
Munich Personal RePEc Archive

The McGarvey problem in judgement

aggregation

Pivato, Marcus and Nehring, Klaus

Department of Mathematics, Trent University, Department of

Economics, University of California, Davis

10 May 2010

Online at https://mpra.ub.uni-muenchen.de/22600/

MPRA Paper No. 22600, posted 11 May 2010 10:40 UTC
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Abstract

Judgement aggregation is a model of social choice where the space of social alternatives is the set of consistent
truth-valuations (‘judgements’) on a family of logically interconnected propositions. It is well-known that
propositionwise majority voting can yield logically inconsistent judgements. We show that, for a variety of
spaces, propositionwise majority voting can yield any possible judgement. By considering the geometry of
sub-polytopes of the Hamming cube, we also estimate the number of voters required to achieve all possible
judgements. These results generalize the classic results of McGarvey (1953) and Stearns (1959).

Keywords: judgement aggregation; majority voting; McGarvey; Stearns; 0/1 polytope;

Let K be a finite set of propositions or ‘properties’. An element x = (xk)k∈K ∈ {±1}K is called a judge-

ment, and interpreted as an assignment of a truth value of ‘true’ (+1) or ‘false’ (-1) to each proposition. Not
all judgements are feasible, because there will be logical constraints between the propositions (determined
by the structure of the underlying decision problem faced by the voters). Let X ⊆ {±1}K be the set of
‘admissible’ judgements —we refer to X as a property space. An anonymous profile is a probability measure
on X —that is, a function µ : X−→[0, 1] such that

∑
x∈X µ(x) = 1. (Interpretation: for all x ∈ X , µ(x) is

the proportion of the voters who hold the judgement x). Judgement aggregation is the problem of converting
the profile µ ∈ ∆∗ (X ) into the element x ∈ X which best represents the ‘collective will’ of the voters. This
problem (with different terminology) was originally posed by Guilbaud [1], and later investigated by Wilson
[2], Rubinstein and Fishburn [3], and Barthelémy and Janowitz [4]. Since the work of List and Pettit [5],
there has been an explosion of interest in this area; see List and Puppe [6] for a recent survey of judgement
aggregation research.

For example, let A be a finite set of social alternatives. A tournament on A is a complete antisymmetric
relation “≺” over A. A preference order is a transitive tournament (i.e. a linear ordering) on A. Let
K ⊂ A × A contain exactly one of the pairs (a, b) or (b, a) for each distinct a, b ∈ A. Any x ∈ {±1}K
represents a tournament “≺”, where a ≺ b iff xa,b = 1. Every tournament on A corresponds to a unique
element of {±1}K. Let X pr

A denote the subset of all elements of {±1}K which correspond to preference
orders. Thus, a profile µ ∈ ∆∗ (X pr

A ) represents a group of voters who each assert some preference order over
A. In this case, the goal of judgement aggregation is to distill µ into some ‘collective’ preference order on A
—this is the familiar Arrovian model of preference aggregation.

Let ∆(X ) be the set of all anonymous profiles. Propositionwise majority vote is defined as follows. For
any µ ∈ ∆(X ), any k ∈ K, let

µ̃k :=
∑

x∈X

µ(x) · xk (1)

be the µ-expected value of coordinate xk. Thus, µ̃k > 0 if and only if a strict majority of voters assert
‘xk = 1’; whereas µ̃k < 0 if and only if a strict majority of voters assert ‘xk = −1’. Let ∆∗ (X ) := {µ ∈ ∆(X );
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µ̃k 6= 0, ∀k ∈ K} be the set of anonymous profiles where there is a strict majority supporting either +1 or
-1 in each coordinate.1 For any µ ∈ ∆∗ (X ), define maj(µ) ∈ {±1}K as follows:

for all k ∈ K, majk(µ) :=

{
1 if µ̃k > 0;

−1 if µ̃k < 0.
(2)

Unfortunately, it is quite common to find that maj(µ) 6∈ X —the ‘majority will’ can be inconsistent with
the underlying logical constraints faced by the voters. (In the case of aggregation over X pr

A , this problem
was first observed by Condorcet [7].) Let maj(X ) := {maj(µ) ; µ ∈ ∆∗ (X )}; this describes the set of all
majoritarian voting patterns that can result from some possible profile of judgements. Following McGarvey
[8], we think of maj(X )\X as the range of possible ‘voting paradoxes’ which can occur under propositionwise
majority vote.

Clearly X ⊆ maj(X ). We say that X is majority consistent if maj(X ) = X . This occurs only when X
satisfies a strong combinatorial/geometric condition, as we new explain. For any x1,x2,x3 ∈ X , we define
med(x1,x2,x3) := maj(µ), where µ ∈ ∆∗ (X ) is defined by µ(xj) = 1

3 for j = 1, 2, 3; this defines a ternary

operator on {±1}K, called the median operator. Let med1(X ) := {med(x,y, z) ; x,y, z ∈ X}. For all n ∈ N,
we inductively define medn+1(X ) := {med(x,y, z); x,y, z ∈ medn(X )}. This yields an ascending chain

X ⊆ med1(X ) ⊆ med2(X ) ⊆ · · ·. Let med∞(X ) :=
∞⋃

n=1

medn(X ) be the median closure of X . We say that

X is a median space if med1(X ) = X (equivalently: med∞(X ) = X ). At the opposite extreme, was say X is
median-saturating if med∞(X ) = {±1}K. For any X ⊆ {±1}K, we have:

X ⊆ med1(X ) ⊆ maj(X ) ⊆ med∞(X ). (3)

The first two inclusions are obvious by definition. The last inclusion is due to Nehring and Puppe [9]; see
also [10].2 It follows that X is majority consistent if and only if X is a median space. If X is not a median
space, then eqn.(3) is is useful because it is relatively easy to compute med∞(X ), as we now explain.

Let J ⊆ K and let w ∈ {±1}J ; we say that w is a word, and call J the support of w, denoted supp (w).
If I ⊆ J and v ∈ {±1}I , then we write v ⊑ w if vi = wi for all i ∈ I. We define |w| := |J |. We say w is
an X -forbidden word if, for all x ∈ X , we have w 6⊑ x. Let W2(X ) be the set all X -forbidden words of length
2. We have:

Proposition 1. Let X ⊆ {±1}K.

(a) med∞(X ) :=
{
x ∈ {±1}K ; w 6❁ x, ∀ w ∈ W2(X )

}
.

(b) In particular, X is median-saturating if and only if W2(X ) = ∅.

(The proof of this and all other results are in Appendix A at the end of the paper.)

Example 2. Let N be a set and let K := {(n,m) ∈ N ×N ; n 6= m}; then any x ∈ {±1}K represents
a binary relation “�” on N such that n � m if and only if xn,m = 1. Let X ⊂ {±1}K be any space of
complete binary relations. Then W2(X ) 6= ∅, because for any x ∈ X ∗ and (n,m) ∈ K, we cannot have both
xn,m = −1 and xm,n = −1 (by completeness). Thus, med∞(X ) 6= {±1}K. ♦

Given a property space X ⊆ {±1}K, Proposition 1 and eqn.(3) raise the question: is

maj(X ) = med∞(X )? (4)

1Usually, judgement aggregation is considered on all of ∆(X ). However, we will confine our attention to profiles in ∆∗ (X )
for expositional simplicity. (If the set of voters is large (respectively odd), then a profile in ∆(X ) \ ∆∗ (X ) is highly unlikely
(respectively impossible) anyways.)

2The close relationship between the median operator and majoritarian consensus on median graphs and median lattices had
earlier been explored by [1, 4, 11] and others.
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Clearly, if X is a median space, then eqn.(3) implies that maj(X ) = med∞(X ). At the opposite extreme,
McGarvey [8] showed that maj(X pr

A ) = {±1}K; this automatically implies that maj(X pr

A ) = med∞(X pr

A ).
Question (4) appears to be difficult to answer in full generality. We will thus focus on the special case

when equation (4) holds and X is median-saturating —in other words, when maj(X ) = {±1}K. In this case,
we say that X is McGarvey.

If X is McGarvey, then every conceivable ‘voting paradox’ can be obtained through propositionwise
majority voting on X . The McGarvey property is also useful in establishing other results about X . For
example, Nehring, Pivato and Puppe [12] consider judgement aggregation rules based on ‘Condorcet effi-
ciency’ (a generalization of the ‘Condorcet principle’ of preference aggregation). The McGarvey property of
certain property spaces implies that Condorcet efficient judgement aggregation can be quite indeterminate
on those spaces. The central question of this paper is: What property spaces are McGarvey?

Let conv(X ) denote the convex hull of X (seen as a subset of RK), and let int [conv (X )] denote its
topological interior. Let 0 := (0, 0, . . . , 0) ∈ RK. For any x ∈ {±1}K, the open orthant of x is the open set
Ox :=

{
r ∈ RK ; sign(rk) = xk, ∀ k ∈ K

}
. Most of the results in this paper are based on the following key

result:

Theorem 3. Let X ⊂ {±1}K. Then

(a) maj(X ) :=
{
x ∈ {±1}K ; Ox ∩ conv(X ) 6= ∅

}
.

(b) The following are equivalent: (1) X is McGarvey; (2) 0 ∈ int [conv (X )]; (3) For every
nonzero z ∈ RK, there exists x ∈ X with z • x > 0.

The rest of this paper is organized as follows. In §1, we ask how small X can be while still being McGarvey,
or how large it can be without being McGarvey. In §2, we characterize the McGarvey property for judgement
aggregation spaces with many symmetries; this includes spaces of preference relations, equivalence relations,
and connected graphs. In Sections 3, 4 and 5 we consider the McGarvey problem for comprehensive spaces,
truth-functional aggregation spaces, and convexity spaces, respectively. Finally, in §6, we consider a problem
originally studied by Stearns [13]: how many voters are required to realize the McGarvey property of a space
X ? We show that several important families of aggregation spaces only require around 2K voters. However,
using a result of Alon and Vũ [14], we also show that the required number of voters can be extremely large
for some McGarvey spaces.

1. Minimal McGarvey spaces and maximal non-McGarvey spaces

If X ⊆ Y ⊆ {±1}K, and X is McGarvey, then clearly Y is also McGarvey. We say that X is minimal

McGarvey if X is McGarvey, but no proper subset of X is McGarvey. For the next result and the rest of the
paper, we define K := |K|.

Proposition 4. (a) Suppose K ≥ 3. Then min{|X |; X ⊂ {±1}K is McGarvey} = K + 1.

(b) max{|X |; X ⊂ {±1}K is minimal McGarvey} = 2K.

Example 5. Suppose K ≥ 3. For all j ∈ K, define χ
j ∈ {±1}K by χj

j := 1, while χj
k := −1 for all

k ∈ K \ {j}. Define X := {±χ
j}j∈K. Then |X | = 2K. In Appendix A, we show that X is a minimal

McGarvey space. In particular, if K = 3, then X = {(1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1, 1),
(−1, 1,−1), (1,−1,−1)} is a minimal McGarvey set with six elements. Let A := {a, b, c} and identify
K with the set {(a, b), (b, c), (c, a)}; then X = X pr

A .

(Another class of minimal McGarvey spaces is described in Appendix B.) ♦

By comparison, Carathéodory’s theorem says that if Y ⊂ {±1}K is a minimal set with 0 ∈ conv(Y), then
2 ≤ |Y| ≤ K + 1. The requirement that 0 be in the interior of conv(Y) instead entails K + 1 ≤ |Y| ≤ 2K;
this shows that the interiority condition is quite substantive.
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Proposition 6. (a) max{|X |; X ⊂ {±1}K is not McGarvey} = 3
42K .

(b) max{|X |; X ⊂ {±1}K is not median-saturating} = 3
42K .

Example 7. Let K = {1, 2, . . . ,K} and let X :=
{
x ∈ {±1}K ; (x1, x2) 6= (0, 0)

}
. Then X is a median

space (hence, neither McGarvey nor median-saturating) but |X | = 3
42K . ♦

Propositions 4 and 6 show that the McGarvey property places only very loose constraints on the cardi-
nality of X . Much more important is how ‘dispersed’ X is as a subset of {±1}K.

2. Symmetric property spaces

For any X ⊂ RK, the symmetry group of X is the set ΓX of all invertible linear transformations γ :
RK−→RK such that γ(X ) = X . Let Fix (ΓX ) :=

{
r ∈ RK ; γ(r) = r, ∀ γ ∈ Γ

}
. For example, 0 ∈ Fix (ΓX ),

because γ(0) = 0 for any linear transformation γ : RK−→RK.

Proposition 8. Let X ⊂ {±1}K and suppose int [conv (X )] 6= ∅.

(a) If Fix (ΓX ) = {0}, then X is McGarvey.

(b) In particular, if −X = X , then X is McGarvey.

Clearly, X cannot be McGarvey unless int [conv (X )] 6= ∅ —or equivalently, unless the set (X − X ) :=
{x − y; x,y ∈ X} spans RK. One advantage of Proposition 11 over Theorem 3(b) is that it is generally
easier to verify that int [conv (X )] 6= ∅ than it is to verify that 0 ∈ int [conv (X )]. For instance, the next
result is often sufficient.

Lemma 9. Let X ⊆ {±1}K. Suppose that, for every j ∈ K, there exist x,y ∈ X such that xj 6= yj, but
xk = yk for all k ∈ K \ {j}. Then int [conv (X )] 6= ∅.

Example 10. (Preference aggregation) Let A be a set, and let X pr

A be the space of preference orders
on A, as discussed in the introduction. For any (a, b) ∈ K, there exist x,y ∈ X pr

N such that xa,b 6= ya,b,
but x and y agree in every other coordinate. (For example: let x represent an ordering of the form
a ≺ b ≺ c3 ≺ c4 ≺ · · · ≺ cN , and let y represent the ordering b ≺ a ≺ c3 ≺ c4 ≺ · · · ≺ cN .) Thus, Lemma 9
implies that int [conv (X pr

A )] 6= ∅.
Clearly, −X pr

A = X pr

A (if x represents the ordering a1 ≺ a2 ≺ · · · ≺ aN , then −x represents the ordering
a1 ≻ a2 ≻ · · · ≻ aN ). Thus, Proposition 8(b) implies McGarvey’s original result that X pr

A is McGarvey. ♦

Let 1 := (1, 1, . . . , 1) ∈ RK, and let R1 ⊂ RK be the linear subspace it generates.

Proposition 11. Let X ⊂ {±1}K and suppose Fix (ΓX ) ⊆ R1. Then X is McGarvey if and only if
int [conv (X )] 6= ∅ and there exist r < 0 < t ∈ R such that r1, t1 ∈ conv(X ).

A coordinate permutation of RK is a linear map γ : RK−→RK which maps any vector (rk)k∈K ∈ RK to
the vector (rπ(k))k∈K, for some fixed permutation π : K−→K. The set of all coordinate permutations in ΓX

forms a subgroup, which is isomorphic to a group ΠX of permutations on K in the obvious fashion. We say
that ΠX is transitive if, for any j, k ∈ K, there is some π ∈ ΠX such that π(j) = k. For any x ∈ {±1}K, let
#(x) := #{k ∈ K ; xk = 1}.

Corollary 12. Let X ⊂ {±1}K and suppose ΠX is transitive. Then X is McGarvey if and only if
int [conv (X )] 6= ∅ and there exist x,y ∈ X with #(x) < K/2 < #(y).
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Example 13. (Symmetric binary relations) Let N be a set, and let K be the set of all subsets {n,m} ⊆ N
containing exactly two elements. Interpret each element of x ∈ {±1}K as encoding a symmetric, reflexive
binary relation “∼” (i.e. for any {n,m} ∈ K, we have n ∼ m if xn,m = 1 and n 6∼ m if xn,m = −1). For
any permutation π : N−→N , define π∗ : K−→K by π{n,m} := {π(n), π(m)} for all {n,m} ∈ K. Let Π∗ be
the set of all such permutations; then Π∗ acts transitively on K (for any {n1,m1} ∈ K and {n2,m2} ∈ K,
let π : N−→N be any permutation such that π(n1) = n2 and π(m1) = m2; then π∗{n1,m1} = {n2,m2}).
(a) (Equivalence relations) Let X eq

N ⊂ {±1}K be the set of equivalence relations. Then ΠX eq
N

is transitive
because it contains Π∗.

For any {n,m} ∈ K, there exist x,y ∈ X eq

N such that xn,m 6= yn,m, but x and y agree in every other
coordinate. (For example: let x represent an equivalence relation where n and m are both in singleton
equivalence classes, and let y represent the relation obtained from x by joining n and m together into one
doubleton equivalence class). Thus, Lemma 9 implies that int [conv (X eq

N )] 6= ∅.
Note that ±1 ∈ X eq

N (1 represents the ‘complete’ relation “∼” such that n ∼ m for all n,m ∈ N , whereas
−1 represents the ‘trivial’ relation such that n 6∼ m for any n 6= m ∈ N ). Thus, Corollary 12 implies that
X eq

N is McGarvey.

This result (and Example 10) do not really require Corollary 12; in fact, we can obtain more refined results
about X pr

A and X eq

N by using special structural properties of these spaces which have nothing to do with
symmetry per se (see Example 24 below). However, the next four examples do make essential use of
symmetry.

(b) (Restricted Equivalence Relations) For any x ∈ X eq

N , let rank(x) be the number of distinct equivalence
classes of the relation defined by x. Let 1 ≤ r ≤ R ≤ N and let X eq

N (r,R) be the set of all x ∈ X eq

N with
r ≤ rank(x) ≤ R. If R = 1, then also r = 1, and clearly X eq

N (1, 1) = {1}. So assume R ≥ 2. Clearly
ΠX eq

N (r,R) = ΠX eq
N

⊇ Π∗, so it is transitive. Through a very similar argument to example (a), one can show
int [conv (X eq

N (r,R))] 6= ∅. Thus, we can apply Corollary 12. Define

r(N) := N + 1 − 1 +
√

2N2 − 2N + 1

2
.

(Thus, if N is large, then r(N) ≈ N − N/
√

2.) In Appendix A, we show that X eq

N (r,R) is McGarvey if and
only if r < r(N).

(c) (Connected graphs) We can also interpret any x ∈ {±1}K as encoding a graph. Let X cnct

N ⊂ {±1}K be
the set of all elements of {±1}K representing connected graphs on N . Then ΠX cnct

N
is transitive because it

contains Π∗.

For any {n,m} ∈ K, there exist x,y ∈ X cnct

N such that xn,m 6= yn,m, but x and y agree in every other
coordinate. (For example: let x represent a connected graph where vertices n and m are not linked. Let
y represent the graph obtained from x by adding a link from n to m). Thus, Lemma 9 implies that
int [conv (X cnct

N )] 6= ∅.
There exists x ∈ X cnct

N with #(x) < K/2 (for example, let x represent a graph where the elements of N are
arranged in a loop —then #(x) = |N | < K/2). There also exists y ∈ X cnct

N with #(y) > K/2 (for example:
1 ∈ X cnct

N ). Thus, Corollary 12 says that X cnct

N is McGarvey.

(d) (Trees) A graph is a tree if it is connected but contains no loops. Let X tree

N ⊂ X cnct

N be the space of all
trees. Let N := |N |; then #(x) = N − 1 for every x ∈ X tree

N (because every tree has exactly N − 1 activated
edges). Thus, Corollary 12 implies that X tree

N is not McGarvey.

Interestingly, however, X tree

N is median-saturating. To see this, note that any loop in a graph must involve at
least three activated edges, and if |N | ≥ 4, then any disconnected graph must have at least three deactivated
edges. Thus, W2(X tree

N ) = ∅; hence Proposition 1(b) implies that med∞(X tree

N ) = {±1}K. Thus, equation
(4) is false for X tree

N .

(Two more examples of symmetric McGarvey spaces are described in Appendix B.) ♦
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3. Comprehensive property spaces

For any r, s ∈ RK, write r ≤ s if rk ≤ sk for all k ∈ K. Write r ≪ s if rk < sk for all k ∈ K. The space
X is comprehensive if, for all x ∈ X and all y ∈ {±1}K, if x ≤ y, then y ∈ X also.

Proposition 14. Let X ⊆ {±1}K be comprehensive. Then X is McGarvey if and only if there exists
c ∈ conv(X ) with c ≪ 0.

For example, suppose X ⊆ {±1}K is comprehensive and there is a subset Y ⊆ X such that, for each
k ∈ K, we have #{y ∈ Y; yk = 1} < |Y|/2. Let c := 1

|Y|

∑
y∈Y y; then c ∈ conv(X ) and c ≪ 0; hence X is

McGarvey.

Proposition 15. Let X ⊆ {±1}K be comprehensive. Then X is median-saturating if and only if, for every
j, k ∈ K, there exists x ∈ X with xj = 0 = xk.

For example, let K/2 ≤ M ≤ K − 2, and let X com

≥M :=
{
x ∈ {±1}K ; #(x) ≥ M

}
. Then X com

≥M is median-
saturating (by Proposition 15) but not McGarvey (by Corollary 12); thus, eqn.(4) is false for X com

≥M .

4. Truth-functional aggregation

Let J be a set of logically independent propositions, and let f : {±1}J−→{±1} be some function. Let
K := J ⊔ {0}, and define Xf := {(x, y); x ∈ {±1}J and y = f(x)}; a subset of {±1}K; this is called a
truth-functional space; see [15, 16].

Many truth-functional spaces are not McGarvey. For example, let & : {±1}2−→X be the Boolean ‘and’
operation (i.e. &(x1, x2) = 1 if and only if x1 = 1 = x2; otherwise &(x1, x2) = −1), and let X& ⊂ {±1}3

be the corresponding truth-functional space. Then X& is not McGarvey. Indeed, X& is not even median-
saturating (this follows from Proposition 1(b), because W2(X&) contains the forbidden word (∗, 0; 1)).

Proposition 16. Suppose |J | ≥ 2, and suppose f : {±1}J−→{±1} depends nontrivially on more than one

J -coordinate. If
∑

x∈{±1}J

f(x) = 0, then Xf is McGarvey.

For example, let ⊕ : {±1}J−→{±1} be the J-ary ‘exclusive or’ function. That is: ⊕(x) = 1 if and only
if #{j ∈ J ; xj = 1} is odd. Then X⊕ is McGarvey.

Proposition 17. Let f : {±1}J−→{±1} be a truth function. Suppose f−1{1} and f−1{−1} are both
McGarvey, when seen as subsets of {±1}J . Then Xf is McGarvey.

A truth-function f : {±1}J−→{±1} is monotone if, for all x,y ∈ {±1}J ,
(
f(x) = 1 and x ≤ y

)
=⇒

(
f(y) = 1

)
.

Proposition 18. Let f : {±1}J−→{±1} be monotone. Suppose that:

1. there exists Y+ ⊆ f−1{1} such that for each j ∈ J , we have #{y ∈ Y+; yj = 1} < |Y+|/2; and

2. there exists Y− ⊆ f−1{−1} such that for each j ∈ J , we have #{y ∈ Y−; yj = −1} < |Y−|/2.

Then Xf is McGarvey.

For example, let J be odd, and let I := (J − 1)/2. Let J := [1...J ]. For any n ∈ N, let [n] be the unique
element of J which is congruent to n, mod J . For all j ∈ J , define yj ∈ {±1}K by yj

[j+i] = 1 for all i ∈ [1...I],

and yj
k = −1 for all other k ∈ J . Then define f : {±1}J−→{±1} as follows: f(x) = 1 if and only if x ≥ yj

for some j ∈ J . Then f is monotone, and the set Y+ :=
{
yj ; j ∈ J

}
satisfies hypothesis #1 of Proposition

18. On the other hand, let z1 := (1, 1,−1, 1, 1,−1, 1, 1,−1, . . .), let z2 := (1,−1, 1, 1,−1, 1, 1,−1, 1, . . .), and
let z3 := (−1, 1, 1,−1, 1, 1,−1, 1, 1, . . .). Then Y− := {z1, z2, z3} satisfies hypothesis #2 of Proposition 18.
Thus, Xf is McGarvey.
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5. Convexities

A convexity structure on K is a collection C of subsets of K such that ∅ ∈ C, K ∈ C, and C is closed under
intersections [17]. Convexity structures often represent the ‘convex’ subsets of some geometry on K.

Example 19. A metric graph is a graph where each edge is assigned a positive real number specifying
its ‘length’. Let K be the vertices of a metric graph. For any j, k ∈ K, a geodesic between j and k is a
minimal-length path from j to k. A subset C ⊆ K is convex if it contains all the geodesics between any pair
of points in C. The set C of all convex subsets of K is then a convexity structure on K. ♦

For any J ⊆ K, define χ
J ∈ {±1}K by χJ

j := 1 for all j ∈ J and χJ
k := −1 for all k ∈ K \ J . Given

a convexity structure C on K, let XC :=
{
χ

C ; C ∈ C
}
. Thus, judgement aggregation on XC is the problem

of democratically selecting a convex subset of K. (This problem arises, for example, when a jury wishes to
award prizes to some selected subset of contestants according to some ‘quality metric’, or when an expert
committee tries to classify an unfamiliar entity within a taxonomic hierarchy.)

Proposition 20. Let C be a convexity on K, and let XC be as above.

(a) For any J ⊆ K,
(
χ

J ∈ maj(XC)
)

⇐⇒
(
J is a union of elements of C

)
.

(b) The following are equivalent:

[i] XC is McGarvey.

[ii] XC is median-saturating.

[iii] C includes all the singleton subsets of K.

For example, the metric graph convexity in Example 19 is McGarvey.

6. Stearns numbers

Even if X is McGarvey, the hypothesis of Theorem 3(b) leaves the possibility that we can only realize
this McGarvey property using very precisely engineered profiles involving an astronomically large number
of voters. This would greatly diminish the practical relevance of the McGarvey property. So we now ask:
what is the smallest number of voters required to realize the McGarvey property of X ? This question was
first studied by Stearns [13] for preference-aggregation on X pr

A . For any N ∈ N, let

∆∗
N (X ) :=

{
µ ∈ ∆∗ (X ) ; ∀ x ∈ X , µ(x) =

n

N
for some n ∈ [0 . . . N ]

}
.

In other words, ∆∗
N (X ) is the set of profiles which can be generated by a population of exactly N voters.

Let X ⊆ {±1}K be McGarvey. We define the Stearns number S(X ) to be the smallest integer such that, for
any x ∈ {±1}K, there exists some N ≤ S(X ) and µ ∈ ∆∗

N (X ) with maj(µ) = x. (Define S(X ) := ∞ if X is
not McGarvey). For example, if A := |A|, then Stearns [13] showed that 0.55 ·A/ log(A) ≤ S(X pr

A ) ≤ A + 2.
Erdös and Moser [18] refined Stearn’s estimate by showing that S(X pr

A ) = Θ(A/ log(A)). We now investigate
the Stearns numbers of other McGarvey spaces. For any r ∈ RK, let ‖r‖∞ := sup

k∈K
|rk|. For any ǫ > 0, let

B(ǫ) :=
{
r ∈ RK ; ‖r‖∞ ≤ ǫ

}
. The next result can be seen as a ‘quantitative’ refinement of Theorem 3.

Theorem 21. Let X ⊂ {±1}K and let N(X ) := min{N ∈ N; B( 1
N ) ⊆ conv(X )}. Then N(X ) ≤ S(X ) ≤

4(K + 1)N(X ).

The upper bound in Theorem 21 is an overestimate, in general. For example, Alon [19] has shown
that N(X pr

A ) = Θ(
√

A); and in the case of X pr

A , we have K := A(A − 1)/2; thus Theorem 21 yields
S(X pr

A ) ≤ O(A5/2), which is much worse than the estimate of Θ(A/ log(A)) obtained by Erdös and Moser
[18]. Nevertheless, it may not be possible to improve the estimate in Theorem 21, without making further
assumptions about the structure of X . The next result provides some bounds on the size of N(X ) and S(X ).
For any x1, . . . ,xK ∈ {±1}K, let δ(x1, . . . ,xK) := min{‖c‖∞; c ∈ conv(x1, . . . ,xK)}.
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Proposition 22. Let X ⊂ {±1}K.

(a) Let δ(X ) := min{δ(x1, . . . ,xK); x1, . . . ,xK ∈ X and 0 6∈ conv(x1, . . . ,xK)}. If X is McGarvey,
then N(X ) ≤ ⌈1/δ(X )⌉.

(b) Let δ(K) := δ({±1}K). Then S(X ) ≤ 4(K + 1) ⌈1/δ(K)⌉ for every McGarvey X ⊆ {±1}K.
However, there exist McGarvey X ⊂ {±1}K with S(X ) ≥ 1/δ(K).

(c)
KK/2

23K+O(K)
≤ 1

δ(K)
≤ K2+K/2

22K−1
.

The inequalities in Proposition 22(c) are derived from inequalities obtained by Alon and Vũ [14] for the
inverses of {0, 1}-matrices; these inequalities have many implications for the geometry of sub-polytopes of
{±1}K [20, §5.2]. Proposition 22(b,c) imply that the Stearns numbers of some McGarvey spaces can be
extremely large. However, for the McGarvey spaces typically encountered in practice, the Stearns numbers
are often much smaller, as shown by the next result and following examples.

Proposition 23. (a) If 1 ∈ X , and χ
k ∈ X for all k ∈ K, then S(X ) ≤ 2K − 1.

(b) Suppose that −1 ∈ X , and suppose that, for all k ∈ K, there exist x,y ∈ X such that xk = 1 = yk,
but x and y differ in every other coordinate. Then S(X ) ≤ 2K + 1.

(c) Suppose −X = X and suppose that, for all k ∈ K, there exist x,y ∈ X such that xk 6= yk, but x
and y agree in every other coordinate. Then S(X ) ≤ 2K.

Example 24. (a) (Convexities) Let C be a convexity on K. Then 1 ∈ XC (because K ∈ C). If XC is
McGarvey, then Proposition 20(b) says χ

k ∈ X for all k ∈ K; thus, Proposition 23(a) says S(XC) ≤ 2K − 1.

(b) (Equivalence Relations) Let N be a set, and let K and X eq

N ⊂ {±1}K be as in Example 13(a). Observe
that 1 ∈ X eq

N (it represents the ‘complete equivalence’ relation such that n ∼ m for all n,m ∈ N ). Also, for
all {n,m} ∈ N , χ

n,m ∈ X eq

N (it represents the equivalence relation such that n ∼ m, but no other pair of
elements are equivalent). Thus, Proposition 23(a) implies that X eq

N is McGarvey, and S(X eq

N ) ≤ N(N−1)−1.

(c) (Preorders) Let K := {(n,m) ∈ N ×N ; n 6= m}. Thus, an element of {±1}K can represent a reflexive
binary relation “�” on N . A preorder is a reflexive, transitive binary relation on N (note that we do not
assume preorders are complete). Let X preo

N ⊂ {±1}K be the set of all preorders on N . Thus, 1 ∈ X preo

N

(it represents the relation of total indifference). Also, for all (n,m) ∈ N , χ
n,m ∈ X eq

N (it represents the
preorder such that n � m, but no other pair of elements are comparable). Thus, Proposition 23(a) implies
X preo

N is McGarvey, and S(X preo

N ) ≤ 2N(N − 1) − 1.

(d) (Complete preorders) Now let X ∗ ⊂ X preo

N be the set of all complete preorders. Then X ∗ is not McGarvey.
Indeed, Example 2 shows that X ∗ is not even median-saturating.

(e) (Committees) Let K be a set of candidates; then any element of {±1}K represents a ‘committee’
formed from these candidates. Let K1,K2, . . . ,KL ⊆ K be (possibly overlapping) subsets with cardi-
nalities K1,K2, . . . ,KL, respectively. Fix I, J ∈ N with 0 ≤ I < K/2 < J ≤ K. Likewise, for all
ℓ ∈ [1...L], fix Iℓ, Jℓ ∈ N with 0 ≤ Iℓ < Kℓ/2 < Jℓ ≤ Kℓ. For any x ∈ {±1}K and ℓ ∈ [1...L], define
#ℓ(x) := #{k ∈ Kℓ ; xk = 1}. Consider the set:

X com :=
{
x ∈ {±1}K ; I ≤ #(x) ≤ J and Iℓ ≤ #ℓ(x) ≤ Jℓ, ∀ ℓ ∈ [1...L]

}
.

Thus, X com represents the set of all committees formed from the candidates in K, with upper and lower
bounds on the size of the whole committee, and also upper/lower bounds on the level of representation from
various ‘constituencies’ K1, . . . ,KL.

We claim S(X com) ≤ 2K. To see this, suppose first that I = K − J and Iℓ = Kℓ − Jℓ for all ℓ ∈ [1...L].
Then −X com = X com. For all k ∈ X , let xk ∈ X com be an admissible committee of minimal size not involving
k. Thus, I ≤ #(xk) < J and Iℓ ≤ #ℓ(x

k) < Jℓ for all ℓ ∈ [1...L]. Let yk be the committee obtained from

8



xk by adding k; then I < #(yk) ≤ J and Iℓ ≤ #ℓ(y
k) ≤ Jℓ for all ℓ ∈ [1...L], so yk ∈ X com. Thus, the

hypotheses of Proposition 23(c) are satisfied, so S(X com) ≤ 2K.

Now consider the general case. Let I ′ := max{I,K − J} and J ′ := min{J,K − I}, and for all ℓ ∈ [1...L],
let I ′ℓ := max{Iℓ,Kℓ − Jℓ} and J ′ := min{Jℓ,Kℓ − Iℓ}. Let X ′ be the resulting committee space. Then X ′

satisfies the hypotheses of the previous paragraph, so S(X ′) ≤ 2K. But X ′ ⊆ X com; thus, S(X com) ≤ 2K
also. ♦

Appendix A: Proofs

Proof of Proposition 1. Part (b) follows immediately from (a). Part (a) follows (after some decryption)
from Lemma I.6.20(1) on p.130 of [17]. We will give another proof of part (a), using ‘critical words’. For
any Y ⊆ {±1}K, let W(Y) be the set of all Y-forbidden words. A word w ∈ W(Y) is Y-critical if no
proper subword of w is in W(Y). Let W∗(Y) be the set of Y-critical words. Observe that (X ⊆ Y) ⇐⇒(
W(Y) ⊆ W(X )

)
⇐⇒

(
W∗(Y) ⊆ W∗(X )

)
. Proposition 4.1 of [9] states:

(
Y is a median space

)
⇐⇒

(
All Y-critical words have order 2

)
. (5)

Let Y :=
{
x ∈ {±1}K ; w 6❁ x, ∀ w ∈ W2(X )

}
. We must show that med∞(X ) = Y. By construction,

W∗(Y) = W2(X ). Thus, every Y-critical word has order 2, so statement (5) says Y is a median space.
Clearly X ⊆ Y (because W(Y) ⊆ W(X )). But by definition, med∞(X ) is the smallest median space
containing X . Thus, med∞(X ) ⊆ Y.

To see the reverse inclusion, note that med∞(X ) is a median space; thus, statement (5) says every
med∞(X )-critical word has order 2. However, the W[med∞(X )] ⊆ W(X ) (because X ⊆ med∞(X )).
Thus, W∗[med∞(X )] ⊆ W2(X ) = W∗(Y). Thus, Y ⊆ med∞(X ). Thus, Y = med∞(X ). ✷

Proof of Theorem 3. (a) Let µ ∈ ∆∗ (X ). For all k ∈ K, define µ̃k as in eqn.(1), and let µ̃ := (µ̃k)k∈K ∈ RK.
Let x ∈ {±1}K be the unique element such that µ̃ ∈ Ox; then eqn.(2) implies that maj(µ) = x.

If we treat X ⊂ {±1}K as a subset of RK, then µ̃ :=
∑

x∈X

µ(x)x; thus, µ ∈ conv(X ). Furthermore, every

element of conv(X ) can be represented in this way. Thus, for any x ∈ {±1}K,

(
x ∈ maj(X )

)
⇐⇒

(
∃ µ ∈ ∆∗ (X ) such that µ̃ ∈ Ox

)
⇐⇒

(
conv(X ) ∩ Ox 6= ∅

)
.

(b) “(2) ⇐⇒ (3)” The Separating Hyperplane Theorem says that 0 ∈ int [conv (X )] if and only if, for all
nonzero z ∈ RK, there exists c ∈ conv(X ) such that z • c > 0. This, in turn, occurs if and only if there
exists x ∈ X such that z • x > 0 (because X is the set of extreme points of conv(X )).

“(1) ⇐= (2)” If 0 ∈ int [conv (X )], then conv(X ) intersects every open orthant of RK, so (a) implies that
maj(X ) = {±1}K.

“(2) =⇒ (1)” (by contrapositive) int [conv (X )] is an open convex subset of RK. Suppose 0 6∈ int [conv (X )].
Then the Separating Hyperplane Theorem says there is some vector r ∈ RK such that 〈r, c〉 < 0 for all
c ∈ int [conv (X )]. Pick x ∈ {±1}K such that the open orthant Ox contains r (if r sits on a boundary
between two or more orthants, then pick one). Then we must have int [conv (X )] ∩ Ox = ∅. Thus,
conv(X ) ∩ Ox = ∅ (because conv(X ) is the closure of int [conv (X )], and Ox is an open set). Thus, part
(a) implies that x 6∈ maj(X ); hence X is not McGarvey. ✷
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Proof of Proposition 4. (a) Let M := min{|X |; X ⊂ {±1}K is McGarvey}.
“M ≥ K +1”: Suppose |X | = J ≤ K. Let X = {x1, . . . ,xJ}. Define yj := xj −xJ for all j ∈ [1 . . . J − 1],
and let Y be the linear subspace of RK spanned by {y1, . . . ,yJ−1}. Then dim(Y) ≤ J − 1 < K. However,
conv(X ) ⊂ Y + xJ ; thus, int [conv (X )] = ∅, so X is not McGarvey.

“M ≤ K + 1”: Let 1 := (1, 1, . . . , 1). For all k ∈ K, define χ
k ∈ {±1}K as we did prior to Proposition

20. Let X := {χk}k∈K ⊔ {1}. Then |X | = K + 1. Observe that int [conv (X )] 6= ∅, because the collection
{χk − 1}k∈K spans RK. Furthermore,

(
K − 2

2K − 2

)
1 +

(
1

2K − 2

) ∑

k∈K

χ
k =

(
K − 2

2K − 2

)
1 −

(
K − 2

2K − 2

)
1 = 0,

so 0 ∈ int [conv (X )]. Thus, Theorem 3(b) says X is McGarvey.

(b) Let M := max{|X |; X ⊂ {±1}K is minimal McGarvey}.
“M ≥ 2K” follows from Example 5. To see “M ≤ 2K”, let X ⊆ {±1}K be McGarvey. Then Theorem
3(b) says 0 ∈ int [conv (X )].

Claim 1: There exists some Y ⊆ X with |Y| ≤ 2K such that 0 ∈ int [conv (Y)].

Proof: For any nonzero v ∈ RK, consider the line Lv := {rv ; r ∈ R}. This line intersects the boundary of
conv(X ) in exactly two places —say at u = −sv and w = tv, for some −s < 0 < t. For a generic choice
of v ∈ RK, the points u and w are each contained in the relative interior of some (K − 1)-dimensional
face of conv(X ) —that is, there are sets U = {u1, . . . ,uK} ⊆ X and W = {w1, . . . ,wK} ⊆ X , such that

conv(U) and conv(W) each have dimension (K−1), and such that u =
∑K

k=1 qkuk and w =
∑K

k=1 rkwk,

for some q1, . . . , qK , r1, . . . , rK > 0 with
∑K

k=1 qk = 1 =
∑K

k=1 rk.

Let Y := U ∪ W. Then conv(Y) contains the (K − 1)-dimensional sets conv(U) and conv(W), and it
also contains two different points on the line L transversal to these sets (because conv(U) and conv(W)
intersect L at two different points). Thus conv(Y) must have dimension K (hence, nonempty interior).
Furthermore, |Y| ≤ |U| + |W| = 2K. Let R := 1

s + 1
t , let S := 1

sR > 0 and let T := 1
tR > 0. Then

S + T = 1, and

K∑

k=1

Sqk uk +

K∑

k=1

Trk uk = S

K∑

k=1

qk uk + T

K∑

k=1

rk uk =
−sv

sR
+

tv

tR
=

−v

R
+

v

R
= 0.

By construction, we have Sq1, . . . , SqK , T r1, . . . , T rK > 0, and
∑K

k=1 Sqk +
∑K

k=1 Trk = 1. Thus, 0 is
a strictly positive convex combination of the elements of Y, so 0 ∈ int [conv (Y)], as claimed. ✸ Claim 1

If 0 ∈ int [conv (Y)], then Theorem 3(b) implies that Y is McGarvey. But if X is minimal McGarvey, then
this means that Y = X . Thus, |X | ≤ 2K, as claimed. ✷

Remark. The proof of Claim 1 in Proposition 4(b) easily generalizes to prove the following ‘relative interior’
version of Carathéodory’s theorem: Let X ⊂ RK be finite, let dim(conv(X )) = D ≤ K, and let x be in the
relative interior of conv(X ). Then there exists some Y ⊆ X with |Y| ≤ 2D such that x is in the relative
interior of conv(Y).

Proof of Example 5. We must show that X is McGarvey, but no proper subset of X is McGarvey.

X is McGarvey: Clearly, 2χj ∈ (X − X ) for all j ∈ K. Thus, span(X − X ) = RK, so int [conv (X )] 6= ∅.
Recall from §2 that ΠX is the set of coordinate permutation symmetries of X . In this case, ΠX contains
every possible permutation of K, so ΠX is transitive. Clearly #(χj) = 1 < K/2, whereas #(−χ

j) =
K − 1 > K/2. Thus, Corollary 12 implies that X is McGarvey.
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No proper subset of X is McGarvey: Suppose K := [1...K]. Let Y := X \ {χ1}. To see that Y is not
McGarvey, let z := (K − 3; −1,−1, . . . ,−1); then z • y ≤ 0 for all y ∈ Y. Thus, Theorem 3(b) implies
that Y is not McGarvey.

A similar argument shows that the sets X \ {χk} and X \ {−χ
k} are not McGarvey, for any k ∈ K. ✷

Lemma 25. Let S ⊂ RK be an affine subspace of dimension D ≤ K. Then |S ∩ {±1}K| ≤ 2D.

Proof: Suppose K = [1...K], and identify RK with RD × RK−D in the obvious way. If dim(S) = D, then
there exists some affine function φ : RD−→RK−D such that (after some permutation of K), we have
S = {(r, φ(r)); r ∈ RD}. This means that S ∩{±1}K = {(x, φ(x)); x ∈ {±1}D and φ(x) ∈ {±1}K−D}.
Thus,

∣∣S ∩ {±1}K
∣∣ ≤

∣∣{±1}D
∣∣ = 2D. ✷

Proof of Proposition 6. (a) Let M0 := max{|X |; X ⊂ {±1}K is not McGarvey}.
“M0 ≥ 3

42K” follows immediately from Example 7. To see “M0 ≤ 3
42K”, suppose X ⊆ {±1}K is not

McGarvey. Then Theorem 3(b) says there exists nonzero z ∈ RK, such that z • x ≤ 0 for all x ∈ X . Let
Y+ := {y ∈ {±1}K; z • y > 0}, let Y− := {y ∈ {±1}K; z • y < 0}, and let Y0 := {y ∈ {±1}K; z • y = 0}.
Now, |Y−| = |Y+| (because these sets are images of one another under negation). Thus,

|Y−| =
1

2

∣∣∣{±1}K \ Y0

∣∣∣ =
1

2

(
2K − |Y0|

)
= 2K−1 − 1

2
|Y0|. (6)

Also, X ⊆ Y− ⊔ Y0.

Thus, |X | ≤ |Y− ⊔ Y0| = |Y−| + |Y0| (†)
2K−1 − 1

2
|Y0| + |Y0| = 2K−1 +

1

2
|Y0|

≤
(∗)

2K−1 +
1

2
2K−1 =

3

4
2K ,

as claimed. Here, (†) is by eqn.(6), and (∗) is because |Y0| ≤ 2K−1 by Lemma 25.

(b) Let M1 := max{|X |; X ⊂ {±1}K is not median-saturating}.
“M1 ≥ 3

42K” follows immediately from Example 7. To see “M1 ≤ 3
42K”, observe that {X ⊆ {±1}K;

X is not median-saturating} ⊆ {X ⊆ {±1}K; X is not McGarvey} (because McGarvey implies median-
saturating). Thus, M1 ≤ M0, and we have already verified that M0 ≤ 3

42K . ✷

Lemma 26. Let X ⊂ {±1}K. If int [conv (X )] 6= ∅, and
∑

x∈X

x = 0, then X is McGarvey.

Proof: Let Y := {x − x′ ; x,x′ ∈ X}. For any ǫ > 0, let B(ǫ) := {∑
y∈Y ryy; ry ∈ R for all y ∈ Y, and∑

y∈Y |ry| < ǫ}.

Suppose ǫ <
1

|X | ; then for any b ∈ B(ǫ), we have b +
1

|X |
∑

x∈X

x ∈ conv(X ). Thus, if 0 =
1

|X |
∑

x∈X

x,

then B(ǫ) ⊆ conv(X ).

If int [conv (X )] 6= ∅, then Y spans RK. Thus, B(ǫ) is an open neighbourhood around 0, for any ǫ > 0.
Thus, Theorem 3(b) says X is McGarvey. ✷

Proof of Proposition 8. (a) Let z :=
∑

x∈X

x. Then γ(z) = z for all γ ∈ ΓX ; hence z ∈ Fix (ΓX ), which

means z = 0 (by hypothesis). Thus,
∑

x∈X

x = 0, so Lemma 26 says X is McGarvey.

(b) If −X = X , then −I ∈ ΓX . Thus, for any r ∈ Fix (ΓX ), we have −r = r, which means r = 0. Thus,
Fix (ΓX ) = {0}. Thus, part (a) says X is McGarvey. ✷
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Proof of Proposition 11. “=⇒” (by contrapositive) Suppose there do not exist r < 0 < t ∈ R such that
r1, t1 ∈ conv(X ). Then 0 6∈ int [conv (X )]. Thus, Theorem 3(b) says X is not McGarvey.

“⇐=” Let y :=
1

|X |
∑

x∈X

x. Then y ∈ int [conv (X )] (same argument as Lemma 26). However, y ∈

Fix (ΓX ), as in part (a). Thus, y = s1 for some s ∈ R (by hypothesis). If s = 0, then y = 0, so Lemma
26 says X is McGarvey. So suppose s 6= 0.

By hypothesis, there exist r < 0 < t ∈ R such that r1, t1 ∈ conv(X ). If s < 0, then 0 =
(

−s
t−s

)
t1+

(
t

t−s

)
y

is also in int [conv (X )], so Theorem 3(b) says X is McGarvey. If s > 0, then 0 =
(

s
s−r

)
r1 +

(
−r
s−r

)
y is

again in int [conv (X )], so again Theorem 3(b) says X is McGarvey. ✷

Proof of Corollary 12 “=⇒” (by contrapositive) Suppose there does not exist any x ∈ X with #(x) < K/2.
Then #(x) ≥ K/2 for all x ∈ X . This means

∑
k∈K xk ≥ 0 for all x ∈ X —i.e. 1 • x ≥ 0 for all x ∈ X .

Thus, Theorem 3(b) says X is not McGarvey.

Similarly, if #(y) ≤ K/2 for all y ∈ X , then X cannot be McGarvey.

“⇐=” First note that Fix (ΠX ) ⊆ R1. To see this, let r ∈ Fix (ΠX ); then π(r) = r for all π ∈ ΠX . If ΠX

is transitive, then all coordinates of r must be equal; hence r ∈ R1.

By hypothesis, there exist x,y ∈ X with #(x) < K/2 < #(y). Observe that #[π(x)] = #(x) and
#[π(y)] = #(y) for all π ∈ ΠX . Let

x∗ :=
1

|ΠX |
∑

π∈ΠX

π(x) and y∗ :=
1

|ΠX |
∑

π∈ΠX

π(y);

Then x∗,y∗ ∈ Fix (ΠX ), so x∗ = r1 and y∗ = t1, where r := 2#(x)/K−1 < 0 and t := 2#(y)/K−1 > 0.

Finally, ΓX ⊇ ΠX , so Fix (ΓX ) ⊆ Fix (ΠX ) ⊆ R1. At this point, all hypotheses of Proposition 11 are
verified; thus, X is McGarvey. ✷

Proof of Lemma 9. Let Y := {x − y ; x,y ∈ X}. For all j ∈ K, let ej := (0, 0, . . . , 0, 1, 0, . . . , 0), where the
‘1’ appears in the jth coordinate. If x,y ∈ X are such that xj 6= yj , but xk = yk for all k ∈ K \ {j}, then
x−y = ±ej . Thus, by hypothesis, Y contains {±ej}j∈K. Thus, span(Y) = RK. Thus, int [conv (X )] 6= ∅.
✷

Proof of Example 13(b). Clearly ΠX eq
N (r,R) = ΠX eq

N
⊇ Π∗, so it is transitive. Thus, Corollary 12 says that

X eq

N (r,R) is McGarvey if and only if there exist x,y ∈ X eq

N (r,R) with #(x) < K/2 < #(y).

Claim 1: There always exists x ∈ X eq

N (r,R) with #(x) < K/2.

Proof: Recall that R ≥ 2. There are two cases.

Case 1. (R > 2). Let r′ := max{r, 2}; then r ≤ r′ < R (since R > 2 by hypothesis). In fact, we will
construct x ∈ X eq

N (r′, R).

Let L :=

⌊
N + 2 − r′

2

⌋
. If (N + 2− r′) is even, then let x ∈ X eq

N describe an equivalence relation where

N splits into two equivalence classes of sizes L, along with r′ − 2 singleton classes. If (N + 2 − r′) is
odd, then let x ∈ X eq

N describe an equivalence relation where N splits into two equivalence classes of
sizes L, and r′ − 1 singleton classes. In either case, rank(x) = r′ or r′ + 1, so x ∈ X eq

N (r′, R). We have

#(x) = 2

(
L(L − 1)

2

)
= L(L − 1) < L(L − 1

2 ) ≤
(∗)

N(N − 1)

4
=

K

2
,
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as desired. Here (∗) is because L ≤ N/2 because r′ ≥ 2.

Case 2. (R = 2). Suppose N is even —say N = 2L. Then K/2 = L2 − L/2. Let x represent an
equivalence relation which divides N into two equivalence classes of size L. Then #(x) = 2L(L−1)/2 =
L2 − L < K/2.

Now suppose N is odd —say N = 2L + 1. Then K/2 = L2 + L/2. Let x represent an equivalence
relation which divides N into one equivalence class of size L, and one of size L + 1. Then #(x) =
L(L − 1)/2 + (L + 1)L/2 = L2 < K/2. ✸ Claim 1

Claim 1 and Corollary 12 imply that X eq

N (r,R) is McGarvey if and only if there exists y ∈ X eq

N (r,R) with
#(y) > K/2. We must show this occurs if and only if r < r(N).

Let M := N − r + 1, and let M ⊂ N be a subset of cardinality M , so that |N \M| = N − M = r − 1.
Let y ∈ X eq

N describe the equivalence relation where M forms one equivalence class, and each element
of N \ M forms a singleton equivalence class, for r equivalence classes in total. Thus, rank(y) = r, so
y ∈ X eq

N (r,R). It is easy to see that #(y) = max{#(x); x ∈ X eq

N (r,R)}. Thus, it suffices to show that
#(y) > K/2 if and only if r < r(N). To see this, let

M := N − r(N) + 1 =
1 +

√
2N2 − 2N + 1

2
.

Then M is the positive root of the polynomial f(M) = M2 −M − (N2 −N)/2. Thus, for any M ∈ N, we
have

(
r < r(N)

)
⇐⇒

(
M > M

)
⇐⇒

(
f(M) > 0

)
⇐⇒

(
M2 − M >

N2 − N

2

)

⇐
(∗)
⇒

(
M(M − 1)

2
>

K

2

)
⇐

(†)
⇒

(
#(y) >

K

2

)
,

as claimed. Here, (∗) is because K = N(N − 1)/2, and (†) is because #(y) = M(M − 1)/2. ✷

Proof of Proposition 14. “=⇒” (by contrapositive) Let O−1 be the open orthant containing −1. If there
is no c ∈ conv(X ) with c ≪ 0, then conv(X ) ∩ O−1; thus, Theorem 3(a) says X is not McGarvey.

“⇐=” If X is comprehensive, then conv(X ) is also comprehensive. That is, for all c ∈ conv(X ) and r ∈
[−1, 1]

K
, if c ≤ r, then r ∈ conv(X ) also. If c ∈ conv(X ) and c ≪ 0, then the set

{
r ∈ [−1, 1]

K
; r ≫ c

}
⊆

conv(X ) is an open neighbourhood of 0; thus, Theorem 3(b) says X is McGarvey. ✷

Proof of Proposition 15. Proposition 1(b) says X is median-saturating if and only if W2(X ) = ∅. If X
is comprehensive, then any X -forbidden word must be all zeros. Thus, any element of W2(X ) has the
form (0j , 0k) for some j, k ∈ K. Thus, W2(X ) = ∅ if and only if, for all j, k ∈ K, there exists x ∈ X with
xj = 0 = xk. ✷

Proof of Proposition 16. First we must show that int [conv (Xf )] 6= ∅.
Claim 1: If int [conv (Xf )] = ∅, then there is some j ∈ J and sj ∈ {±1} such that f(x) = sjxj for all

x ∈ {±1}J .

Proof: If int [conv (Xf )] = ∅, then for all (x, y) ∈ Xf , the coordinate y must be an affine function of x; in
other words, f must be an affine function. Thus, there are constants sj ∈ R for all j ∈ J , and another
constant r ∈ R such that f(x) = r +

∑
j∈J sjxj for all x ∈ {±1}J .

Claim 1.1: For all j ∈ J , we have sj ∈ {−1, 0, 1}.
13



Proof: Let I := J \ {j}, Fix xI ∈ {±1}I . Then either f(xI ,−1j) = f(xI , 1j), or f(xI ,−1j) =
−f(xI , 1j). But clearly,

f(xI , 1j) − f(xI ,−1j) = r +
∑

i∈I

sixi + sj(+1) − r −
∑

i∈I

sixi − sj(−1) = 2sj .

Thus, if f(xI ,−1j) = f(xI , 1j), then sj = 0. If f(xI ,−1j) = −f(xI , 1j), then sj = ±1. ▽ Claim 1.1

Claim 1.2: There is at most one j ∈ J such that sj 6= 0.

Proof: (by contradiction) Suppose sj 6= 0 6= sk for some j 6= k ∈ J . Let I := J \ {j, k}.
Fix xI ∈ {±1}I . If sj = sk, then f(xI , 1j , 1k)− f(xI ,−1j ,−1k) = sj(1 + 1− (−1− 1)) = 4sj , which
is impossible because f({±1}J ) ⊆ {±1} while sj = ±1 (by Claim 1.1).
If sj = −sk, then f(xI ,−1j , 1k) − f(xI , 1j ,−1k) = sk(−(−1) + 1 − (−1 − 1)) = 4sk, which is again
impossible because f({±1}J ) ⊆ {±1} while sk = ±1 (by Claim 1.1).
Either way, we have a contradiction. Thus, either sj = 0 or sk = 0. ▽ Claim 1.2

Claim 1.2 implies that f(x) = sjxj +r for all x ∈ {±1}J . Claim 1.1 says that sj = ±1, while f(x) = ±1
and xj = ±1 by definition. Thus, r = 0; hence f(x) = sj xj . ✸ Claim 1

Thus, if f(x) depends nontrivially on more than one coordinate of x, then the conclusion of Claim 1 is
contradicted; hence int [conv (Xf )] 6= ∅. Now,

∑

y∈Xf

y =
∑

x∈{±1}J

(x, f(x)) = (0J , 0) = 0K,

because
∑

x∈{±1}J f(x) = 0 by hypothesis, and clearly
∑

x∈{±1}J x = 0J . Thus Lemma 26 implies that
Xf is McGarvey. ✷

Proof of Proposition 17. Let x ∈ {±1}K; we want µ ∈ ∆(Xf ) such that maj(µ) = x. Recall K = J ⊔ {0};
write x = (xJ , x0) for some xJ ∈ {±1}J . Let Y+ := f−1{1} and Y− := f−1{−1}; by hypothesis, both
these spaces are McGarvey.

If x0 = 1, then find some µJ ∈ ∆(Y+) such that maj(µ) = xJ . Define µ ∈ ∆(X ) by µ(y, 1) = µJ (y) for
all y ∈ Y+. Then maj(µ) = x. If x0 = −1, then perform a similar construction using some µJ ∈ ∆(Y−).
✷

Proof of Proposition 18. If f is monotone, then f−1{1} is a comprehensive subset of {±1}J . Thus,
hypothesis #1 and Proposition 14 imply that f−1{1} is McGarvey.

If f is monotone, then −f−1{−1} is also a comprehensive subset of {±1}J . Thus, hypothesis #2 and
Proposition 14 imply that f−1{−1} is McGarvey.

At this point, Proposition 17 implies that Xf is McGarvey. ✷

Proof of Proposition 20. (a) “=⇒” It suffices to show that, for any j ∈ J , there is some C∗
j ∈ C such that

j ∈ C∗
j ⊆ J ; it follows that J is a union of C-elements.

Let µ ∈ ∆∗(XC) be such that maj(µ) = χ
J . Let j ∈ J . Then majj(µ) = 1, so µ̃j > 1

2 . Let Cj :=

{C ∈ C ; j ∈ C}; then µ̃j =
∑

C∈Cj

µ(χC) −
∑

C∈C\Cj

µ(χC). Let C∗
j =

⋂

C∈Cj

C; then C∗
j ∈ C, and for all k ∈ C∗

j ,

we have µ̃k ≥
∑

C∈Cj

µ(χC) −
∑

C∈C\Cj

µ(χC) = µ̃j > 1
2 ; hence majk(µ) = 1, which means k ∈ J . Thus,

C∗
j ⊆ J , as claimed.

“⇐=” Let C1, . . . , CN ∈ C, and let J := C1∪· · ·∪CN ; we will construct µ ∈ ∆∗(XC) such that maj(µ) = χ
J .

Define µ ∈ ∆∗(XC) as follows:

14



• Set µ[1] :=
N − 1

2N − 1
.

• For all n ∈ [1...N ], set µ[χCn ] :=
1

2N − 1
.

Thus, for all n ∈ [1...N ] and j ∈ Cn, we have µ̃j ≥ 2
(

N−1
2N−1 + 1

2N−1

)
− 1 = 1

2N−1 > 0, whereas for all

k ∈ K \ J , we have µ̃j = 2
(

N−1
2N−1

)
− 1 = −1

2N−1 < 0. Thus, maj(µ) = χ
J .

(b) “[i]=⇒[ii]” is immediate because equation (3) asserts maj(X ) ⊆ med∞(X ).

“[ii]=⇒[iii]” (by contrapositive) Let k ∈ K, but suppose {k} 6∈ C. Define C∗
k as in part (a); then k ∈ C∗

k

and C∗
k is the smallest element of C which contains k. Now, C∗

k 6= {k}, because {k} 6∈ C. Thus, there exists
j ∈ C∗

k \ {k}. Define the word w ∈ {±1}{k,j} by wk = 1 and wj = −1; then w is XC-forbidden. Thus,
W2(XC) 6= ∅; thus, Proposition 1(b) implies that XC is not median-saturating.

“[iii]=⇒[i]” follows immediately from part (a), because any subset of K can be written as a union of
singleton sets. ✷

Proof of Theorem 21. “S(X ) ≤ 4(K + 1)N(X )” Let U ⊂ conv(X ), and let ǫ > 0. We say that U is ǫ-dense

in conv(X ) if, for all c ∈ conv(X ), there exists some u ∈ U with ‖u − c‖∞ < ǫ.

Claim 1: For any M ∈ N, let CM := {µ̃ ; µ ∈ ∆∗
M (X )}. Then CM is a

(
2(K+1)

M

)
-dense subset of

conv(X ).

Proof: Let QM :=
{

n
M ; n ∈ N

}
, and let QX

M be the set of all functions µ : X−→QM (thus, ∆∗
M (X ) ⊂ QM ).

For any r ∈ R+, we define ⌊r⌋M :=
⌊M r⌋

M
; this is the largest element of the set QM which is no greater

than r. Note that 0 ≤ r − ⌊r⌋M ≤ 1/M .

Let c ∈ conv(X ); we must find some µ ∈ ∆∗
M (X ) such that ‖µ̃ − c‖∞ < 2(K + 1)/M .

Carathéodory’s theorem says there exists some subset Y ⊆ X with |Y| = K + 1, and some ν ∈ ∆(Y),
such that ν̃ = c. Now define λ ∈ QY

M by λ(y) := ⌊ν(y)⌋M for all y ∈ Y. Let

q :=
∑

y∈Y

∣∣∣ν(y) − λ(y)
∣∣∣ ≤ |Y|

M
=

K + 1

M
. (7)

Then ∥∥∥λ̃ − c
∥∥∥
∞

=
∥∥∥λ̃ − ν̃

∥∥∥
∞

≤ q. (8)

Observe that

1 −
∑

y∈Y

λ(y) =
∑

y∈Y

ν(y) −
∑

y∈Y

λ(y) =
∑

y∈Y

(
ν(y) − λ(y)

)

=
∑

y∈Y

∣∣∣ν(y) − λ(y)
∣∣∣ = q. (9)

Thus, q ∈ QM (because λ ∈ QY
M ). However, in general q > 0, so λ 6∈ ∆∗ (X ). Fix some y0 ∈ Y, and

define µ ∈ ∆∗
M (X ) as follows: µ(y0) := λ(y0) + q ∈ QM , and µ(y) := λ(y) for all other y ∈ Y \ {y0}

(and of course µ(x) := 0 for all x ∈ X \ Y). Then equation (9) implies that
∑

x∈X

µ(x) =
∑

y∈Y

µ(y) = 1,

so µ ∈ ∆∗
M (X ). Furthermore,

∥∥∥µ̃ − λ̃
∥∥∥
∞

≤ |µ(y0) − λ(y0)| = q. (10)

Combining equations (7), (8), and (10), we have ‖µ̃ − c‖∞ ≤
∥∥∥µ̃ − λ̃

∥∥∥
∞

+
∥∥∥λ̃ − c

∥∥∥
∞

≤ q + q ≤
2(K + 1)/M , as desired. ✸ Claim 1
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Now, let M := 4(K + 1)N(X ); Then conv(X ) contains the ball B
(

4(K+1)
M

)
. Given x ∈ {±1}K, let

x′ := 2(K+1)
M x; then conv(X ) ∩ Ox must contain the ball B′ := {r ∈ RK; ‖r − x′‖∞ ≤ 2(K+1)

M }. But CM

is ( 2(K+1)
M )-dense in conv(X ) (by Claim 1), so CM must intersect B′. Thus, CM intersects conv(X ) ∩ Ox;

thus, there is some µ ∈ ∆∗
M (X ) with maj(µ) = x.

“N(X ) ≤ S(X )” For every x ∈ {±1}K, there exists N ≤ S(X ) and some µx ∈ ∆∗
N (X ) such that

maj(µx) = x. This means that µ̃x ∈ Ox. However, if µ ∈ ∆∗
N (X ), then every coordinate of µ̃ is an integer

multiple of 1/N . Thus, if µ̃ ∈ Ox, then µ̃k ≥ xk/N ≥ xk/S(X ) for all k ∈ K (and recall xk = ±1). Thus,

if C = conv{µ̃x; x ∈ {±1}K}, then B
(

1
S(X )

)
⊆ C ⊆ conv(X ). Thus, S(X ) ≥ N(X ). ✷

Proof of Proposition 22. (a) If X is McGarvey, then 0 ∈ int [conv (X )]. Thus, the boundary of conv(X )
does not include 0. The boundary of conv(X ) is a union of faces, each of the form conv(x1, . . . ,xK) for
some x1, . . . ,xK ∈ X .

Now, if M := ⌈1/δ(X )⌉, then 1
M ≤ δ(X ). Thus, B( 1

M ) is disjoint from every boundary face of X . Thus,
B( 1

M ) ⊆ conv(X ). Thus, M ≥ N(X ).

(b) Let δ := δ(K). For all McGarvey X ⊂ {±1}K, we have

S(X ) ≤
(†)

4(K + 1)N(X ) ≤
(@)

4(K + 1) ⌈1/δ(X )⌉ ≤
(∗)

4(K + 1) ⌈1/δ⌉,

where (†) is by Theorem 21, (@) is by part (a), and (∗) is because δ(X ) ≥ δ for any X ⊂ {±1}K (by their
definitions).

Now, find x1, . . . ,xK ∈ {±1}K such that δ(x1, . . . ,xK) = δ, and let y ∈ conv{x1, . . . ,xK} be such
that ‖y‖∞ = δ. Let z ∈ {±1}K be such that y ∈ Oz. Let P ⊂ RK be the hyperplane containing
conv{x1, . . . ,xK}; then P cuts RK into two open halfspaces, H+ and H−, where z ∈ H+ and 0 ∈ H−.
Let X ′ := {±1}K ∩ (H− ∪P). Then X ′ is McGarvey (because 0 ∈ int [conv (X )]). Also, x1, . . . ,xK ∈ X ′,
and conv{x1, . . . ,xK} is one of the boundary faces of conv(X ) (because conv(X ) ⊂ H− ∪ P). Thus,
N(X ′) ≥ 1/δ (because y ∈ conv{x1, . . . ,xK}). Thus S(X ′) ≥ 1/δ, by Theorem 21.

(c) Without loss of generality, let K = [1...K]. If B := [bjk]j,k∈K is a K × K matrix, then let ‖B‖∞ :=
max
j,k∈K

|bj,k|. We then define χ(K) := max{
∥∥A−1

∥∥
∞

; any invertible matrix A ∈ {±1}K×K}. We will use

a result of Alon and Vũ [14], which says that

KK/2

23K+O(K)
≤ χ(K) ≤ KK/2

22K−1
. (11)

Left-hand inequality. Let A ∈ {±1}K×K be such that
∥∥A−1

∥∥
∞

= χ(K). Let B := A−1, and find
ℓ,m ∈ [1...K] such that |bℓm| = χ(K).

Let y := B ·1. For any k ∈ [1...K], if A′ is obtained by negating the kth row of A, then (A′)−1 is obtained
by negating the kth column of B, which in particular negates bℓk. By negating the rows of A and columns

of B as required, we can assume that bℓk ≥ 0 for all k ∈ [1...K]. Thus, yℓ =

K∑

k=1

bℓk ≥ bℓm = χ(K).

For any k ∈ [1...K], if A′ is obtained by negating the kth column of A, then (A′)−1 is obtained by
negating the kth row of B, and hence, the kth entry in y. By negating the columns of A and rows of B

as required, we can assume that y ∈ RK
6− . Thus, if Y :=

K∑

j=1

yj , then Y ≥ yℓ ≥ χ(K).

Let s :=
1

Y
y; then s ∈ RK

6− and

K∑

k=1

sk = 1. Let x1,x2, . . . ,xK ∈ {±1}K be the column vectors of A;

then 0 6∈ conv{x1, . . . ,xK}, because A is invertible. Now, As =
K∑

k=1

skx
k, so As ∈ conv{x1, . . . ,xK}.
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However, As = 1
Y 1, so δ(x1, . . . ,xK) ≤ ‖As‖∞ = 1

Y . Thus,

1

δ(K)
≥ 1

δ(x1, . . . ,xK)
≥ Y ≥ χ(K) ≥

(∗)

KK/2

23K+O(K)
,

where (∗) is by the left-hand Alon-Vũ inequality (11).

Right-hand inequality. Let x1, . . . ,xK ∈ {±1}K be any points such that 0 6∈ conv{x1, . . . ,xK}, and let
c ∈ conv{x1, . . . ,xK} be such that ‖c‖∞ = δ(x1, . . . ,xK). Let A be the K × K matrix whose columns

are x1, . . . ,xK ; then c = As for some s ∈ RK
6− with

∑K
k=1 sk = 1. By negating the rows of A if necessary,

we can assume c ∈ RK
6− ; then c = δ 1, where δ := δ(x1, . . . ,xK). If B = A−1, then s = δ B1. Thus,

1 =
K∑

j=1

sj = δ
K∑

j=1

K∑

k=1

bjk ≤ δ K2 · χ(K).

Thus,
1

δ
≤ K2 · χ(K) ≤

(∗)

K2+K/2

22K−1
,

where (∗) is by the right-hand Alon-Vũ inequality (11). Since this holds for all x1, . . . ,xK ∈ {±1}K, we

conclude that
1

δ(K)
≤ K2+K/2

22K−1
, as claimed. ✷

Proof of Proposition 23. (a) (Similar to the proof of Proposition 20(a) “⇐=”.) Given x ∈ {±1}K, let
J := {j ∈ K ; xj = 1} and let J := |J |. Define µ ∈ ∆∗

2J−1(X ) as follows:

• Set µ[1] :=
J − 1

2J − 1
.

• For all j ∈ J , set µ[χj ] :=
1

2J − 1
.

Thus, for all j ∈ J we have µ̃j = 1
2J−1 , whereas for all k ∈ K\J , we have µ̃j = −1

2J−1 . Thus, maj(µ) = x.
This works for any x ∈ X ;

(b) Suppose without loss of generality that K = [1 . . . K]. For all k ∈ K, let ek := (0, 0, . . . , 0, 1, 0, . . . , 0),
where the “1” appears in the kth coordinate. By hypothesis, there exist xk,yk ∈ X such that xk

k = 1 = yk
k ,

but xk and yk differ in every other coordinate. Thus, 1
2 (xk + yk) = ek.

Now, let x ∈ {±1}K be arbitrary. Let J := {j ∈ K ; xj = 1} and let J := |J |. Define µ ∈ ∆2J+1(X ) as
follows:

• µ(xj) = µ(yj) = 1/(2J + 1) for all j ∈ J .

• µ(−1) = 1/(2J + 1)

Thus, for all j ∈ J , we have µ̃j = 2/(2J +1)− 1/(2J +1) = 1/(2J +1) > 0. Meanwhile for all k ∈ K\J ,
we have µ̃k = −1/(2J + 1) < 0. Thus, maj(µ) = x, as desired.

(c) For all k ∈ K, let ek be as in part (b). By hypothesis, there exist xk,yk ∈ X such that xk
k 6= yk

k , but
xk and yk agree in every other coordinate. Now −X = X , so −yk ∈ X also. Note that xk

k = −yk
k , and

xk and −yk differ in every other coordinate. Thus, 1
2 (xk − yk) = sk ek, for some sk ∈ {±1}. Likewise,

−xk ∈ X , and 1
2 (yk − xk) = −sk ek.

Now, given any z ∈ {±1}K, define µ ∈ ∆∗
2K(X ) as follows. For all k ∈ K,

• Set µ[xk] := µ[−yk] := 1
2K if zk = sk.

• Set µ[−xk] := µ[yk] := 1
2K if zk = −sk.

Thus, for every k ∈ K, we have µ̃k = zk

K , so maj(µ) = z, as desired. ✷
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Appendix B: More examples.

This appendix contains further examples of some of the themes of this paper. First, here is another class
of ‘minimal’ McGarvey spaces, somewhat different to the class presented in Example 5.

Example 27. Let K = 2N+1, and let K = [0 . . . 2N ]. Define x0 := (+1; +1,−1,+1,−1,+1,−1, . . . ,+1,−1).
In other words, set x0

0 := 1, and for all k ∈ [1 . . . 2N ], set x0
k := 1 if k is odd, while x0

k := −1 if k is even.
Define x1,x2, . . . ,x2N by cyclically permuting the coordinates of x0 (i.e. identify K with the group Z/K).
Let X := {±x0,±x1, . . . ,±x2N}. Then |X | = 2K.

Claim 1: X is minimal McGarvey.

Proof: X is McGarvey: It can be checked that span(X − X ) = RK, so int [conv (X )] 6= ∅.
Recall that K := [0 . . . 2N ]. In this case, ΠX consists of all cyclic permutations of K (obtained by
identifying K with the group Z/K); Thus, ΠX is transitive. Clearly #(x0) = N + 1 > K/2, whereas
#(−x0) = N < K/2. Thus, Corollary 12 implies that X is McGarvey.

No proper subset of X is McGarvey: Let Y := X \ {x0}. To see that Y is not McGarvey, let z :=
(1, 1, 0, 0, . . . , 0). Then z • y ≤ 0 for all y ∈ Y. Thus, Theorem 3(b) implies that Y is not McGarvey.

A similar argument shows that the sets X \ {xk} and X \ {−xk} are not McGarvey, for any k ∈ K.
✸ Claim 1

In particular, if K = 3, then once again, X = {(1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1, 1), (−1, 1,−1),
(1,−1,−1)} is a minimal McGarvey set with six elements. Let A := {a, b, c} and identify K with the set
{(a, b), (b, c), (c, a)}; then X = X pr

A . ♦

Next, here are two more applications of Corollary 12.

Example 28. (Connected digraphs) Let N be a finite set, and let K := {(n,m) ∈ N ×N ; n 6= m}. Thus,
an element of {±1}K can represent a directed graph (digraph) with vertex set N . For any permutation
π : N−→N , define π∗ : K−→K by π(n,m) := (π(n), π(m)) for all (n,m) ∈ K. Let Π∗ be the set of all such
permutations; then Π∗ acts transitively on K (for any (n1,m1) ∈ K and (n2,m2) ∈ K, let π : N−→N be
any permutation such that π(n1) = n2 and π(m1) = m2; then π∗(n1,m1) = (n2,m2)).

A digraph is connected if any two vertices can be connected with a directed path. Let ~X cnct

N ⊂ {±1}K be
the set of connected digraphs. Then Π ~X cnct

N

is transitive, because it contains Π∗.

Through a similar argument to Example 13(c), one can show that int
[
conv

(
~X cnct

N

)]
6= ∅. There exists

x ∈ ~X cnct

N with #(x) < K/2 (for example, let x represent a digraph where the elements of N are arranged

in a directed loop —then #(x) = |N | < K/2). There also exists y ∈ ~X cnct

N with #(y) > K/2 (for example:

1 ∈ ~X cnct

N ). Thus, Corollary 12 says that ~X cnct

N is McGarvey. ♦

Example 29. (Committee Selection) As in Example 24(e), let K be a set of ‘candidates’, so that any
element of {±1}K represents a ‘committee’ formed from these candidates. Let K1,K2, . . . ,KL be disjoint
subsets of K, with cardinalities K1,K2, . . . ,KL, respectively. Let N ⊆ [0...K], and for all ℓ ∈ [1...L], let
Nℓ ⊆ [0...Kℓ]. For any x ∈ {±1}K and ℓ ∈ [1...L], recall that #ℓ(x) := #{k ∈ Kℓ ; xk = 1}. Consider the
set:

X com :=
{
x ∈ {±1}K ; #(x) ∈ N and #ℓ(x) ∈ Nℓ, ∀ ℓ ∈ [1...L]

}
.

Thus, X com represents the set of all committees formed from the candidates in K, with certain restrictions
on the size of the whole committee, and also certain restrictions on the level of representation from various
‘constituencies’ K1, . . . ,KL. For example, N might be a subinterval of [0...K], encoding a minimum and/or
maximum size for the whole committee. Also, we might restrict N to contain only odd values (e.g. to reduce
the likelihood of tied votes). Meanwhile, Nℓ might be a subinterval of [0...Kℓ], encoding minimum and/or
maximum admissible levels of representation from constituency Kℓ.

(a) Suppose that int [conv (X com)] 6= ∅, and also that:
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(a1) K =

L⊔

ℓ=1

Kℓ; (a2) K1 = K2 = · · · = KL =
K

L
;

(a3) N1 = · · · = NL = N∗ for some subset N∗ ⊆
[
0 . . . K

L

]
; and

(a4) If N† := N ∩ {n1 + · · · + nL ; n1, . . . , nL ∈ N∗}, then min(N†) < K/2 < max(N†).

Then X com is McGarvey. To see this, let π : K−→K be any permutation. Suppose that, for all ℓ ∈ [1...L],
there is some i ∈ [1...L] such that π(Kℓ) = Ki. Then π ∈ ΠX com by (a3). The set of all such permutations is
transitive (by (a1) and (a2)). Thus, ΠX com is transitive. Meanwhile, (a4) means that there exist x,y ∈ X com

such that #(x) < K/2 < #(y). Thus, Corollary 12 implies that X com is McGarvey.

(b) More generally, let K∗ be the largest divisor of K which is no greater than min{K1, . . ., KL}. Let
N∗ := N1 ∩ · · · ∩ NL ∩ [0...K∗]. Suppose that N∗ 6= ∅, and suppose condition (a4) holds (in particular, we
suppose N† 6= ∅). Then X com is McGarvey.

To see this, for each ℓ ∈ [1...L], let K′
ℓ ⊆ Kℓ be a subset with |K′

ℓ| = K∗. Let Q := K/K∗ (an integer), and find

Q − L further disjoint subsets K′
L+1, . . . ,K′

Q ⊂ K such that K =

Q⊔

q=1

K′
q. Define N ′

1 = · · · = N ′
Q := N∗. Let

X ′ be the committee space constructed using the constituencies K′
1, . . . ,K′

Q and the cardinality constraint
sets N ,N ′

1, . . . ,N ′
Q. Then X ′ 6= ∅ (because N† 6= ∅), and X ′ satisfies the hypotheses of Example (a), so X ′

is McGarvey. But X ′ ⊆ X com; hence X com is also McGarvey. ♦
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[1] G.-T. Guilbaud, Les théories de l’intérêt général et le problème logique de l’aggrégation, Economie Appliquée V (4) (1952)
501–551.

[2] R. Wilson, On the theory of aggregation, J. Econom. Theory 10 (1) (1975) 89–99.
[3] A. Rubinstein, P. C. Fishburn, Algebraic aggregation theory, J. Econom. Theory 38 (1) (1986) 63–77.
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