0, δ − eδ̄)
p→ 0

Proof. (i) For any choice of aT , we have

|

Z
w(θ0 + T−1/2u)Eδ(1−ATST )LRT (u, δ)du|

≤ |

Z
w(θ0 + T−1/2u)Eδ(1− ST )LRT (u, δ)du|+ |

Z
w(θ0 + T−1/2u)EδST (1−AT )LRT (u, δ)du|

= ρ1 + ρ2.

For ρ1 =
R
w(θ0 + T−1/2u)Eδ(1− ST )LRT (u, δ)du, note that by Markov’s inequality, for any � > 0

P (ρ1 > �) ≤ �−1Eρ1

= �−1
Z Z

w(θ0 + T−1/2u)Eδ(1− ST )LRT (u, δ)dufT (θ0, 0)dμT

= �−1
Z

w(θ0 + T−1/2u)Eδ(1− ST )
Z

fT (θ0 + T−1/2u, δ)dμTdu

where the interchange of the order of integration in the second equality follows from Fubini’s Theorem.

For any fixed u and δ, if for all t ≤ T , θ0+ T−1/2u+ δt ∈ Θ, then fT (θ0+ T−1/2u, δ) is a probability

density with respect to μT , and
R
fT (θ0+T

−1/2u, δ)dμT = 1. If for some t, θ0+T−1/2u+δt /∈ Θ, then
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fT (θ0 + T−1/2u, δ) = 0, and also
R
fT (θ0 + T−1/2u, δ)dμT = 0. Therefore, supu∈Rk,δ∈RTk

R
fT (θ0 +

T−1/2u, δ)dμT ≤ 1, and we obtain

P (ρ1 > �) ≤ �−1
Z

w(θ0 + T−1/2u)Eδ(1− ST )du

= �−1
Z

w(θ0 + T−1/2u)du Eδ1[T
1/2 sup

t≤T
||δt|| > T η].

Now by a change of variable
R
w(θ0 + T−1/2u)du = T k/2

R
w(θ)dθ = T k/2. Furthermore, let Ḡ =

supt≤T,T,i≤k |G(i)(t/T )|, where G(i)(s) is the ith element of G(s). Then Ḡ ≤ supi,s∈[0,1] |G(i)(s)|,

which is bounded with probability one. By the Gaussian Isoperimetric Inequality (see, for instance,

Pollard (2002), p. 279), this implies that the tail probability of Ḡ decays exponentially. Therefore,

with η > 0, T k/2Eδ1[T
1/2 supt≤T ||δt|| > T η]→ 0. Since � is arbitrary, this implies ρ1

p→ 0.

For ρ2, note that for any fixed n, by Condition 1 (ID), there exists T ∗(n) such that for all

T > T ∗(n),

P ( sup
||θ−θ0||≥n−1

T−1
X

sup
||v||<T−1/2+η,θ+v∈Θ

(lt(θ + v)− lt(θ0)) < −K(n−1)) ≥ 1− n−1.

For any T , let nT be the largest n such that simultaneously, T > supn0≤n T
∗(n0), T 1/2K(n−1) > 1

and T−1/4n < 1. Note that nT → ∞, since for any fixed n, T ∗(n + 1) and n + 1 are finite and

K((n+ 1)−1) > 0. By construction,

P ( sup
||θ−θ0||≥n−1T

T−1
X

sup
||v||<T−1/2+η,θ+v∈Θ

(lt(θ + v)− lt(θ0)) < −K(n−1T )) ≥ 1− n−1T . (23)

Now set aT = T 1/2n−1T = o(T 1/2). Note that

ST (1−AT )LRT (u, δ) = ST (1−AT ) exp[
X
(lt(θ0 + T−1/2u+ δt)− lt(θ0))]

≤ (1−AT ) exp[
X

sup
||v||<T−1/2+η

(lt(θ0 + T−1/2u+ v)− lt(θ0))]

≤ exp[ sup
||θ−θ0||≥n−1T

X
sup

||v||<T−1/2+η
(lt(θ + v)− lt(θ0))].

Hence, with probability of at least 1− n−1T → 1,

ρ2 ≤
Z

w(θ0 + T−1/2u)du · exp

"
sup

||θ−θ0||≥n−1T

X
sup

||v||<T−1/2+η
(lt(θ + v)− lt(θ0))

#

≤ T k/2 exp
£
−TK(n−1T )

¤
≤ T k/2 exp

h
−T 1/2

i
→ 0

where the last inequality holds since T 1/2K(n−1T ) > 1 by construction of nT .

32



(ii) Similarly to the reasoning concerning ρ1 in the proof of part (i), for any � > 0, by Markov’s

inequality

P (Eδ(1− ST )LRT (0, δ − eδ̄) > �) ≤ �−1EEδ(1− ST )LRT (0, δ − eδ̄)

= Eδ(1− ST )
Z

fT (θ0, δ − eδ̄)dμT

≤ Eδ(1− ST )→ 0.

Lemma 4 Let D1
h = diag(h

1
1, · · · , h

1
T ), D

2
h = diag(h

2
1, · · · , h

2
T ) where the k × k matrices h1t and h2t

satisfy supλ∈[0,1] ||T
−1P[λT ]

t=1 ((h
1
t , h

2
t )− (Γt,Γt))||

p→ 0. If Ξ̂− Γ̂−1 p→ 0, then

(i) supi,j≤T T
−1||[F 0D1

heΞ̂e
0D2

hF − F 0DΓeΓ̂
−1eDΓF ]i,j ||

p→ 0

(ii) supi,j≤T ||[F
0(D1

h −D2
h)F ]i,j ||

p→ 0.

Proof. (i) We compute

||[F 0D1
heΞ̂e

0D2
hF − F 0DΓeΓ̂

−1e0DΓF ]i,j ||

≤ ||[F 0D1
heΞ̂e

0D2
hF − F 0DΓeΞ̂e

0D2
hF ]i,j ||

+||[F 0DΓeΓ̂
−1e0DΓF − F 0DΓeΓ̂

−1e0(IT ⊗ Γ̂Ξ̂)D2
hF ]i,j ||

= ||[F 0(D1
h −DΓ)eΞ̂e

0D2
hF ]i,j ||+ ||[F

0DΓeΓ̂
−1e0(DΓ − (IT ⊗ Γ̂Ξ̂)D2

h)F ]i,j ||

and

sup
i,j≤T

T−1||[F 0(D1
h −DΓ)eΞ̂e

0D2
hF ]i,j || = sup

i,j≤T
||(T−1

TX

s=i

(h1s − Γs))Ξ̂T−1
TX

s=j

h2s||
p→ 0

and

sup
i,j≤T

T−1||[F 0DΓeΓ̂
−1e0(DΓ − (IT ⊗ Γ̂Ξ̂)D2

h)F ]i,j ||

= sup
i,j≤T

||(T−1
TX

s=j

Γs)
0Γ̂−1T−1

TX

s=i

(Γs − Γ̂Ξ̂h2s)||
p→ 0.

(ii) We compute

||[F 0(D1
h −D2

h)F ]i,j || ≤ ||[F 0(D1
h −DΓ)F ]i,j ||+ ||[F

0(D2
h −DΓ)F ]i,j ||

and

sup
i,j≤T

||[F 0(D1
h −DΓ)F ]i,j || = sup

i,j≤T
T−1||

TX

t=i∨j
(h1t − Γt)||

p→ 0

sup
i,j≤T

||[F 0(D2
h −DΓ)F ]i,j || = sup

i,j≤T
T−1||

TX

t=i∨j
(h2t − Γt)||

p→ 0.
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Lemma 5 Let ΣΞ(u) be a Tk×Tk matrix consisting of k×k blocks Ξi,j(u), i, j = 1, · · · , T , possibly

dependent on u and define cUT = supi,j≤T,u∈Rk ||Ξi,j(u)||. Under Condition 2, there exists a constant
cG independent of u and T such that

(i) | tr(F−1ΣδF 0−1)ΣΞ(u)| ≤ cUT cG
(ii) | tr(F−1ΣδF 0−1)ΣΞ(u)(F−1ΣδF 0−1)ΣΞ(u)| ≤ (cUT )2c2G.

Proof. Note that for 1 < i ≤ j, the i,jth k × k block of F−1ΣδF 0−1 is given by

κG(i/T, j/T )− κG((i− 1)/T, j/T ) + κG((i− 1)/T, (j − 1)/T )− κG(i/T, (j − 1)/T )

by κG(1/T, j/T )− κG(1/T, (j − 1)/T ) for i = 1 < j, and by κG(1/T, 1/T ) for i = j = 1.

If i = j and ((i−1)/T, i/T ]∩τ = ∅, due to the symmetry of κG and by the Fundamental Theorem
of Calculus

||κG(i/T, i/T )− κG((i− 1)/T, i/T )|| ≤ T−1 sup
r,s∈[0,1]\τ

||∇−1 κG(r, s)||

||κG(i/T, (i− 1)/T )− κG((i− 1)/T, (i− 1)/T )|| ≤ T−1 sup
r,s∈[0,1]\τ

||∇+1 κG(r, s)||

where ∇−1 κG(r, s) and ∇+1 κG(r, s) are the left and right partial derivatives of κG with respect to

the first argument, so that in this case, the i, ith block has a norm that is bounded by T−1cD =

T−1(supr,s∈[0,1]\τ ||∇−1 κG(r, s)||+ supr,s∈[0,1]\τ ||∇+1 κG(r, s)||).
If ((j − 1)/T, j/T ] ∩ τ 6= ∅ and ((i− 1)/T, i/T ] ∩ τ 6= ∅, then

||κG(i/T, j/T )− κG((i− 1)/T, j/T ) + κG((i− 1)/T, (j − 1)/T )− κG(i/T, (j − 1)/T )||
≤ 4 sup

r,s∈[0,1]
||κG(r, s)|| = cJ

which is also a valid bound for ||κG(1/T, 1/T )||.

If 1 < i < j and ((j−1)/T, j/T ]∩τ = ((i−1)/T, i/T ]∩τ = ∅, then by the Fundamental Theorem
of Calculus

||κG(i/T, j/T )− κG((i− 1)/T, j/T ) + κG((i− 1)/T, (j − 1)/T )− κG(i/T, (j − 1)/T )||

≤ T−2 sup
r 6=s,r,s∈[0,1]\τ

||
∂2κG(r, s)

∂r∂s
|| = T−2cO.

Also, if 1 < i < j and ((j−1)/T, j/T ]∩τ 6= ∅, and ((i−1)/T, i/T ]∩τ = ∅, then by the Fundamental
Theorem of Calculus

||κG(i/T, j/T )− κG((i− 1)/T, j/T )|| ≤ T−1 sup
s∈τ , r∈[0,1]\τ

||
∂κG(r, s)

∂r
||

||κG(i/T, (j − 1)/T )− κG((i− 1)/T, (j − 1)/T )|| ≤ T−1 sup
s∈τ , r∈[0,1]\τ

||
∂κG(r, s)

∂r
||

34



so that the norm of the i,jth block is bounded by T−1cC = 2T−1 sups∈τ , r∈[0,1]\τ ||
∂κG(r,s)

∂r ||, which is

also a valid bound for ||κG(1/T, j/T )− κG(1/T, (j − 1)/T )||.
We can hence decompose

TF−1ΣδF 0−1 = ΣD +ΣO +ΣC +ΣJ

where ΣD is a block diagonal matrix whose i, ith k×k block has a norm that is bounded by cD (”the

variance of the increments of the continuous part of δ”), ΣO is a Tk × Tk matrix whose i, jth block

has a norm that is bounded by T−1cO (”the covariance of the increments of the continuous part of

δ”), ΣC =
Pq

l=1ΣC,l with ΣC,i Tk×Tk matrices whose only nonzero k× k blocks are in one (block)

row and column and correspond to the jump at time τ i, and these nonzero blocks have a norm that

is bounded by cC (”the covariance between the jumps and the increments of δ”) and ΣJ with q2

nonzero k × k blocks whose norm is bounded by cJT (”the variance of the jumps”), and all these

bounds are uniform in i,j and T .

Let A and B be Tk×Tk matrices with i, jth k×k block [A]i,j and [B]i,j , respectively. Note that

the i, jth k × k block of AB, [AB]i,j satisfies

||[AB]i,j || = ||
TX

l=1

Ai,lBl,j || ≤
TX

l=1

||Ai,l|| · ||Bl,j || ≤ [ĀB̄]i,j

where for any Tk×Tk matrix C with i, jth k×k block [C]i,j , C̄ denotes a T ×T matrix whose i, jth

element [C̄]i,j is at least as large as 1[||[C]i,j || > 0] sups≤T,t≤T ||[C]s,t||. Also

||[ABCB]i,j || = ||
TX

l=1

[AB]i,l[CB]l,j || ≤
TX

l=1

||[AB]i,l|| · ||[CB]l,j ||

≤
TX

l=1

[ĀB̄]i,l[C̄B̄]l,j = [(ĀB̄)(C̄B̄)]i,j .

Hence, using | tr[AB]i,i| ≤ k||[AB]i,i||, we obtain

| trAB| ≤ k tr ĀB̄ and | trABCB| ≤ k tr ĀB̄C̄B̄.

Note that we can choose Σ̄O = T−1cOe0e00, Σ̄D = cDIT , Σ̄J = TcJ ιτ ι
0
τ , Σ̄C = cC(ιτe

0
0 + e0ι

0
τ ) and

Σ̄Ξ(u) = cUe0e
0
0 where ιτ is a T × 1 vector with elements [ιτ ]j = 1[((j − 1)/T, j/T ] ∩ τ 6= ∅] and e0

is a T × 1 vector of ones.

(i) We compute

| tr(F−1ΣδF 0−1)ΣΞ(u)| = T−1| tr(ΣD +ΣO +ΣC +ΣJ)ΣΞ(u)|

≤ kT−1 tr(Σ̄D + Σ̄O + Σ̄C + Σ̄J)Σ̄Ξ(u)

= kcUT T
−1 tr(cDIT + T−1cOe0e00 + TcJ ιτ ι

0
τ + cC(ιτe

0
0 + e00ιτ ))e0e

0
0

= kcUT (cD + cO + cJq
2 + 2cCq).
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(ii) We compute

| tr(F−1ΣδF
0−1)ΣΞ(u)(F−1ΣδF

0−1)ΣΞ(u)|

= T−2 tr(ΣD +ΣO +ΣC +ΣJ)ΣΞ(u)(ΣD +ΣO +ΣC +ΣJ)ΣΞ(u)

≤ T−2k tr(Σ̄D + Σ̄O + Σ̄C + Σ̄J)Σ̄Ξ(u)(Σ̄D + Σ̄O + Σ̄C + Σ̄J)Σ̄Ξ(u)

= T−2k(cUT e
0
0[cDIT + T−1cOe0e00 + TcJ ιτ ι

0
τ + cC(ιτe

0
0 + e00ιτ )]e0)

2.

Lemma 6 Under Conditions 1 and 2:

(i) There exists a sequence of random variables C̃T = Op(1) satisfying C̃
−1
T = Op(1) such that

sup
v∈Rk,T

(Eδ exp[−2(δ − T−1/2ev)0Dh̃(δ − T−1/2ev)]− exp[−12C̃T ||v||
2]) ≤ 0.

(ii) If ξ = (ξ01, · · · , ξ
0
T )
0 and Dζ(u) = diag(ζ1(u), · · · , ζT (u)), where the k×1 vectors ξt and k×k

matrices ζt(u) satisfy supt≤T ||T
−1/2Pt

s=1 ξs||
p→ 0 and supt≤T,u∈Rk ||T

−1Pt
s=1 ζs(u)||

p→ 0, and if

F 0ΣεF is a Tk × Tk symmetric matrix consisting of k × k blocks [F 0ΣεF ]i,j, i, j = 1, · · · , T that

satisfy supi,j≤T ||[F
0ΣεF ]i,j ||

p→ 0, then

κT exp[∆T ||v||
2] ≤ Eδ exp[ξ

0δ + T−1/2v0e0Dζ(u)δ − 1
2δ
0Σεδ] ≤ κT exp[∆̄T ||v||

2]

uniformly in v and T , where the scalar random variables κT , ∆T , κT and ∆̄T do not depend on u or

v and κT
p→ 1, κT

p→ 1, ∆T
p→ 0 and ∆̄T

p→ 0.

(iii) Eδ exp[4ŝ
0δ] = Op(1).

(iv) If JT ∈ D is a nonstochastic sequence converging to J ∈ D, where D is the set of cadlag

functions on the unit interval, then

sup
T

Eδ exp[T
1/2JT (1)

0(δT − δ̄)− T 1/2
X

JT ((t− 1)/T )0(δt − δt−1)] <∞.

Proof. (i) A direct calculation yields

Eδ exp[−2(δ − T−1/2ev)0Dh̃(δ − T−1/2ev)]
Eδ exp[−2δ0Dh̃δ]

= exp[−8T−1v0e0(D−1
h̃
+Σδ)

−1ev].

We have e0(D−1
h̃
+Σδ)

−1e = e0D
1/2

h̃
(ITk +D

1/2

h̃
ΣδD

1/2

h̃
)−1D1/2

h̃
e, so that

T−1||e0(D−1
h̃
+Σδ)

−1e|| ≤ T−1||e0Dh̃e||

T−1||e0(D−1
h̃
+Σδ)

−1e|| ≥ ||(T−1e0Dh̃e)
−1||−1(1 + ||D1/2

h̃
ΣδD

1/2

h̃
||)−1

where T−1e0Dh̃e
p→
R
Γ(s)ds and

||D
1/2

h̃
ΣδD

1/2

h̃
|| ≤ trDh̃Σδ

≤ k sup
s∈[0,1]

||κG(s, s)||T
−1 trDh̃

p→ k sup
s∈[0,1]

||κG(s, s)|| tr
R
Γ(s)ds
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and finally Eδ exp[−2δ0Dh̃δ] ≤ 1 a.s.
(ii) Let U = T−1/2F 0Dζ(u)

0ev. We first show the result for the upper bound. By the Cauchy-

Schwarz inequality

Eδ exp[ξ
0δ + δ0F 0−1U − 1

2δ
0Σεδ] ≤ (Eδ exp[4δ

0ξ])1/4(Eδ exp[4δ
0F 0−1U ])1/4(Eδ exp[−δ0Σεδ])1/2

= exp[2ξ0Σδξ + 2U
0F−1ΣδF

0−1U ](Eδ exp[−δ0Σεδ])1/2.

Now

U 0F−1ΣδF
0−1U = T−1v0e0Dζ(u)FF

−1ΣδF
0−1F 0Dζ(u)

0ev

≤ ||v||2 trT−1F 0Dζ(u)ee
0Dζ(u)

0FF−1ΣδF
0−1.

But the norm of the i,jth k × k block of T−1F 0Dζ(u)ee
0Dζ(u)

0F is bounded

by (supt≤T,u∈Rk ||T
−1PT

s=t ζs(u)||)
2 p→ 0. Hence, by Lemma 5 (i), ∆̄T =

supu∈Rk tr(T
−1F 0Dζ(u)ee

0Dζ(u)
0F )F−1ΣδF 0−1

p→ 0, and U 0F−1ΣδF 0−1U ≤ ∆̄T ||v||
2. Similarly, also

ξ0Σδξ = trF
0ξξ0FF−1ΣδF 0−1

p→ 0.

For each T , let AG be the (Tk×c) matrix such that F−1ΣδF 0−1AG = 0, and BA the Tk×(Tk−c)
matrix such that B0ABA = ITk−c and BAB

0
A = MA = IkT − AG(A

0
GAG)

−1A0G (if F
−1ΣδF 0−1 is full

rank, define BA = ITk). Then

Eδ exp[−δ0Σεδ] = Eδ exp[−δ0F 0−1BAB
0
AF

0ΣεFBAB
0
AF

−1δ].

Note that the covariance matrix of B0AF
−1δ, B0AF

−1ΣδF−10BA is positive definite, and

MAF
−1ΣδF−10MA = F−1ΣδF−10. Let λi, i = 1, · · · , kT − c be the eigenvalues of the symmetric

matrix

ΣS = (B
0
AF

−1ΣδF
−10BA)

1/2B0AF
0ΣεFBA(B

0
AF

−1ΣδF
−10BA)

1/2.

Then, by Lemma 5,

Tk−cX

i=1

λi = trB0AF
−1ΣδF

−10BAB
0
AF

0ΣεFBA (24)

= trF−1ΣδF
−10F 0ΣεF

p→ 0

and also

Tk−cX

i=1

λ2i = trB0AF
−1ΣδF

0−1BAB
0
AF

0ΣεFBAB
0
AF

−1ΣδF
0−1BAB

0
AF

0ΣεFBA (25)

= trF−1ΣδF 0−1F 0ΣεFF−1ΣδF 0−1F 0ΣεF
p→ 0.

Let LT = 1[supi≤kT−c |λi| ≤ 1/2], and define Σ̃ε = LTΣε, Σ̃S = LTΣS and λ̃i = LTλi, i =

1, · · · , Tk − c. Note that E(1 − LT ) ≤ P ((
PTk−c

i=1 λ2i )
1/2 > 1/2) → 0 by (25), so that it suffices to
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show LTEδ exp[−δ0Σεδ]
p→ 1. We compute

LTEδ exp[−δ0Σεδ] ≤ Eδ exp[−δ0Σ̃εδ]
= Eδ exp[−δ0F 0−1BAB

0
AF

0Σ̃εFBAB
0
AF

−1δ]

= |B0AF
−1ΣδF

0−1BA|
−1/2|B0AF

0Σ̃εFBA + (B
0
AF

−1ΣδF
0−1BA)

−1|−1/2

= |ITk−c + Σ̃S|
−1/2.

Since for x ∈ [−1/2, 1/2], x− x2 ≤ ln(1 + x) ≤ x, we find

Tk−cX

i=1

(λ̃i − λ̃
2
i ) ≤

Tk−cX

i=1

ln(1 + λ̃i) = ln |ITk−c + Σ̃S| ≤
Tk−cX

i=1

λ̃i

and the result follows from (24) and (25).

For the lower bound, note that by Jensen’s inequality,

Eδ exp[ξ
0δ + T−1/2v0e0Dζ(u)δ − 1

2δ
0Σεδ] ≥ (Eδ exp[−ξ0δ − T−1/2v0e0Dζ(u)δ +

1
2δ
0Σεδ])

−1

and proceeding as for the upper bound yields the result.

(iii) Note that

Eδ exp[4
P

st(θ̂)
0δt] = exp[8 trF

0ŝŝ0F (F−1ΣδF
−10)].

The i, jth k×k block of F 0ŝŝ0F is given by (T−1/2
PT

t=i st(θ̂))(T
−1/2PT

t=j st(θ̂))
0, whose norm is Op(1)

uniformly in i,j by Lemma 2 (iv). Hence applying Lemma 5 yields Eδ exp[4
P

st(θ̂)
0δt] = Op(1).

(iv) Let J̄T = (JT (0)
0, JT (1/T )

0, · · · , JT ((T−1)/T )0)0 and Ĵ = eJT (1)−J̄T−T−1F 0DΓe
0Γ̂−1JT (1).

We compute

Eδ exp[T
1/2JT (1)

0(δT − δ̄)− T 1/2
X

JT ((t− 1)/T )0(δt − δt−1)]

= Eδ exp[(eJT (1)− J̄T − T−1F 0DΓe
0Γ̂−1JT (1))0F−1δ]

= exp[12 tr Ĵ Ĵ
0(F−1ΣδF

−10)].

But the i, jth k×k block of Ĵ Ĵ 0 is given by [JT (1)(Ik−(T−1
PT

s=i Γs)Γ̂
−1)−JT ((i−1)/T )][JT (1)(Ik−

(T−1
PT

s=j Γs)Γ̂
−1)−JT ((j− 1)/T )]0, whose norm is O(1) uniformly in i,j, T by assumption, so that

the result follows from Lemma 5.

Lemma 7 Under Conditions 1 and 2:

(i)
R
Eδ

¯̄
¯dLRT (u, δ)−ATSTLRT (u, δ)

¯̄
¯ du p→ 0

(ii) EδLRT (δ)−EδSTLRT (0, δ − eδ̄)
p→ 0

(iii) EδLRT (δ)−Eδ exp[(δ − eδ̄)0s0 − 1
2δDΓ(δ − eδ̄)]

p→ 0

(iv) Eδ exp[−12δ0Dh̃δ +
1
2δ
0Dh̃e(e

0D−1
h̃
e)−1e0Dh̃δ]−Eδ exp[−12δDΓ(δ − eδ̄)]

p→ 0
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Proof. Let UT be the indicator of the event that ||û|| ≤ aT . By Lemma 2 (iii), û = Op(1), so that

EUT → 1. Note that if UTψT
p→ 0 for some sequence of random variables ψT , then also ψT

p→ 0, so

that we may multiply the left-hand side of the expressions in (i)-(iv) by UT . Let T be large enough

such that ΘT = {θ : ||θ−θ0|| < 2T−1/2aT +T η−1/2+T η−1/2(supλ∈[0,1] ||Γ(λ)||)/(infλ∈[0,1] ||Γ(λ)||)} ⊂
Θ0, so that θ0 +ATSTUT (u− û+ δt − δ̄) ∈ Θ0 for all t ≤ T .

(i) Let gv : [0, 1] 7→ R with gv(λ) = lt(θ0 + λv) − lt(θ0). Note that for θ0 + v ∈ ΘT , gv is twice

continuously differentiable with g0v(λ) = v0st(θ0 + λv) and g00v (λ) = −v0ht(θ0 + λv)v, so that by a

first order Taylor expansion in the integral remainder form, lt(θ0 + v) − lt(θ0) = gv(1) − gv(0) =

g0v(0) +
R 1
0 λg

00
v (1 − λ)dλ = v0st(θ0) − 1

2v
0(2
R 1
0 λht(θ0 + (1 − λ)v)dλ)v, and similarly, st(θ0 + v) =

st(θ0)− (
R 1
0 ht(θ0 + λv)dλ)v. Thus, for ||u|| < aT , T

1/2 supt≤T ||δt|| < T η and ||û|| < aT

lt(θ0 + T−1/2u+ δt)− lt(θ0 + T−1/2u) = st(θ0 + T−1/2u)0δt − 1
2δ
0
th1,t(u, δ)δt

lt(θ0 + T−1/2u)− lt(θ0) = T−1/2u0st(θ0)− 1
2u
0h2,t(u)u

st(θ0 + T−1/2u) = st(θ0 + T−1/2û)− h3,t(u, û)T
−1/2(u− û)

st(θ0) = st(θ0 + T−1/2û) + h4,t(û)T
−1/2û (26)

almost surely, where h1,t(u, δ) = 2
R 1
0 λht(θ0 + T−1/2u + (1 − λ)δt)dλ, h2,t(u) = 2

R 1
0 λht(θ0 + (1 −

λ)T−1/2u)dλ, h3,t(u, û) =
R 1
0 ht(θ0 + λT−1/2(û − u))dλ and h4,t(û) =

R 1
0 ht(θ0 + λT−1/2û)dλ, t =

1, · · · , T . Define {h1,t(u, δ)}Tt=1 = {ht(θ0)}Tt=1 when ||u|| ≥ aT or T 1/2 supt≤T ||δt|| > T η, define

{h2,t(u)}Tt=1 = {h̃t}Tt=1 when ||u|| ≥ aT , define {h3,t(u, û)}
T
t=1 = {h̃t}Tt=1 when ||u|| ≥ aT or ||û|| ≥

aT , and define {h4,t(û)}
T
t=1 = {h̃t}Tt=1 when ||û|| > aT . Further, let Ĥ4(û) = T−1

P
h4,t(û) and

Ĥ2(u) = T−1
P

h2,t(u). For notational convenience, we drop the dependence of h1,t, h2,t, Ĥ3 and Ĥ4

on u, û and δ. We these definitions, we have

sup
u∈Rk,δ∈RTk

ATSTUT |LRT (u, δ)

− exp[
X

ŝ0tδt + T−1/2(û− u)0
X

h3,tδt − 1
2

X
δ0th1,tδt + û0Ĥ4u− 1

2u
0Ĥ2u]| = 0

almost surely.

Let

ςT = (û− u)0T−1/2
X
(h3,t − h̃t)δt − 1

2

X
δ0t(h1,t − h̃t)δt − 1

2u
0(Ĥ2 − H̃)u+ û0(Ĥ4 − H̃)u.

Now supu∈Rk,δ∈RTk ATSTUT |LRT (u, δ) −dLR(u, δ) exp ςT | = 0 a.s., and by the Cauchy-Schwarz in-

equality and UT ≤ 1 a.s.

UT

Z
Eδ

¯̄
¯dLRT (u, δ)−ATSTLRT (u, δ)

¯̄
¯ du =

Z
Eδ
dLRT (u, δ) |UT −ATSTUT exp ςT | du

≤
Z
[(Eδ

dLRT (u, δ)
2)(Eδ(1−ATST exp ςT )

2)]1/2du.
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We have

dLRT (u, δ)
2 = exp[2

X
ŝ0tδt −

X
δ0th̃tδt + 2T

−1/2(û− u)0
X

h̃tδt − u0H̃u+ 2û0H̃u]

= exp[2ŝ0δ − (δ − T−1/2e(û− u))0Dh̃(δ − T−1/2e(û− u)) + 2û0H̃û]

and by another application of the Cauchy-Schwarz inequality

Eδ
dLRT (u, δ)

2 ≤ exp[2û0H̃û](Eδ exp[4ŝ
0δ])1/2(Eδ exp[−2(δ−T−1/2e(û−u))0Dh̃(δ−T−1/2e(û−u))])1/2.

By Lemmas 2 (iii) and 6 (iii), exp[2û0H̃û] = Op(1) and Eδ exp[4ŝ
0δ] = Op(1). By Lemma 6 (i),

Eδ exp[−2(δ − T−1/2e(û− u))0Dh̃(δ − T−1/2e(û− u))] ≤ exp[−12C̃T ||û− u||2]

where C̃T = Op(1) and C̃−1T = Op(1) and does not depend on u.

Therefore,

Eδ
dLRT (u, δ)

2 ≤ Op(1) exp[−12C̃T ||û− u||2] (27)

and with Φ(u) the cdf of u ∼ N (û, C̃−1T Ik)
Z
[(Eδ

dLRT (u, δ)
2)(Eδ(1−ATST exp ςT )

2)]1/2du

≤ Op(1)

Z
exp[−12 ||û− u||2C̃T ](Eδ(1−ATST exp ςT )

2)1/2du

= Op(1)(2π)
k/2C̃

−k/2
T

Z
(Eδ(1−ATST exp ςT )

2)1/2dΦ(u)

≤ Op(1)(

Z
Eδ(1−ATST exp ςT )

2dΦ(u))1/2

where the inequalities use Jensen’s inequality.

In order to show
R
Eδ(1−ATST exp ςT )

2dΦ(u)
p→ 0, we first compute the expectation with respect

to δ. This is complicated by the fact that h1,t depends on δ. To circumvent this problem, we bound

ςT by ςT ≤ ςT ≤ ςT , where ςT and ςT are defined just as ςT , but with h1,t replaced by a term that

does not depend on δ (or u).

Specifically, for each t ≤ T , define

dt = 2 sup
||v||<aT+Tη

°°°ht(θ0 + T−1/2v)− ht (θ0)
°°° .

Note that for any υ ∈ Rk with ||υ|| = 1,

|υ0(ht (θ0)− h1,t)υ| ≤ ||ht (θ0)− h1,t|| ≤ dt

since for ||u|| < aT and T 1/2 supt≤T ||δt|| < T η, ||ht (θ0) − h1,t|| = ||2
R 1
0 λ(ht(θ0 + T−1/2u + (1 −

λ)δt)− ht(θ0))dλ|| and h1,t(u, δ) = ht(θ0) otherwise. Thus, for all δ ∈ RTk,

X
δ0t (ht(θ0)− dtIk) δt ≤

X
δ0th1,tδt ≤

X
δ0t (ht(θ0) + dtIk) δt.
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Now let

ςT = ςT +
1
2

X
δ0t(h1,t − ht(θ0) + dtIk)δt

ςT = ςT +
1
2

X
δ0t(h1,t − ht(θ0)− dtIk)δt

so that ςT ≤ ςT ≤ ςT . We obtain

0 ≤ Eδ(1−ATST exp ςT )
2

≤ 1− 2EδATST exp ςT +EδATST exp 2ςT

≤ 1− 2Eδ exp ςT +Eδ exp 2ςT + 2Eδ(1−ATST ) exp ςT .

We will now show that
R
Eδ exp ςTdΦ(u) is bounded below by random variable that converges to one

in probability, that
R
Eδ exp 2ςTdΦ(u) is bounded above by a random variable that converges to one in

probability, and
R
Eδ(1−STAT ) exp ςTdΦ(u)

p→ 0, which implies 0 ≤
R
Eδ(1−ATST exp ςT )

2dΦ(u)
p→

0.

With Dh3 = diag(h3,1, · · · , h3,T ), Dh = diag(h1(θ0), · · · , hT (θ0)) and Dd = diag(d1Ik, · · · , dT Ik)

we have

Eδ exp ςT = exp[−12u0(Ĥ2 − H̃)u+ û0(Ĥ4 − H̃)u]

·Eδ exp[(û− u)0T−1/2e0(Dh3 −Dh̃)δ − 1
2δ
0(Dh −Dh̃ +Dd)δ]

and

Eδ exp 2ςT = exp[−u0(Ĥ2 − H̃)u+ 2û0(Ĥ4 − H̃)u]

·Eδ exp[2(û− u)0T−1/2e0(Dh3 −Dh̃)δ − δ0(Dh −Dh̃ −Dd)δ].

Since

sup
u∈Rk,t≤T

T−1||
tX

s=1

(h3,s(u, û)− h̃s)|| ≤ sup
t≤T,||u||≤aT ,||û||<aT

T−1||
tX

s=1

h3,s(u, û)− h̃s||
p→ 0

sup
t≤T

T−1||
tX

s=1

(hs(θ0) + dtIk − h̃s)|| ≤ sup
t≤T

||T−1
tX

s=1

(hs(θ0)− h̃s)||+ T−1
TX

t=1

dt
p→ 0

by (12), Lemma 2 (ii) and Condition 1 (LLLN), and similarly, supt≤T ||T
−1Pt

s=1(hs(θ0) − dtIk −
Γs)||

p→ 0, Lemmas 4 (ii) and 6 (ii) are applicable, and we obtain

Eδ exp ςT ≥ exp[−12u0(Ĥ2 − H̃)u+ û0(Ĥ4 − H̃)u]κT exp[∆T ||u− û||2]

Eδ exp 2ςT ≤ exp[−u0(Ĥ2 − H̃)u+ 2û0(Ĥ4 − H̃)u]κT exp[∆̄T ||u− û||2]

uniformly in u, where κT , κT , ∆T and ∆̄T do not depend on u and κT
p→ 1, κT

p→ 1, ∆T
p→ 0 and

∆̄T
p→ 0. Also

sup
u∈Rk

||Ĥ2(u)− H̃|| ≤ sup
||u||<aT

T−1||
X

h2,t(u)− Γt|| p→ 0
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by (12) and Lemma 2 (ii), and similarly, Ĥ4 − Γ̂ p→ 0. Thus,
R
Eδ exp ςTdΦ(u) ≥

R
κ0T exp[∆

0
T ||u −

û||2]dΦ(u)
p→ 1 and

R
Eδ exp 2ςTdΦ(u) ≤

R
κ0T exp[∆̄

0
T ||u− û||2]dΦ(u)

p→ 1, and we are left to show

that
R
Eδ(1− STAT ) exp ςTdΦ(u)

p→ 0. By the Cauchy-Schwarz inequality

∙Z
Eδ(1− STAT ) exp ςTdΦ(u)

¸2
≤
∙Z

Eδ(1− STAT )
2dΦ(u)

¸ ∙Z
Eδ exp 2ςTdΦ(u)

¸
.

From the same reasoning as above,
R
Eδ exp 2ςTdΦ(u) = Op(1), and

Z
Eδ(1− STAT )dΦ(u) ≤

Z
Eδ(1− ST )dΦ(u) +

Z
Eδ(1−AT )dΦ(u).

But
R
Eδ(1−ST )dΦ(u) = Eδ(1−ST ) = Eδ1[T

1/2 supt≤T ||δt|| ≥ T η]→ 0, and
R
Eδ(1−AT )dΦ(u) ≤R

1[||u|| ≥ aT ]dΦ(u)
p→ 0 since ||û|| = Op(1), C̃

−1/2
T = Op(1) and aT →∞.

(ii) Similar to the proof of part (i), we have for all T 1/2 supt≤T ||δt|| < T η and ||û|| < aT

lt(θ0 + δt − eδ̄)− lt(θ0) = st(θ0)
0(δt − δ̄)− 1

2(δt − δ̄)0h5,t(δ)(δt − δ̄)

almost surely for t = 1, · · · , T , where h5,t(δ) = 2
R 1
0 λht(θ0+(1−λ)(δt− δ̄))dλ for T 1/2 supt≤T ||δt|| <

T η and h5,t(δ) = h̃t. Thus, by (26)

STUTLRT (0, δ−eδ̄) = STUT exp[
X

st(θ̂)
0δt+T−1/2û0

X
h4,t(û)(δt− δ̄)− 1

2

X
(δt− δ̄)0h5,t(δ)(δt− δ̄)]

almost surely. Define Ĥ5(δ) = T−1
P

h5,t(δ), and we again omit the dependence of h4,t(û), h5,t(δ),

Ĥ4(û) and Ĥ5(δ) on û and δ for notational convenience.

Let

ς∗T = T−1/2û0
X

h4,t(δt − δ̄)− 1
2

X
(δt − δ̄)0h5,t(δt − δ̄)

+1
2

X
δ0th̃tδt − 1

2(T
−1/2X δ0th̃t)H̃

−1T−1/2
X

h̃tδt.

Now supδ∈RTk STUT |LRT (0, δ− eδ̄)−LRT (δ) exp ς
∗
T | = 0 a.s., and by the Cauchy-Schwarz inequality

and UT ≤ 1 a.s.,

UTEδ

¯̄
LRT (δ)− STLRT (0, δ − eδ̄)

¯̄
= EδLRT (δ) |UT − STUT exp ς∗T |
≤

£
EδLRT (δ)

2
¤1/2 £

Eδ(1− ST exp ς∗T )2
¤1/2

.

By a direct calculation

EδLRT (δ)
2 = (2π)−k/2|2H̃|1/2 exp[−û0H̃û]Eδ

Z
dLRT (u, δ)

2du

which is Op(1) by (27). Furthermore,

0 ≤ Eδ(1− ST exp ς∗T )2

= 1− 2EδST exp ς
∗
T +EδST exp 2ς

∗
T

≤ 1− 2Eδ exp ς
∗
T +Eδ exp 2ς

∗
T − 2Eδ(1− ST ) exp ς∗T
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where

ς∗T = ς∗T − 1
2

X
(δt − δ̄)0(ht(θ0)− 2dtIk − h5,t)(δt − δ̄)

ς∗T = ς∗T − 1
2

X
(δt − δ̄)0(ht(θ0) + 2dtIk − h5,t)(δt − δ̄)

since supt≤T ||δt − δ̄|| ≤ 2 supt≤T ||δt||. Let h6,t = Ĥ4Γ̂
−1Γt, and note that

X
h4,tδ̄ =

X
h6,tδt (28)

and define Dh6 = diag(h6,1, · · · , h6,T ) and Dhd = diag(h1(θ0)− 2d1Ik, · · · , hT (θ0)− 2dT Ik), so that

ς∗T = T−1/2û0
X

h4,t(δt − δ̄)− 1
2

X
(δt − δ̄)0(ht(θ0)− 2dtIk)(δt − δ̄)

+1
2

X
δ0th̃tδt − 1

2(T
−1/2X δ0th̃t)H̃

−1T−1/2
X

h̃tδt

= T−1/2û0e0(Dh4 −Dh6)δ +
1
2δ
0[T−1DhdeΓ̂

−1e0DΓ (29)

+T−1DΓeΓ̂
−1e0Dhd − T−2DΓeΓ̂

−1e0DhdeΓ̂
−1e0DΓ − T−1Dh̃eH̃

−1e0Dh̃ −Dhd +Dh̃]δ.

By Lemma 2 (ii), supu∈Rk,t≤T T
−1||

PT
s=t(h4,t − Ĥ4Γ̂

−1Γt)||
p→ 0, and after adding and subtracting

T−1DΓeΓ̂
−1e0DΓ twice to the quadratic form in δ in (29) we can appeal to Lemma 4 (i) and (ii)

to conclude by Lemma 6 (ii) with v = û that Eδ exp 2ς
∗
T

p→ 1. By very similar arguments, also

Eδ exp ς
∗
T

p→ 1. Finally,

0 ≤ (Eδ(1− ST ) exp ς∗T )2 ≤ (Eδ(1− ST ))(Eδ exp 2ς
∗
T )

and since Eδ exp 2ς
∗
T = Op(1), the result follows from 0 ≤ Eδ(1 − ST ) = Eδ1[T

1/2 supt≤T ||δt|| ≥
T η]→ 0.

(iii) We have for ||û|| < aT

X
st(θ0)

0(δt − δ̄) =
X

st(θ̂)
0(δt − δ̄) + T−1/2û0

X
h4,t(û)(δt − δ̄)

=
X

st(θ̂)
0δt + T−1/2û0

X
(h4,t(û)− h6,t)δt

where the second inequality uses
P

st(θ̂) = 0 for ||û|| < aT and (26). Define

ςoT = T−1/2û0
X
(h4,t − h6,t)δt +

1
2

X
δ0t(h̃t − Γt)δt (30)

−12(T−1/2
X

δ0th̃t)H̃
−1T−1/2

X
h̃tδt +

1
2(T

−1/2X δ0tΓt)Γ̂
−1T−1/2

X
Γtδt

so that UTEδ exp[(δ − eδ̄)0s0 − 1
2δDΓ(δ − eδ̄)] = UTEδLRT (δ) exp ς

o
T a.s. By the Cauchy-Schwarz

inequality and UT ≤ 1 a.s.

(UTEδLRT (δ)− UTEδ exp[(δ − eδ̄)0s0 − 1
2δDΓ(δ − eδ̄)])2 ≤ (EδLR

2
T )Eδ(1− 2 exp ςoT + exp 2ςoT ).

But as shown above, EδLR
2
T = Op(1), and an application of Lemmas 2 (ii), 4 (i) and (ii) and 6 (ii)

yields Eδ exp ς
o
T

p→ 1 and Eδ exp 2ς
o
T

p→ 1.
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(iv) Follows from the same reasoning as in part (iii) with h4,t − h6,t in (30) replaced by 0.

In the following lemma, we write
R
G∗0Γ1/2dW for

R 1
0 G

∗(s)Γ(s)1/2dW (s),
R
G∗0ΓG∗ for

R 1
0 G

∗(s)0Γ(s)G∗(s)ds and so forth.

Lemma 8 Under Conditions 1 and 2,

EδLRT (δ)⇒ EG exp[

Z
G∗0Γ1/2dW − 1

2

Z
G∗0ΓG∗]

where G∗(s) = G(s)− (
R
Γ(λ)dλ)−1

R
Γ(λ)G(λ)dλ, and the limiting distribution is absolutely contin-

uous.

Proof. By Lemma 7 (iii),

EδLRT (δ)−Eδ exp[(δ − eδ̄)0s0 − 1
2δDΓ(δ − eδ̄)]

p→ 0.

Note that, by the summation by parts formula,

X
st(θ0)

0δt = δ0T

TX

t=1

st(θ0)−
TX

t=1

(
t−1X

s=1

ss(θ0))
0(δt − δt−1).

Now by Lemma 2 (i), T−1/2
P[·T ]

t=1 st(θ0)⇒
R ·
0 Γ(λ)

1/2dW (λ), where the convergence is on the space

D[0,1] of cadlag functions on the unit interval in the Skorohod metric. By the Skorohod representation

Theorem (see, for instance, Davidson (1994), Theorem 26.25), there exists a sequence of stochastic

processes ST ∈ D[0,1] defined on some probability space (F̃ , F̃, P̃ ) and event Ã ∈ F̃ with P̃ (Ã) =

1, such that ST has the same distribution as T−1/2
P[·T ]

t=1 st(θ0), S has the same distribution as
R ·
0 Γ(λ)

1/2dW (λ) (and is continuous with S(0) = 0) and ST (·, ω̃)→ S(·, ω̃) for all ω̃ ∈ Ã. Denote by

(F̃p, F̃p, P̃p) the probability space obtained as the product space of (F̃ , F̃, P̃ ) and (FG,FG, PG), where

G of Condition 2 is a stochastic process defined on (FG,FG, PG) (so that Eδ denotes integration with

respect to a measure induced by PG). By this construction,

gLRT (δ, ST ) = exp[T 1/2ST (1)
0δT − T 1/2

X
ST ((t− 1)/T )0(δt − δt−1)− T 1/2ST (1)

0δ̄

−12
X

δ0tΓtδt +
1
2(T

−1/2XΓtδt)
0Γ̂−1(T−1/2

X
Γtδt)]

is a random variable defined on (F̃p, F̃p, P̃p), and Eδ
gLRT (δ) defined on (F̃ , F̃, P̃ ) and Eδ exp[(δ −

eδ̄)0s0− 12δDΓ(δ−eδ̄)] defined on (F ,F, P ) have the same distribution for all T (since they are functions
of ST and T−1/2

P[·T ]
t=1 st(θ0), respectively). It therefore suffices to find the limiting distribution of

Eδ
gLRT (δ).

With S̄T (ω̃) = (ST (0, ω̃)
0, ST (1/T, ω̃)

0, · · · , ST ((T − 1)/T, ω̃)0)0 and S̄ defined analogously,

T 1/2
P

ST ((t− 1)/T, ω̃)0(δt − δt−1) = S̄T (ω̃)
0F−1δ, so that for any ω̃ ∈ Ã,

Eδ[(S̄T (ω̃)− S̄(ω̃))0F−1δδ0F−10(S̄T (ω̃)− S̄(ω̃))] = trF−1ΣδF−10(S̄T (ω̃)− S̄(ω̃))(S̄T (ω̃)− S̄(ω̃))0.
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But the i, jth k × k block of (S̄T (ω̃)− S̄(ω̃))(S̄T (ω̃)− S̄(ω̃))0 is equal to

(S̄T ((i− 1)/T, ω̃)− S̄((i− 1)/T, ω̃))(S̄T ((j − 1)/T, ω̃)− S̄((j − 1)/T, ω̃))0

whose norm converges to zero uniformly in i and j. Therefore, by Lemma 5, (S̄T (ω̃)−S̄(ω̃))0F−1δ p→ 0

in PG, and hence

exp[T 1/2ST (1, ω̃)
0(δT − δ̄)− S̄T (ω̃)

0F−1δ − 1
2δ
0DΓ(δ − eδ̄)]

− exp[T 1/2ST (1, ω̃)0(δT − δ̄)− S̄(ω̃)0F−1δ − 1
2δ
0DΓ(δ − eδ̄)]

p→ 0

in PG.

By Theorem 21, p. 64, of Protter (2005), and the CMT,

exp[T 1/2ST (1, ω̃)
0(δT − δ̄)− S̄(ω̃)0F−1δ − 1

2δ
0DΓ(δ − eδ̄)] (31)

⇒ exp[S(1, ω̃)0(G(1)− (
R
Γ)−1

R
ΓG)−

R
S(l, ω̃)0dG(l)− 1

2

R
G0ΓG+ (

R
ΓG)0(

R
Γ)−1(

R
ΓG)]

in PG. Furthermore,

Eδ(gLRT (δ, ST (·, ω̃)))
2 ≤ Eδ exp[2T

1/2ST (1, ω̃)
0(δT − δ̄)− 2S̄T (ω̃)0F−1δ]

which is uniformly bounded in T by Lemma 6 (iv), so that for all ω̃ ∈ Ã,gLRT (δ, ST (·, ω̃)) is uniformly

integrable on (FG,FG, PG). Hence (31) implies that also

Eδ
gLRT (δ, ST (·, ω̃))

→ EG exp[S(1, ω̃)
0(G(1)− (

R
Γ)−1

R
ΓG)−

R
S(l, ω̃)0dG(l)− 1

2

R
G0ΓG+ (

R
ΓG)0(

R
Γ)−1(

R
ΓG)].

But almost sure convergence implies convergence in distribution, so that in (F̃ , F̃, P̃ )

Eδ
gLRT (δ, ST )

⇒ EG exp[S(1)
0(G(1)− (

R
Γ)−1

R
ΓG)−

R
S0dG− 1

2

R
G0ΓG+ (

R
ΓG)0(

R
Γ)−1(

R
ΓG)]

= EG exp[
R
(G− (

R
Γ)−1

R
ΓG)0dS − 1

2

R
(G− (

R
Γ)−1

R
ΓG)0ΓG]

∼ EG exp[
R
G∗0Γ1/2dW − 1

2

R
G∗0ΓG∗]

where the equality follows from the integration by parts formula on p. 83 of Protter (2005).

Finally, conditional on G∗ 6= 0, exp[
R
G∗0Γ1/2dW − 1

2

R
G∗0ΓG∗] has a nondegenerate lognormal

distribution, which is absolutely continuous. With EG1[G
∗ 6= 0] = 1, the mixture of lognormals

EG exp[
R
G∗0Γ1/2dW − 1

2

R
G∗0ΓG∗] is therefore absolutely continuous, too.
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