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A novel GARCH(1,1) model, with coefficients function of the realizations of an ex-

ogenous process, is considered for the volatility of daily gas prices. A distinctive

feature of the model is that it produces non-stationary solutions. The probability

properties, and the convergence and asymptotic normality of the Quasi-Maximum

Likelihood Estimator (QMLE) have been derived by Regnard and Zakoian (2009).

The prediction properties of the model are considered. We derive a strongly con-

sistent estimator of the asymptotic variance of the QMLE. An application to daily
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eroskedasticity, an empirical finding is the existence of distinct volatility regimes
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1 Introduction

Following the deregulation of natural gas markets in Europe, natural gas trans-

actions between producing countries and retailers - historically run by long

term contracts indexed on crude oil - were diversified through new financial

markets (National Balancing Point in the UK, Zeebrugge market in Belgium),

where it could be freely sold at different time horizons. This restructuring has

generated uncertainty, requiring the development of appropriate valuation and

risk management strategies.

Such strategies require an appropriate modeling of the price volatility. The

standard GARCH models of Engle (1982) and Bollerslev (1986), which ar-

guably constitute the most important class of models for financial data, may

be inadequate for energy prices. The reason is that energy prices are subject

to pronounced daily seasonal patterns, which may not only concern the condi-

tional mean but also the volatility. The periodic ARCH model was introduced

by Bollerslev and Ghysels (1996) and studied by Aknouche and Bibi (2009). It

is able to capture those seasonal behaviors in the conditional variance. How-

ever, in this model the different regimes appear in a purely periodic succession

and it may be worth introducing more flexibility. A GARCH model with re-

gression effects and scaled by seasonal factors has been recently proposed for

electricity prices by Koopman, Ooms and Cornaro (2007).

The purpose of this article is to develop a new class of volatility models, intro-

duced in a companion paper by Regnard and Zakoian (2009), to characterize

the seasonal patterns induced by other variables such as temperature. In this

model, the parameters associated with the volatility dynamics depend on an

exogenous variable, similarly to papers dealing with the conditional mean by

Azrak and Mélard (2006), Bibi and Francq (2003), Francq and Gautier (2004a,

2004b).

The article is organized as follows. Section 2 introduces the model and its main

probability properties. It is shown how the model can be used for prediction

purposes and how the time-varying unconditional moments can be computed.

QML (Quasi-Maximum Likelihood) estimation is discussed in Section 3. A

consistent estimator is derived for the asymptotic covariance matrix. Section

4 proposes an application to gas prices. A preliminary treatment based on
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a vector error correction model, involving daily gas prices, brent prices and

temperatures, is discussed. Finally, the proposed model is fitted with up to five

volatility regimes depending on the temperature. The different specifications

are tested, and compared via out-of-sample predictions. Section 5 concludes.

A technical proof is given in the appendix.

2 A nonstationary GARCH(1,1) model

The model we consider in this paper is given by

ǫt = σtηt, σ2
t = ω(st) + α(st)ǫ

2
t−1 + β(st)σ

2
t−1, t ∈ Z (1)

where (ηt) is a sequence of independent and identically distributed (iid), cen-

tered variables with unit variance; (st) is the realization of a process (St) with

values in a finite set E = {e1, . . . , ed}; the functions ω(·), α(·), β(·) are defined

on E with values in R
+ with ω(·) > 0.

In our application, st will correspond to a level of temperature, observed at

time t. For each level of temperature, the volatility is that of a standard

GARCH(1,1) model. Thus, if this level remains constant in some period, the

volatility is governed by a standard GARCH. When another level of temper-

ature is reached, the specification of the volatility changes. The existence of

different regimes for the volatility is a common feature between this model

and the so-called Markov-switching models introduced by Hamilton (1989)in

the context of ARMA models. However, the interpretations of the models are

completely different. In Markov-switching models, the mechanism of regime

change is governed by an non observable variable. In our model, it is governed

by an observable process which is exogenous to the model. The dynamics of

ǫt is conditional to (St).

2.1 Probability properties

The probabilistic properties of this model have been established by Regnard

and Zakoïan (2009) (hereafter RZ). Assuming
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A0: (st) is a realization of a process (St) which is stationary, ergodic, defined on

the same probability space (Ω,A, P) as (ηt), and independent of (ηt),

and introducing

πj = P (St = ej), j = 1, . . . , d and a(x, y) = α(x)y2 + β(x),

RZ established that if

γ0 :=
d
∑

j=1

πjE{log a(ej , η0)} < 0, (2)

Model (1) admits a nonanticipative nonexplosive solution (ǫt). When γ0 > 0,

the process is explosive: for any initial value σ2
0, we have σ2

t → +∞, a.s. t →
∞. Condition (2) can thus be referred to as a stability condition, not a sta-

tionarity condition since the solution is not a stationary process when d > 1.

In the ARCH(1) case (no coefficients β), Condition (2) takes the more explicit

form
∏d

j=1 απj(j) < e−E log η2

0 . It can also be noted that the stability of the

GARCH(1,1) in each regime, that is

E{log α(j)η2
0 + β(j)} < 0, j = 1, . . . , d

is sufficient (but not necessary) for the global stability. A necessary condition

for (2) is given by
∏d

j=1 βπj(j) < 1.

Existence of moments require stronger conditions. Letting µ(x) = α(x)+β(x),

λ(x) = κηα(x)2 + 2α(x)β(x) + β(x)2, where κη = Eη4
t , we have

d
∏

j=1

µ(ej)
πj < 1 ⇒ Eǫ2

t < ∞, and
d
∏

j=1

λ(ej)
πj < 1 ⇒ Eǫ4

t < ∞. (3)

Similar conditions hold for the existence of higher-order moments. It is impor-

tant to note that, when existing, those moments are time-dependent (except

in the case d = 1 which corresponds to the standard GARCH(1,1) model).

2.2 Predictions of the squares

For standard GARCH(1,1) models, the optimal prediction of ǫ2
t in the L2

sense, E(ǫ2
t | {ǫ2

t−ℓ, ℓ > 0}), is obtained from the ARMA(1,1) representation

4



for the squares. Similarly, for Model (1), letting ut = ǫ2
t − σ2

t = (η2
t − 1)σ2

t we

have

ǫ2
t = ω(st) + (α + β)(st)ǫ

2
t−1 + ut − β(st)ut−1.

Letting δt = ǫ2
t − ω(st) − (α + β)(st)ǫ

2
t−1, we thus have,

ǫ2
t =ω(st) + (α + β)(st)ǫ

2
t−1 −

∑

k≥0

β(st) . . . β(st−k)δt−k−1 + ut. (4)

This representation is valid because (2) implies

d
∑

j=1

πj log β(ej) ≤
d
∑

j=1

πjE{log a(ej , η0)} < 0,

from which the existence of the infinite sum in (4) is deduced, by the argu-

ments used to establish the stability condition. Note that the expectation of

ut conditional on the past of ǫ2
t is zero. The optimal predictor ǫ̂2

t of ǫ2
t , in the

L2 sense, is then

ǫ̂2
t = ω(st) + (α + β)(st)ǫ

2
t−1 −

∑

k≥0

β(st) . . . β(st−k)δt−k−1.

Predictions at higher horizons can be derived similarly. Contrary to standard

GARCH models, predictions formulas are time dependent through the coeffi-

cients st.

2.3 Conditional and unconditional kurtosis

For standard GARCH models, the conditional kurtosis coefficient, defined as

the ratio of the fourth-order conditional moment on the squared conditional

variance, is constant and is equal to the kurtosis κη of the independent pro-

cess (ηt). The unconditional kurtosis coefficient, when existing, is equal to

κη multiplied by a constant greater than 1, and can be used to measure the

leptokurticity of the unconditional distribution.

For the model of this paper, it is interesting to compare the conditional and un-

conditional kurtosis coefficients with those obtained for the standard GARCH.

The second and fourth unconditional moments of ǫt can be computed recur-
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sively, for t ≥ 1, from















Eǫ2
t = ω(st) + µ(st)Eǫ2

t−1

Eǫ4
t = ω2(st)κη + λ(st)Eǫ4

t−1 + 2ω(st)µ(st)Eǫ2
t−1κη,

with initial values Eǫ2
0 and Eǫ4

0. It follows that the unconditional kurtosis of

ǫt, defined as κǫt
= Eǫ4

t /(Eǫ2
t )

2, satisfies the recursion

κǫt
− κη =

(

Eǫ2
t−1

Eǫ2
t

)2
{

(κǫt−1
− κη)λ(st) + κη(κη − 1)α2(st)

}

(5)

and does not converge to a constant as t tends to infinity. On the contrary,

the conditional kurtosis of ǫt is simply given by

E(ǫ4
t | ǫs, s < t)

{E(ǫ2
t | ǫs, s < t)}2

=
σ4

t Eη4
t

(σ2
t Eη2

t )2
= κη,

as in the standard GARCH(1,1) case.

3 QML Estimation

The consistency and asymptotic normality of the QMLE have been proven

under mild conditions by Berkes, Horváth and Kokoszka (2003) and Francq

and Zakoïan (2004) for standard GARCH and ARMA-GARCH models. RZ

showed that these properties can be extended to the model of this paper under

assumptions which we now detail.

Let θ denote the vector of parameters,

θ = (ω(e1), . . . , ω(ed), α(e1), . . . , α(ed), β(e1), . . . , β(ed))
′,

with true value θ0. The parameter is assumed to belong to a parameter space

Θ ⊂]0, +∞[d×[0,∞[2d. The sequence (st) is observed, and the orders p, q and

d are known a priori. Let (ǫ1, . . . , ǫn) be a realization of length n of the nonan-

ticipative solution (ǫt). Conditionally on initial values ǫ̃0 and σ̃2
0 the Gaussian

quasi-likelihood is given by

Ln(θ) = Ln(θ; ǫ1, . . . , ǫn) =
n
∏

t=1

1
√

2πσ̃2
t

exp

(

− ǫ2
t

2σ̃2
t

)

,
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where the σ̃2
t are defined recursively, for t ≥ 2, by

σ̃2
t = σ̃2

t (θ) = ω(st) + α(st)ǫ
2
t−1 + β(st)σ̃

2
t−1,

with σ̃2
1 = ω(s1)+α(s1)ǫ̃

2
0+β(s1)σ̃

2
0. A QMLE of θ0 is defined as any measurable

solution θ̂n of

θ̂n = arg max
θ∈Θ

Ln(θ) = arg min
θ∈Θ

l̃n(θ), (6)

where

l̃n(θ) = n−1
n
∑

t=1

ℓ̃t, and ℓ̃t = ℓ̃t(θ) =
ǫ2
t

σ̃2
t

+ log σ̃2
t .

Indexing the true parameter values by 0, we make the following assumptions.

A1: θ0 ∈ Θ and Θ is compact.

A2:
∑d

j=1 πjE{log a0(ej, η0)} < 0 and
∏d

j=1 β
πj

j < 1, where βj = supθ∈Θ β(ej).

A3: There exist r, ρ ∈ (0, 1) and C > 0 such that

∀i > 0, E {ar
0(St, ηt−1) . . . ar

0(St−i, ηt−i−1)} < Cρi+1. (7)

A4: η2
t has a nondegenerate distribution with Eη2

t = 1.

A5: For all i, α0(ei) + β0(ei) 6= 0 and there exist ℓ ∈ {1, . . . , d} and k > 0

such that α0(eℓ)P(St−k = eℓ, St = ei) > 0.

A6: θ0 belongs to the interior of Θ.

A7: κη = Eη4
t < ∞.

Then, RZ showed that

(1) under A0-A5, almost surely θ̂n → θ0, as n → ∞,

(2) under A0-A7,
√

n(θ̂n−θ) is asymptotically N (0, (κη−1)J−1) distributed,

where

J := ES,η

(

1

σ4
S,t(θ0)

∂σ2
S,t(θ0)

∂θ

∂σ2
S,t(θ0)

∂θ′

)

(8)

is a positive-definite matrix, and (σ2
S,t(θ0)) is the process obtained by

replacing st by St in the second equation of (1).

The following examples illustrate the influence of the distributions of (St)

and (ηt) on the asymptotic covariance matrix of the QMLE, for a 2-regimes
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ARCH(1) model given by

ǫt =















(1 + 0.1ǫ2
t−1)

1/2ηt if st = 1

(3 + 0.1ǫ2
t−1)

1/2ηt if st = 2

(9)

Suppose that (St) is a Markov chain with transition probabilities p(i, j). Then,
if

• p(1, 1) = p(2, 2) = 0.5; ηt ∼ N (0, 1):

Varas(
√

n(θ̂n − θ)) =





















7.41 0 −1.62 0

0 56.78 0 −8.96

−1.62 0 1.30 0

0 −8.96 0 5.28





















;

• p(1, 1) = p(2, 2) = 0.95; ηt ∼ N (0, 1):

Varas(
√

n(θ̂n − θ)) =





















3.83 0 −1.33 0

0 300.51 0 −53.24

−1.33 0 1.58 0

0 −53.24 0 32.39





















;

• p(1, 1) = p(2, 2) = 0.95, ηt is distributed as a mixing of Gaussian distribu-
tions (with κη ≈ 9):

Varas(
√

n(θ̂n − θ)) =





















11.39 0 −1.92 0

0 918.26 0 −77.02

−1.92 0 4.21 0

0 −77.02 0 87.99





















.

The expectation in (8) has been obtained by simulation. The presence of

asymptotic covariances equal to zero for parameters of different regimes is due

to the absence of coefficients β in the model.
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3.1 Consistent estimation of the asymptotic variance of the QMLE

To build tests and confidence intervals for the parameters of Model (1), it

is essential to have a consistent estimator of the asymptotic covariance ma-

trix of the QMLE. In view of (8), this matrix depends on the distribution

of (St) which is unknown. However, the following result provides a consistent

estimator which can be easily computed.

Proposition 1 Under Assumptions A0-A7, a strongly consistent estimator

of the matrix J is given by

Ĵn =
1

n

n
∑

t=1

1

σ̃4
t (θ̂n)

∂σ̃2
t (θ̂n)

∂θ

∂σ̃2
t (θ̂n)

∂θ′
,

and a strongly consistent estimator of (κη − 1)J−1 is

(κ̂η − 1)Ĵ−1
n , where κ̂η =

1

n

n
∑

t=1

ǫ4
t

σ̃(θ̂n)4
.

Proof. See appendix.

4 Application to gas prices volatility

We now turn to an example with real data, namely the daily series of gas spot

prices from the Zeebruge market. Before modeling the volatility we filter the

series from the conditional mean. To capture the joint behavior of the series

of gas, Brent prices and temperatures, we consider a VAR model.

We have a sample of daily prices and temperatures from January, 4, 2000 to

December, 21, 2005 (n=1,272 cotation dates, excluding week-ends). Let gt =

log Gt and bt = log Bt denote the log prices and let Tt denote the temperature.

The three series are displayed in Figure 1. Augmented Dickey-Fuller and KPSS

(Kwiatowski, Phillips, Schmidt and Shin, 1992) unit-root tests not reported

here suggest that the series gt, bt and Tt are integrated of order one.

To filter the gas price conditional mean from the influence of the Brent oil price

and the temperature, we use a vector error correction model (VECM). There
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Fig. 1. Daily series of gas log-prices gt (upper panel), Brent log-prices bt (middle

panel) and temperatures Tt (lower panel).

is a growing literature examining the cointegration relationships between dif-

ferent energy prices. Asche, Osmundsen, and Sandsmark (2006) discuss the

cointegration between UK natural gas, Brent oil and electricity prices before

and after the opening of the Interconnector in 1998. Bachmeier and Griffin

(2006) found evidence of cointegration between crude oil, natural gas and coal

in the USA. Panagiotidis and Rutledge (2007) found evidence of a cointegra-

tion relationship between the UK wholesale gas prices and the Brent over the

period 1996-2003, contradicting the assumption that gas prices and oil prices

are decoupled since the liberalisation of gas markets in Europe.
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4.1 A VECM for gas and brent prices

We begin the analysis with an error correction approach. Recall that, in Jo-

hansen’s (1988, 1995) notation, a p-dimensional VECM takes the form

∆yt =
k−1
∑

i=1

Γ∆yt−i + Πyt−1 + µ + ut

where ∆ is the difference operator, yt is a p× 1 vector of I(1) variables, µ is a

drift parameter, (ut) is a white noise, Π = αβ ′ is a p × p matrix where α and

β are p × r full-rank matrices, with β containing the r cointegrating vectors

and α carrying the loadings in each of the r vectors. A preliminary analysis

suggests that oil prices have an impact on gas prices with a delay of 13 weeks.

Let yt = (gt, bt−τ , Tt) where τ = 91 days. The Johansen test rejects the null

hypothesis of zero cointegrating vectors between the components of yt. The

existence of r = 1 cointegrating relation is not rejected and the estimated

cointegration vector is, by renormalizing so that the first element be unity,

β̂ = (1,−1.0809, 0.0194). Let ct = gt − 1.080bt−τ + 0.019Tt + 4.46.

The estimated VECM is as follows. For ease of presentation, unsignificant

coefficients, at the 5% level, have been omitted. The standard errors appear

in parenthesis.

∆gt = − 0.077 ct + 0.056 ∆gt−1 − 0.010 ∆Tt−4 − 0.103 ∆gt−5
(0.012) (0.030) (0.001) (0.029)

− 0.091 ∆gt−6 − 0.087 ∆gt−8 − 0.003 ∆Tt−8 +ǫt
(0.029) (0.028) (0.001)

∆bt−τ = ζt

∆Tt = − 0.218 ∆Tt−1 − 0.280 ∆Tt−2 − 0.225 ∆Tt−3 − 0.207 ∆Tt−4
(0.030) (0.031) (0.032) (0.032)

− 0.135 ∆Tt−5 − 0.107 ∆Tt−6 − 0.067 ∆Tt−8 + ξt
(0.032) (0.032) (0.030)

It is worth noting that for the brent prices, no significant linear influence of

the past variables is detected. Results not reported here show that the process

(ǫt, ζt, ξt) passes the diagnostic tests for the absence of autocorrelation.
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Fig. 2. Series (ǫt) for the gas prices

4.2 Modeling the volatility of gas prices

Figure 2 displays the series of residuals ǫt for gas prices. The empirical au-

tocorrelation function (ACF) and partial autocorrelation function (PACF) of

(ǫt) are displayed in Figure 3. The standard significance bands, ±1.96/
√

n, dis-

played in dotted lines, are asymptotically valid for independent white noises.

To allow for possible nonlinearities, we considered the asymptotic bands de-

rived by Francq and Zakoian (2009). These bands are based on a correction of

the standard Bartlett formula and are asymptotically valid, for the ACF and

PACF, under mild regularity conditions except the existence of fourth-order

moments. The bands in the left panels are obtained under the assumption of

a GARCH(1,1) white noise. The bands in the right panels do not rely on any

parametric model, and are valid for a weak white noise, that is a sequence of

centered and uncorrelated variables. 3 From these figures, it is clear that this

series has the characteristics of a white noise. The ACF and FACF displayed

in Figure 4 for the series (ǫ2
t ) show that a GARCH effect is present in the data.

3 We used the R-codes available from the web site http://perso.univ-

lille3.fr/ cfrancq/Christian-Francq/Generalized-Bartlett-Formula.html.

12



0 5 10 15 20 25 30

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Lag

AC
F

0 5 10 15 20 25 30

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Lag

AC
F

0 5 10 15 20 25 30

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Lag

Pa
rti

al
 A

C
F

0 5 10 15 20 25 30

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

Lag

Pa
rti

al
 A

C
F

Fig. 3. Empirical ACF and PACF of the series (ǫt) and significance bands at the

95% level. The bands ±1.96/
√

n, for independent white noises, are displayed in

dotted lines. The bands in the left panels are obtained under the assumption of a

GARCH(1,1) white noise. Nonparametric bands for weak white noises are displayed

in the right panels.

The volatility models for the series ǫt were estimated over the period April

2000 to December 2004, involving 1,192 observations. To have a gauge, the

following standard one-regime GARCH(1,1) model was fitted

σ2
t = 0.0003 + 0.13 ǫ2

t−1 + 0.79 σ2
t−1

(0.0000) (0.0006) (0.0011)
(10)
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Fig. 4. Empirical ACF and PACF of the series (ǫ2
t ) and significance bands at the 95%

level. The bands ±1.96/
√

n are displayed in dotted lines. Nonparametric significance

bands are displayed in full lines.

The GARCH coefficients are close to those generally obtained for financial

series, with a strong persistence in volatility (α + β = 0.92).

Next, we turn to multi-regimes GARCH(1,1) models, where the regimes are

determined by the temperature level. We start by a three-regimes model, where

the three classes of temperatures correspond to approximately the same num-

ber of observations. This leads to choose st = 1 when Tt < 9, st = 2 when

Tt ∈ [9, 14], and st = 3 when Tt > 14, with frequencies in the sample

π̂1 = 0.35, π̂2 = 0.32, π̂3 = 0.33. (11)
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The fitted three-regimes GARCH(1,1) model is as follows.

σ2
t =















































0.0003 + 0.13 ǫ2
t−1 + 0.80 σ2

t−1 when Tt < 9,
(0.0002) (0.05) (0.06)

0.0011 + 0.37 ǫ2
t−1 + 0.36 σ2

t−1 when 9 ≤ Tt ≤ 14,
(0.0004) (0.10) (0.16)

0.0004 + 0.14 ǫ2
t−1 + 0.76 σ2

t−1 when Tt > 14.
(0.0001) (0.06) (0.10)

(12)

All coefficients, except the intercept in the first regime, are significant at the

5% level. The most striking point is the difference between the volatility dy-

namics in the middle regime, compared to the volatilities of the two extreme

regimes. The volatility of the second regime is less persistent (α(2) + β(2) =

0.73) with a more convex "news-impact curve". The impact of recent obser-

vations on the volatility is stronger than in the low- and high-temperature

regimes. It can be noted that the three GARCH(1,1) models are second-order

stationary, which entails the global stability with a finite time-dependent

variance for ǫt. Note also that the marginal variances within each regimes

(ω(j)/(1 − α(j) − β(j)) are roughly the same (around 0.04).

The next model is based on a decomposition of the lower and upper regimes

in (12). Letting st = 1 when Tt < 6, st = 2 when Tt ∈ [6, 9[, st = 3 when

Tt ∈ [9, 14[, st = 4 when Tt ∈ [14, 16[, and st = 5 when Tt > 16, the regimes

frequencies are given by

π̂1 = 0.16, π̂2 = 0.19, π̂3 = 0.32, π̂4 = 0.15, π̂5 = 0.18. (13)

Using the estimated parameters of Model (12) as initial values in the numerical
optimization routine, we get the fitted model

σ2
t =























































































0.0008 + 0.15 ǫ2
t−1 + 0.80 σ2

t−1 when Tt < 6,
(0.0004) (0.08) (0.11)

0.0010 + 0.00 ǫ2
t−1 + 0.80 σ2

t−1 when 6 ≤ Tt ≤ 9,
(0.0003) (0.04) (0.09)

0.0015 + 0.46 ǫ2
t−1 + 0.21 σ2

t−1 when 9 < Tt ≤ 14,
(0.0004) (0.12) (0.17)

0.0007 + 0.32 ǫ2
t−1 + 0.62 σ2

t−1 when 14 < Tt ≤ 16,
(0.0005) (0.12) (0.17)

0.0003 + 0.04 ǫ2
t−1 + 0.81 σ2

t−1 when Tt > 16.
(0.0003) (0.05) (0.13)

(14)
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The effects already noticed for the middle regime (little persistence and strong

convexity of the news impact curve) are more pronounced with this five-

regimes model. A strong coefficient α is also obtained in the fourth regime.

Conversely, the volatility in all other regimes mainly does not much depend

on the last observation. Again, the model is globally stable in the second order

sense.

The next model is aimed to detect the effect of extremely low or high tem-

peratures. Letting st = 1 when Tt < 3.2, st = 2 when Tt ∈ [3.2, 9[, st = 3

when Tt ∈ [9, 14[, st = 4 when Tt ∈ [14, 18.5[, and st = 5 when Tt > 18.5, the

regimes frequencies are given by

π̂1 = 0.06, π̂2 = 0.29, π̂3 = 0.32, π̂4 = 0.28, π̂5 = 0.05. (15)

The fitted model is

σ2
t =























































































0.0036 + 0.38 ǫ2
t−1 + 0.47 σ2

t−1 when Tt < 3.2,
(0.0035) (0.35) (0.60)

0.0007 + 0.04 ǫ2
t−1 + 0.68 σ2

t−1 when 3.2 ≤ Tt ≤ 9,
(0.0005) (0.07) (0.15)

0.0004 + 0.30 ǫ2
t−1 + 0.62 σ2

t−1 when 9 < Tt ≤ 14,
(0.0005) (0.12) (0.18)

0.0004 + 0.20 ǫ2
t−1 + 0.72 σ2

t−1 when 14 < Tt ≤ 18.5,
(0.0004) (0.10) (0.15)

0.0000 + 0.00 ǫ2
t−1 + 0.90 σ2

t−1 when Tt > 18.5.
(0.0070) (0.10) (0.43)

(16)

However, many coefficients are found insignificant at the 5% level. Finally,

we estimated a model in which the extreme temperatures (low and high) are

gathered in the same regime. Letting st = 1 when Tt < 3.2 or Tt > 18.5, st = 2

when Tt ∈ [3.2, 9[, st = 3 when Tt ∈ [9, 14[, and st = 4 when Tt ∈ [14, 18.5[,

the regimes frequencies deduced from (15) are

π̂1 = 0.11, π̂2 = 0.29, π̂3 = 0.32, π̂4 = 0.28 (17)
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Table 1
Likelihoods of the estimated models and Kurtosis of the standardized returns

GARCH Model (12) Model (14) Model (16) Model (18)

(d = 1) (d = 3) (d = 5) (d = 5) (d = 4)

log Ln 5173 5179 5206 5210 5187

κ̂η 6.00 5.76 5.43 5.68 5.63

and the estimated model is

σ2
t =



































































0.0026 + 0.34 ǫ2
t−1 + 0.41 σ2

t−1 when Tt < 3.2 or Tt > 18.5,
(0.0012) (0.13) (0.26)

0.0004 + 0.08 ǫ2
t−1 + 0.75 σ2

t−1 when 3.2 ≤ Tt ≤ 9,
(0.0003) (0.05) (0.09)

0.0011 + 0.38 ǫ2
t−1 + 0.35 σ2

t−1 when 9 < Tt ≤ 14,
(0.0004) (0.11) (0.18)

0.0004 + 0.08 ǫ2
t−1 + 0.75 σ2

t−1 when 14 < Tt ≤ 18.5.
(0.0004) (0.07) (0.15)

(18)

The likelihoods of the different models, displayed in Table 1 allow to compare

the different fits. From likelihood ratio tests, at the 5% significance level,

• the standard GARCH(1,1) model is not rejected against the 3 regimes

model;

• the GARCH(1,1) model is however rejected against any model with d > 3;

• the 3 regimes model is rejected against the 5 regimes Model (14).

Wald tests not reported here lead to the same conclusions. In the same table,

the estimated kurtosis of the variable ηt = ǫt/σt are reported. The biggest

kurtosis reduction is obtained with the 5-regimes Model (14). Table 2 reports

Mean-Squared Errors (MSE) of prediction at horizon 1. We re-estimated the

different models over the same sample except the last 500 observations, which

were used for the predictions. The estimated models over the sample were very

close to those estimated on the whole sample. From the prediction point of

view, the 5-regime Model (14) is again the preferred specification.

The computations of Section 2.3 allow to obtain the time-varying uncondi-

tional second and fourth-order moments, provided that they exist. Figure 5

displays the trajectory of Eǫ2
t for the estimated models. For the single regime

model, Eǫ2
t is constant and equal to 0.00375. The fourth regime model displays

small oscillations around this value. For the other models, particularly the
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Table 2

MSE (×10−5) of predictions (last 500 observations)

GARCH Model (12) Model (14) Model (16) Model (18)

(d = 1) (d = 3) (d = 5) (d = 5) (d = 4)

7.66 7.57 7.29 7.47 7.47

0.
00

5
0.

01
0

0.
01

5
0.

02
0

Time

2001 2002 2003 2004 2005

3states

5states normal

5states extrem

4states

1state

Fig. 5. Unconditional variance Eǫ2
t for the estimated models.

model with extreme temperatures (16), the fluctuations can be huge. Turning

to the fourth-order moment, recall that, in view of (3), the existence condi-

tion is
∏d

j=1 λ(ej)
πj < 1. This condition is only satisfied for the five-regimes

Model (16), see Table 3. This is illustrated in Figure 6, where the uncondi-

tional kurtosis in logarithms, recursively computed using (5), are displayed.

The unconditional kurtosis is seen to be explosive for all models, except Model

(16) for which it has a seasonal behavior.
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Table 3

Coefficient
∏d

j=1 λ(ej)
πj involved in the existence of fourth-order moments

GARCH Model (12) Model (14) Model (16) Model (18)

1.0094 1.0469 1.0676 0.9536 1.0482

0
20

40
60

80

Time

2001 2002 2003 2004 2005

3states

5states normal

5states extrem

4states

Fig. 6. Unconditional kurtosis in logarithms, log{Eǫ4
t /E(ǫ2

t )
2}. Missing values in the

curve of Model (16) are due to kurtosis approaching zero.

5 Conclusion

This paper reviewed a class GARCH models allowing volatility to depend on

an observed exogenous process. This observability of the state variable makes

the model much easier to use than the so-called Markov-switching processes, in

which the regime change is governed by a latent Markov chain. The model can

be estimated by QML and a consistent estimator of the asymptotic covariance

matrix has been proposed. The methodology has been applied to daily gas

prices using the temperature as exogenous variable. We found evidence of five

regimes, with a very different volatility dynamics in the moderate-temperature

regime. The model can be used for prediction purposes, using temperature
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scenarios. Many extensions, by including more lags in the volatility dynamics

or by considering multivariate series, are left for future research. It is hoped

that the article will broaden the use of time series models driven by exogenous

variables.

A Technical details

Proof of Proposition 1. For all θ ∈ Θ, let

J̃n(θ) =
1

n

n
∑

t=1

1

σ̃4
t (θ)

∂σ̃2
t (θ)

∂θ

∂σ̃2
t (θ)

∂θ′
, Jn(θ) =

1

n

n
∑

t=1

1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′
.

Note that Ĵn = J̃n(θ̂n). We have, letting θ = (θi)i=1,...,3d,

1

n

n
∑

t=1

{

1

σ4
t

∂σ2
t

∂θi

∂σ2
t

∂θj

}

θ=θ̂n

=
1

n

n
∑

t=1

{

1

σ4
t

∂σ2
t

∂θi

∂σ2
t

∂θj

}

θ=θ0

+
1

n

n
∑

t=1

{

∂

∂θ′

(

1

σ4
t

∂σ2
t

∂θi

∂σ2
t

∂θj

)}

θ=θ∗
ij

(θ̂n − θ0).

(A.1)

where θ∗ij is between θ̂n and θ0. Denote by (σ2
S,t(θ)) the process recursively

defined under A2 by σ2
S,t(θ) = ω(St) + α(St)ǫ

2
t−1 + β(St)σ

2
S,t−1(θ). We have,

for almost all sequence (st),

lim sup
n→∞

∥

∥

∥

∥

∥

n−1
n
∑

t=1

∂

∂θ′

(

1

σ4
t (θ

∗
ij)

∂σ2
t (θ

∗
ij)

∂θi

∂σ2
t (θ

∗
ij)

∂θj

)∥

∥

∥

∥

∥

≤ lim sup
n→∞

n−1
n
∑

t=1

sup
θ∈V(θ0)

∥

∥

∥

∥

∥

∂

∂θ′

(

1

σ4
t (θ)

∂σ2
t (θ)

∂θi

∂σ2
t (θ)

∂θj

)∥

∥

∥

∥

∥

= Eθ0
sup

θ∈V(θ0)

∥

∥

∥

∥

∥

∂

∂θ′

(

1

σ4
S,t(θ)

∂σ2
S,t(θ)

∂θi

∂σ2
S,t(θ)

∂θj

)∥

∥

∥

∥

∥

< ∞.

where ‖ · ‖ denotes any norm on R
3d. The equality follows from Lemma

5.2 in RZ and the fact that σ2
t (θ) and

∂σ2

t (θ)

∂θ
are measurable functions of

(st, st−1, . . . , ηt, ηt−1, . . .). The last inequality is a consequence of iii), in the
proof of Theorem 4.2 in RZ. Since θ̂n − θ0 → 0 a.s., the last term in (A.1)
converges to zero in probability as n tends to infinity.

Using again Lemma 5.2 in RZ, we obtain the a.s. convergence to J of the first
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term in the right-hand side of (A.1). Thus we have shown that

1

n

n
∑

t=1

{

1

σ4
t

∂σ2
t

∂θi

∂σ2
t

∂θj

}

θ=θ̂n

→ J, a.s.

Since, by FZ, Proof of Theorem 4.2,

sup
θ∈V(θ0)

∥

∥

∥

∥

∥

1

n

n
∑

t=1

{

∂2ℓ̃t(θ)

∂θ∂θ′
− ∂2lt(θ)

∂θ∂θ′

}∥

∥

∥

∥

∥

→ 0 a.s.

where ℓt(θ) is defined as ℓ̃t(θ) with σ̃t replaced by σt, we thus have

Ĵn =
1

n

n
∑

t=1

{

1

σ̃4
t

∂σ̃2
t

∂θi

∂σ̃2
t

∂θj

}

θ=θ̂n

→ J, a.s.

By the same arguments we prove that

κ̂η =
1

n

n
∑

t=1

ǫ4
t

σ̃(θ̂n)4
→ Eη4

t

and the proposition is established.
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