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In nonlinear econometric models, the evaluation of forecast errors is
usually performed, completely or partially, by resorting to stochastic
simulation. However, for evaluating the specific contribution of
errors in estimated structural coefficients, several alternative
methods have been proposed in the literature. Three of these methods
will be compared empirically in this paper through experiments
performed on a set of 'real world" econometric models of small, medium
and large size. This work extends to dynamic simulation of nonlinear
econometric models, for which the authors have recently analysed the
one-period (static) forecast errors empirically.

1. INTRODUCTION

Many economic forecasts are based on the solution or simulation of
macroeconometric models, in the form of systems of simultaneous equations. Even
if it 1is well known that these forecasts, as all others, involve uncertainty,
estimates of the uncertainty are not usually presented.

Some papers have dealt with this problem in the last few years, proposing and
experimenting with methods to evaluate forecast uncertainty in macroeconometric
models and, in particular, evaluating the forecast error variance.

In a recent paper (Bianchi and Calzolari, 1982), the authors have performed some
experiments on a set of small, medium and large size real world models, both
linear and nonlinear, comparing the results and performances of three different
methods:

- stochastic simulation and re-estimation, see Schink (1971);
- Monte Carlo on coefficients, see Fair (1980);
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- analytic simulation on coefficients, see Blanchi and Calzolari (1980).

The key statistic, to perform comparisons, was the variance of forecasts
one-period ahead (usually, the first period beyond the sample estimation period);
that 1is, for static forecasts. This paper aims at extending the empirical
comparison of those methods to multiperiod dynamic simulations of some real world
macroeconometric models. Its purpose is twofold. First, it will be shown that
the risk of nonconvergence of the two Monte Carlo methods is not increased by
dynamic simulation (it was shown by Bianchi and Calzolari, 1982, that there is a
risk in practice). Then we show that the minor differences 1in the results
produced sometimes, by the three methods in the static case, can be amplified by
dynamic simulation; the empirical equivalence of the three methods being rarer for
dynamic simulation.

The plan of the paper is the following. In section 2, the three methods for
estimating the variance of forecasts in econometric models are briefly summarized.
In section 3, some empirical evidence 1is provided on the convergence or
nonconvergence of Monte Carlo methods for a small linear model; in particular, the
differences from the static case are evidenced. Finally, in section 4, numerical
results related to several nonlinear real world models are presented.

2. FORECAST ERRORS IN ECONOMETRIC MODELS

Let a structural econometric model, linear or nonlinear in the variables as well
as in the coefficients, be represented as

(2.1) F(Y, sV 5%, 28) = U, t=1,2,...,T

where:

£' = (£,,f,,.00,8) is a vector of functional operators, continuously
differentiable with respect to the elements of current and lagged y, x and a;

Ve = (B sYar srevsYme)s X4 = (X1 »Xg0 5+005%Xn, ) and y., are the vectors of current

endogenous, exogenous and lagged endogenous variables, respectively;

a' = (a,,3,,...,34) 1is the vector of the structural coefficients to be estimated
(all the other known coefficients of the model are excluded from this vector
and included in the functional operators);

u! = (Uyy sUsy »e.0.5Um,) is the vector of structural stochastic disturbances (or
error terms) at time t, having zero mean and being independently and
identically distributed over time, with finite contemporaneous covariance
matrix, and independent of all the predetermined variables., In all the
experiments described in this paper, the contemporaneous distribution of the
error terms is assumed multivariate normal: u,~N(0,%).

It is wusually assumed that a simultaneous equation system like (2.1) implicitly
defines a single inverse relationship (reduced form) for relevant values of the
coefficients, the predetermined variables, and any values of the disturbance
terms:

(2.2) Y. B(Y:-|rxx,arut)’

g being, usually, an unknown vector of functional operators.

Let h be a time period not belonging to the sample estimation period 1,2,...,T,
and let the model be wused to forecast at times h+l, h+2, ..., h+r. Given the
values of the endogenous variables at time h, vy, , and the values of the exogenous
variables in the forecast periods, x

net? Xp.pp  eees X, ; then the values of the

endogenous variables in the forecast periods can be obtained recursively as:

X

(2.3) Inet = B(Fhn 5 Xnap85Una) 3
Yhea = g(Ynu ’Xn.z’a’umz) = g(g(}’h sXp, 385 Up ) 3Xp. 25 @5 Unus)

= 8, (Fn 3 %ne, ’xmz’a!un.numz);

Yoor = 8WherniXnes@stn.) = 8(g( 0] X 0a,u,)
=g, (Yn 3Xpysr e e 93X e3@sUpirs e s 9Uh.r) .

Several sources of error can be identified at this point (see, for example, Klein
and Young, 1980, p.81). First, if the model is incorrectly specified, equations
(2.3) would not represent the time path for the endogenous variables. (A4lso,

analysis of the forecast errors can be used to gauge mwmisspecification, see Fair,
1980).

A major source of uncertainty are the unknown values of the exogenous variables in
the forecast periods X,.,, Xn.» «.s» Xp.r» If the model is used for ex-ante
forecasting, that is h+l, h+2, ., h+r are in the future, the exogenous variables
must themselves be forecast, thus involving uncertainty. If ex-post forecasting
is performed, some uncertainty still exists about the values of the exogenous
variables (and of the initial values of the endogenous variables, y,) especially
if h is a sufficiently recent time period and preliminary data are used- but this
problem is not considered here. The present analysis and comparison of methods are
conditional on exact knowledge of the initial values of the endogenous variables
and of the values of the exogenous variables in the forecast period.

At least two error sources still remain and, to help understand these, we
summarise how model builders use their models to produce forecasts. The vector of
structural coefficients, a, 1s unknown; modelers use data in the sample period,
t=1,2,...,T, to get an estimated coefficients vector, &, and an estimate of the
contemporaneous covariance matrix for the structural error terms, 2. The model
builder must then choose a starting point for the simulation experiment. Such a
point (h) is wusually the last time period for which "sure" information is
available; in many cases it is h=T, the last point of the sample estimation
period., For the purposes of this paper, it is simpler to start from a period h
not belonging to 1,2,...,T (for example, h=T+l); when this will not be possible
for lack of data, we shall choose h inside the sample period and a slight
approximation will occur.

The model builder next introduces values for 1y, and x,,, X,,+ +.+5 Xpn.,, assumed
exact, sets the random error terms u,,, Upg ..., Uy, tO their expected value
(zero) and solves simultaneously the dynamic system (2.1) at time h+l, h+2, ...,
h+r. Using the reduced form notation (2.3), forecasts are obtained as



(2.4) 9h‘| = g(Yh 9xh.|)§r0);
Foez = 8Fnsy 9%n258,0) = 8(g (%, »Xney»3,0),%,,,,8,0)
= 8, (M s%nuy>Xn.8,0,0)5

Voor = 8GnerioXn.,»8,0) = g(g(...),%,.,,8,0)
= g, (Vo sXnor e o= 2%Xpnr8,0,...,0).

Forecasts §,..» ¥,.50 +++s J,., differ from the values of the endogenous variables in
the forecast period ¥, ,, Ya.p» --+» Y...» because the estimated & is used instead of
the unknown coefficients vector a, and due to the existence of the random error
CeIms U,,,, Up.pp +ees U,

In order to assign forecasts an estimate of their degree of uncertainty, it would
be useful to get, at least, an estimate of the first two moments of the forecast
exrrors 9., =Ynus Fnez=Vmezr r++s Iner~Vn.,» I most practical applications, however,
the estimation of the first moment of the forecast errors does not appear
particularly interesting, due to the mild nonlinearity of the econometric models
used, which causes it to be very small, at least for static or short dynamic
simulation periods (see, for example, Bianchi et al., 1976; Calzolari, 1979; Fair,
1980; Mariano and Brown, 1980).

Much more interesting, in practice, is the information which can be derived from
an estimate of the second order moments; where standard errors allow one, in fact,
to obtain confidence intervals for the single forecast endogenous variables, while
an estimate of the covariance matrix allows the construction of joint confidence
regions or the testing of hypotheses.

Three methods, to the authors' knowledge, have been proposed in the literature for
the evaluation of the second order moments of forecast errors in nonlinear
econometric models. Apart from the technical differences and the computational
approximations which they involve, these three methods are conceptually equivalent
in case of single equation models and for nonsimultaneous equation models. This
equivalence does not extend to simultaneous equation systems (even linear).
Experimental comparisons of results on real world models used for practical
purposes aim at investigating to what extent the methods can still be considered
as ''practically"” equivalent. The three methods can briefly be described as
follows.

~ Stochastic simulation and re-estimation.

With this method, a certain number of stochastic simulation runs over the sample
period must be performed. In each run, T vectors ({one for each period) of
pseudo-random error terms, with zero mean and covariance matrix equal to the
available £, are inserted into the system (2.1) and the simultaneous solution of
the system provides pseudo-random values of all the endogenous variables over the
sample period.

Each set of pseudo-random values is used, like a new set of data, to re-estimate
the model's vector of structural coefficients. Each vector is used for a new

stochastic simulation rum, this time not in the sample period, but in the forecast
period, also introducing new pseudo~random error terms.

The values of the endogenous variables obtained as solutions of the model in the
forecast period are affected either by errors in the estimated coefficients, which
have been randomly generated by the stochastic simulation in the sample period and
re-estimation, or by the structural errvor terms, which have been introduced by
stochastic simulation in the forecast period. A convenient number of replications
of this process allows one to compute a variance-covariance matrix of forecasts at
times h+l, h+2, ..., h+r.

The method of stochastic simulation and re-estimation is often used to analyze the
small sample behaviour of estimation methods, when the analitical investigation is
difficult or impossible (see, for example, Hendry and Harrison, 1974; Mariano,
1980; Mikhail, 1972). Its use for investigating the forecast errors of nonlinear
econometric models 1is proposed and described in detail in Schink (1971). This
method can be applied with several wvariants, since re-estimation can be performed
with different estimation procedures. Moreover, when the model is dynamic, at
each re-estimation the lagged endogenous variables should be set at the same
values of the corresponding stochastic simulation run. This means that, for each
re~estimation procedure, the method can be applied with, at least, two different
variants, since stochastic simulation over the sample period can be either static
or dynamic. The experiments summarized in this paper have been performed with
static stochastic simulation in the sample period. Some experiments have been
repeated with dynamic simulation in the sample period and setting, in each
re-estimation, the lagged endogenous variables at the values calculated in the
simulation run. The results were, in most cases, quite close to those obtained by
means of the static stochastic simulation and re-estimation, and are not presented
here. The matter, however, would be worth a separate and detailed analysis; some
experimental results can be found in Schink (1971).

- Monte Carlo on coefficients,

Instead of obtaining pseudo-random vectors of coefficients by means of a
stochastic simulation and re-estimation process, this method gets them directly by
sampling from the distribution of estimated coefficients. The small sample
distribution of structural coefficients in a simultanecus equations system Is
usually very complicated, or even unknown. In several cases, like linear dynamic
systems or nonlinear static systems, it can be proved that, under sufficiently
wide conditions, the distribution of estimated coefficients is asymptotically
multivariate normal. The experimenter, therefore, usually performs the generation
of pseudo-random coefficients from a multinormal distribution (see, for example,
Cooper and Fischer, 1974; Fair, 1980; Haitovsky and Wallace, 1972).

For this method, the covariance matrix of the structural coefficients is also
required. An estimate of this matrix is standard output from system estimation
methods, like three stage least squares or full information maximum likelihood;
otherwise, if single equation methods are used, this matrix must be built block by
block, as in Brundy and Jorgenson (1971,p.215) for limited information
instrumental variables, or Theil (1971,p.500) for two stage least squares



estimates. Pseudo-random forecasts can then be produced by performing stochastic
simulation of the forecast period. For each simulation run, a pseudo-randon
vector of coefficients must be generated from the multinormal distribution just
mentioned, and r independent vectors of pseudo-random error terms (one for each
period of forecast) must also be generated. Both error sources are, therefore,
taken into account. As for the previous method, a convenient number of
replications allows the computation of a variance-covariance matrix of forecasts
at time h+l, h+2, ..., h+r.

- Analytic simulation on coefficients.

This method extends that proposed by Bianchi and Calzolari (1980), for static
simulation of nonlinear models, to dynamic simulation. In turn, the earlier
proposal extended the fully analytical methods developed, for linear models, in
Goldberger et al. (196l), Dhrymes (1973) and Calzolari (1981). The case of
dynamic simulation of linear models is treated in Schmidt (1974).

The random error terms have been assumed serially independent; therefore, assuming
exact knowledge of all the predetermined variables (%, , Xn.;» Xp.zs +-+» Xn..)s Che
vector of coefficients, &, which is obtained from an estimation procedure applied
to the data of the sample period, is independent of the random error terms in the
forecast period (which 1is outside the sample estimation period). We can now
decompose the vector of forecast errors, in the generic forecast period h+k, as
follows:

(2.5)  Fove = Trew = 8 n sFnugs v e v 95X 8,0, .0.,0)

- 8k <Yn [RSCERIEIS SHTE FL SRR ’uh¢k)

= [gk (Y 5Xnars e+ 3%na08,05..,0) = g, (’Yn ’xh.|""xh‘k’a’0""0)]
+ [gk (¥n sXngrs e s 1 Xna0@s0,..,0) — g, (¥ :xhq)'-)xh‘k:ayuhu)--’uh‘k)]-

Having assumed exact knowledge of all the predetermined variables involved in our
forecast, the two components of the forecast error vector are independent, since
the former depends on &4, while the latter depends on u,,, ..., Un, We can ,
therefore, calculate the variances or the covariance matrices of the two
components separately, and sum them to get the final results.

The second component, which is due to the random error terms U,.,, ..., Un.,, can be
computed as in the previous methods, by means of replicated stochastic simulations
of the forecast period.

As far as the first component is concerned, its covariance matrix can be computed
by means of a linear approximation which is, in many cases, asymptotically exact.
1f we assume that, as T (sample period length) increases, asymptotically

(2.6) VT (&4 - a) ~NQO,¥),

and define G,,, as the (m x s) matrix of first order partial derivatives of the
vector of functions g,  with respect to the elements of a, computed at the point
(Yn > Xpuys ++es Xpo @5 O, ..., 0), then, asymptotically,

(2.7) VT (B (Fn sXnays v o5 %,00850,...,0)
- Bk (Yh (RO "xh<k’a)07"‘ )0)] ~ N(O:Gh.kqjc’r:w)

An estimated covariance matrix of a multinormal distribution, which approximates
the small sample distribution of the first component of the forecast errors, is
obtained by calculating Gn., at the point (¥, Xnys +cvs Xpo 4 O, .., 0),
replacing ¥ with the available estimate ¥, and dividing ... PG« by the actual
length of the sample period, T (see, for example, Schmidt, 1976, p.254). This
approximation is asymptotically exact if the functions of the vector g, are
continuously differentiable (see Rao, 1973, p.388) and if the estimated structural
coefficients are consistent and asymptotically normally distributed. The first
condition is not usually restrictive for econometric models, while the second can
be proved, with only weak restrictions, for linear dynamic models (see, for
example, Schmidt, 1976) or for nonlinear static models. For the general case of
nonlinear dynamic systems, formal proofs are mnot .available, but the heuristic
argumentations in Gallant (1977, pp.73-74) suggest that, even in the gemeral case,
it is reasonable to suppose that such a condition is satisfied; otherwise, the
procedure should be considered approximate, not only for small samples, but even
in the large sample case.

The computation of the first order derivatives has been performed, in all the
experiments of this paper, by means of numerical differentiation, using finite
differences between a control solution and disturbed solutions (with increments on
the structural coefficients) in the forecast period.

3. ARE THE THREE METHODS EQUIVALENT?

First of all, it must be noticed that all three methods, just described, resort to
stochastic simulation in the forecast period in order to evaluate the contribution
of the error terms to the variance of forecasts. Alternatively, some mixed
technique could be used; one of these techniques, based on the use of control
variates (obtained from local linearizations of the model) is described in detail
in Calzolari and Sterbenz (1982). These techniques, however, only aim at making
convergence of the sample variances faster than for straightforward stochastic
simulation, but they produce the same final results as stochastic simulation of
the forecast period; furthermore, these techniques can be inserted into any of the
three methods discussed in the previous section, without changing the final
results of the computation. We can say, therefore, that the three methods do not
differ from one-another in the treatement of the random error terms.

To investigate equivalence or nonequivalence of the three methods, therefore, we
must analyze the different treatment given to the errors in the estimated
coefficients.

For nonsimultaneous equation systems, the three methods are perfectly equivalent.
The simple case of a linear regression model might help to clarify this point.

Let the model be represented as

(3.1) Y =bx, +u,



and let b be the least squares estimate of b; furthermore, let &% be the estimated
variance of u, and §73x! be the estimated variance of b.

The analytic simulation method, applied to this model at time h (not belonging to
the sample estimation period) produces an estimate of the forecast variance

(3.2) V(5,) = x} 8%5x% + 57

which is the well known expression for regression models (see, for example, Klein,
1974, p.261).

1f random coefficients are generated with mean equal to the available b (kept
fixed throughout the experiment) and variance equal to the available §%2x?, then
the sample variance of a sufficiently large number of replicated solutions of the
equation would be a value close to the first term on the right hand side of the
equation. If, in addition, independent random error terms are introduced, the
sample variance would converge to the sum of the two terms of equation (3.2).

We can now use equation (3.1), with estimated coefficient, to generate random
values of y over the sample period, by introducing pseudo-random values of u,
(with zero mean and variance equal to the available &%), and re-estimate each time
a new (random) value of the coefficient. Since, in this case, the ordinary least
squares estimation method is unbiased, afrer a convenient number of replications
the sample mean of the re-estimated coefficients would converge to the original b,
and its sample variance would converge to &Y2x%. The procedure, therefore,
becomes perfectly equivalent to the previous one.

However, as soon as simultaneity is .introduced, the theoretical equivalence of the
three methods ceases to hold. A simple two equations linear model can be used to
explain why. The model consists of a consumption function (stochastic) and a
national income identity; investment is an exogenous variable.

[}
1]

bY, + u,
(3.3)
Y =C +I,.

The reduced form of this model is

[l
I

b/ (1-b)I, + 1/(l-b)uy,
(3.4)
Y, = 1/(1-b)I, + 1/(1-b)u,.

Let us now suppose b is estimated by means of some suitable estimation method, and
let &, be the standard error of such an estimate. Let us now apply the Monte
Carlo on coefficients procedure, generating random values of the coefficient from
a normal distribution with mean and standard deviation equal to the available
estimates. If we now look at the reduced form equations (3.4), it is clear that,
since normally distributed values of b (and hence of 1-b) appear at the
denominator, no term has finite moments (not even a first moment). This implies
that, no matter how many replications, the sample means and variances of the
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forecasts should fluctuate abnormally as the number of replications increases, and
would not be expected to converge.

It must be noticed, at this point, that the nonexistence of finite moments is due
to the denominator (l-b), which can assume values close to zero with nonzero
probability. If such a probability is sufficiently large, surely the phenomenon
will be relevant in practice and we will observe that our Monte Carlo does not
converge. However, this probability could be so small (for example if 1-b is
greater than 20 times §,) that no value of (l-b) dangerously close to zero would
be generated, even in millions of replications; in this case the risk would be
purely theoretical, since any Monte Carlo experiment, with the currently available
generators of random numbers, would always be successful. It is clear at this
point that the risk of nonconvergence in any model, linear or nonlinear, can be
actual or purely theoretical depending on the values of the coefficients and of
their covariance matrix. it was shown in Bianchi and Calzolari (1982) that the
risk was, in fact, actual in many real world models.

A quite different problem arises if b has a truncated distribution, such that
(1-b) cannot assume zero value, but can assume values quite close to =zero with
high probability. In this case, the distribution of 1/(l-b) has finite moments,
and the Monte Carlo converges after a sufficiently large number of replications.
However, when computing the moments of 1/(l-b), the values of (l-b) close to zero
dominate the final results. It might, therefore, happen that two distributions of
(1-b) which differ substantially in the region close to zero, even though they may
have the same mean and variance, lead to distributioms of 1/(l-b) with quite
different moments.

No risk of nonconvergence exists, for this particular model, if we apply a
stochastic simulation and re-estimation procedure with a suitable estimation
method. Let us suppose we know b and o¢° with certainty and perform several
stochastic simulation runs over the sample period, by introducing into system
(3.3) values of u, with normal distribution, zero mean and variance o?. Let
v, =1/ (I~b)u, and d=b/(l-b). We can write the first reduced form equation in the
form

(3.5) C, =dI, + v, .

Since the equation is exactly identified, indirect least squares can be a suitable
estimation method here (see Dhrymes, 1970, pp.279-289). For each stochastic
simulation run, we use the calculated values of C, to estimate, by ordinary least
squares, a value of d; then a value of b can unequivocally be derived as
b=d/(l1+d). The problem is clearly reversed with respect to the Monte Carlo on
coefficients method. The random values of d have a normal distribution (therefore
with finite variance), since equation (3.5) is estimated by ordinary least squares
and v, has, itself, a normal distribution. On the contrary, the random values of
the structural form coefficient, b, have a distribution without finite moments,
but this is not relevant for forecasting.

As we have estimated Cthe reduced form directly by ordinary least squares, the
sample variance of our random forecasts for C,, after a large number of



replications, would converge to

(3.6) V(€. = 1.v(d) + viv,)

12 0¥ (1-by . /31 + o¥(1-b)*.

"

0f course, b and 0% should be replaced by the available estimates b and &%

1f we apply the analytic simulation method, since the estimated asymptotic
variance of b , estimated by indirect least squares, is &3(1-b)® /31!, we would get
for the forecast variance the same as equation (3.6). In this case, therefore,
two of the three methods are equivalent, but one is not. It would be possible to
make it equivalent to the others by performing the random sampling of coefficients
from an appropriate distribution, different from the normal. In this way the
problem could be solved for this particular example, but not in general, since the
distribution should be 'ad hoc" for any model and its derivation would usually
involve overwhelming difficulties.

Let us now consider the general case of a static linear model,
(3-7) Ay: + Bxl = Uy

where A and B are matrices of structural coefficients (A 1is square and
nonsingular), some of which are fixed a-priori (zero and one restrictions, for
example), ~while others must be estimated. Defining IT,=-A'B and v, =A'yu,, the
restricted reduced form can be represented as

(3.8) y, = Ihx, + v .

If A, B and ﬁ‘=—&“ﬁ (A nonsingular) are the available estimates of the
coefficients, the model can be used to forecast at time h+l, h+2, ..., h+r. For
example, at time h+r, it will be

(3.9) oo, = 1%,
The vector of forecast errors at time h+r is
(3.10) 9mr = Vaer = ( ﬁl_ I Y Rper = Viees

Equation (3.10) shows the strict relation between forecast errors and errors in
estimated coefficients of the resticted reduced form. When performing stochastic
simulation and re-estimation, we reproduce, experimentally, the small sample
distribution of either the structural form or the reduced form coefficients. When
calculating the sample variances of the random forecasts, we could be sure that
these variances converge only if the distribution of ﬁ, has finite moments, at
least to the second ordet.

The existence of finite moments of reduced form coefficients 1is not a general
property of simultaneous equations systems, but it strictly depends ' on the model
and on the estimation method which is adopted. Detailed proofs can be found, for
example, 1in Mariano (1980), McCarthy (1972), or Sargan (1976), but a simple

intuitive explanation is given in McCarthy (198l). Some estimation methods, like
full information maximum likelihood (or like indirect least squares, when it can
be applied as in the two equations model) directly estimate fl; they make use of
any overidentifying restrictions of the structural form, but do not need inversion
of the matrix A. However, for other estimation methods, like two or three stage
least squares, the reduced form coefficients are derived from the structural form
coefticients through the inversion of the matrix A, and "the model builder has no
control on the determinant" of such a matrix. The determinant of A (appearing in
the denominator of each element of the inverse) "can take a zero value with
positive probability density associated with all points in the neighborhood of
zero". This 1is quite similar to what happens when Monte Carlo on coefficients
method is applied to the two equations model (and, in fact, the denominator l-b is
the determinant of the matrix A in such a model). We see, in this way, that in
the general case not only Monte Carlo on coefficients, but also stochastic
simulation and re-estimation method is not equivalent to the analytic simulation
method; the latter, in fact, calculates the covariance matrix of a distribution
which asymptotically approximates the small sample distribution of our reduced
form coefficients or forecasts; since this asymptotic distribution is normal, it
always has finite moments.

Empirical evidence with a linear model based on real world data might help to
clarify the above. The model is the well known model of the U.S. economy
1921-1941, described in Klein (1950), usually referred to as the "Klein-I1 model",
It consists of 3 stochastic equations plus 3 identities; it includes &4 exogenous
variables and 3 lagged endogenous variables.

The structural form of the model is:

C. = a, + a,P, + a,P + a, (WI+W2) + u,

I, = ag + agP + a, P, + agK., + uy,

Wi = ag + anp(Y+T~W2), + a, (PHW14T), , + anpt + u,
Y, = G+ L+ G- T,

P, = Y, - Wl ~ W2,

K, = K+ I,

(3.11)

where the 6 endogenous variables are: C= consumption; I= net investment; Wl=
private wage bill; Y= national income; P= profits; K= end-of-year capital stock.

By substitution into the three stochastic equations, the three identities can be
eliminated, obtaining:

Co - a, - ap (CHI-WI-W2-TH+G), = a, Py, - a, (WI+W2), = u,
(3.12) I, - a5 — ag (CHL-W1-W2-T+G), -a; Pry - 2 Koy = Uy
Wl = ag — a5 (C+I-W2+G), — ay (PHWI4T),., - apt = us.

In the notation of equation (3.7), the matrix A is
1-a, -a, a,~a,

(3.13) A = | -a4 l-a, ag

~8i0 ~ai 1



The determinant of the matrix A is
(3.14) D=1. - a; — ag + 8.8 — @4+, + 84 .84

We can now assign, as initial values, to the coefficients, to their covariance
matrix and to the covariance matrix of the error terms, the numerical values
obtained by full information maximum likelihood estimates (FIML; most of these
values can be found in Hausman, 1974). If we apply the Monte Carlo on
coefficients method, with a sufficiently large number of replications, auad
calculate each time the determinant of the randomly generated matrix A, we get an
experimental distribution of such a determinant as in the corresponding curve of
Figure 1.

-.—-Stoc.sim~In.IV re-est,.
---Stoc.sim~LIVE re-est.

_,v' L, . ...Stoc.sim~FIML re-est. - e
...... PEGIE SO —Monte Carlo on coeffic.
gl 1 1 il
0.0 1.0 2.0 3.0

Fig. 1

Klein~I model. Initial estimates: FIML, 1921-1941.
Probability density of the determinant of matrix A

If we apply stochastic simulation over the sample period, re-estimating each time
by full information maximum likelihood, we get, for the determinant of the matrix
A, a probability density function as in the dotted line of Figure 1. We can now
repeat the same experiment using different methods for re-estimating coefficients
at each replication. We have done it twice, using two versions of the limited
information instrumental variables method by Brundy and Jorgenson (1971, 1974):
the efficient version, where an ordinary least squares estimation is followed by
two iterations of the instrumental variables estimation (LIVE); and the
inefficient (but still consistent) version, where the instrumental variables
estimation is performed just once (In.IV).

The different behaviour of the methods is evidenced by the figure. All methods
(including analytic simulation) lead to quite similar values for the first and

second moments of the determinant of A (the mean is approximately 1.6, while the
standard deviation is approximately 0.6). However, for stochastic simulation and
re-—estimation with FIML, there is no risk of generating random coefficients such
that the matrix A is nearly singular. If re-estimation is performed with the
efficient limited informatiom instrumental variables method (LIVE), still there is
no risk {(some risk was evidenced in Bianchi and Calzolari, 1982, for this method
applied to a shorter estimation period, 1921-1939). If re-estimation is performed
with the inefficient instrumental variables method, the risk exists, even if
small. For Monte Carlo on coefficients method, the risk is much higher.

Table 1

Klein-1 model. Initial estimates: FIML 1921-1941
One-period forecasts and standarxd errors at 1948

Obsrv. Forec. An.sim. FIML LIVE In.IV M.C.
C 82.8 76.5 2.7 2.6 3.0 5.7 9.5
I 6.4 6.3 2.2 2.2 2.3 2.6 7.2
Wl 60.7 58.2 2.7 2.6 2.9 6.5 6.3
Y 97.4 91.0 4.7 4.7 4.9 7.6 17.
P 27.9 24.1 2.5 2.5 2.5 2.6 10.
K 204. 204. 2.2 2.2 2.3 2.6 7.2

Standard errors of forecasts produced by these four Monte Carlo experiments (1000
replications) and by analytic simulation, are displayed in Table 1. They are
related to one-period forecasts at 1948; values of the predetermined variables
have been taken from Goldberger et al. (1961). If we follow the way in which
results of the Monte Carlo experiments change as the number of replications
increases, we would observe large and frequent fluctuations of results in the case
of Monte Carlo on coefficients, smaller and rarer (but still enough to inhibit
convergence) fluctuations in case of inefficient dinstrumental variables
re-estimation. On the contrary, results of stochastic simulation with LIVE or
FIML re-estimation converge, and their results are quite similar to those obtained
by analytic simulation.

We have concentrated our discussion mainly on the problem of a possible zero value
of the determinant of matrix A, which causes the nonexistence of finite moments
for our forecasts and, therefore, nonconvergence of the Monte Carlo experiuments.
The reason for stressing this point is that, in the large set of experiments on
one-period forecasts performed in Bianchi and Calzolari (1982), an approximate
equivalence of results was found in all cases in which Monte Carlo converged; in
other words, no Monte Carlo experiment ever converged to values largely different
from those produced by analytic simulation. The only cases in which 1large
differences occurred were those cases in which Monte Carlo did not converge
anywhere. It seemed, therefore, that the nonconvergence of Monte Carlo, due to
some determinant close to zero (or for some other reason, presumably similar, but
not so explicit for nonlinear models), could be the only source of large
differences in the results produced by the three methods for models actually used
for torecasting purposes. This, however, is not true for some models, when we



pass from one-period (static) forecasts to forecasts produced by wultiperiod
dynamic simulations. Then, even if the matrix which must be inverted is the same
as in the static case, the dynamic simulation mechanism increases the risk of
generating values of the denominator close to zero, as will soon be clear. Let

(3.15) Ay + Bx, + Cyy = u,
be the structural form of the model. Defining ﬂ0=—A”C, the reduced form of the
model is

(3'16) o T noym + ”|Xx + Ve .

The solution of the model at time h+r, conditional on the value of y at time h,
assumed known, is

. f
(3-17) Yher = ”(rJYh + ;”gkrnxmk + ;”;-kvnek‘
Using the model with estimated coefficients to forecast at times h+l, h+2, ...,
h+r, the forecast error at time h+r is

(3-18) yh.r ~ Y T (ﬁ:) - né)Yh + ;(ﬁ:kfh - n:kn|)xh~k
— ;ﬂ;“‘vh‘k.

The matrix A which must be inverted to compute [1, and I1, is still the same as in
the static case. Therefore, the risk of nonconvergence of Monte Carlo should be
the same as in the static case. However, in a long dynamic simulation run the
behaviour of the model crucially depends on the powers of [l, and, therefore, on
the powers of A'. Values of the determinant of A not too close to =zero, but
smaller than one, may become sufficiently close to zero as soon as they are raised
to a moderate power, as in dynamic simulation over a few periods; the probability
density of the determinant raised to a power is higher, near zero, than for the
determinant raised to one. In this case, Monte Carlo experiments would still
converge after a sufficient number of replications, but the results would
crucially depend on the form of the distribution of the determinant near zero, and
not just on the first two moments of the determinant itself. The slight
differences between the probability densities of the determinant, related to LIVE
and FIML re-estimation, in the region between =zero and one, are enough to cause
sufficiently large differences in the dynamic simulation results.

In a set of experiments of dynamic simulation forecasts from 1931 to 1941
(unfortunately inside the sample period, due to lack of data) we always got
convergence of stochastic simulation, with LIVE and FIML re-estimation, over the
entire forecast period. (Of course, experiments with Monte Carlo on coefficients
and with the other stochastic simulation and re-estimation method did not converge
in any year of the forecast period, as they did not converge in the static case).

Results related to the first and last of the 1l years of forecasts (1931 and 1941)
are displayed in Table 2, and empirically support the above discussion. In the
first year of the forecast period, when simulation 1is still static, results

Table 2

Klein~I model. Initial estimates: FIML 1921-1941
Dynamic simulation forecasts 1931-1941,
Forecasts and standard errors at 1931.

Obsrv, Forec. An.sim. FIML LIVE In.IV M.C.
C 50.9 54.5 2.4 2.3 2.5 6.5 9.6
I -3.4 ~.557 2.0 2.0 2.4 2.4 7.8
Wl 34.5 37.2 2.3 2.3 2.5 8.5 6.8
Y 50.7 57.2 4.3 4.3 4.8 9.1 18.
I3 11.4 15.2 2.3 2.2 2.6 2.7 10.
K 213, 216, 2.0 2.0 2.4 2.4 7.8
Forecasts and standard errors at 1941

(... indicate values greater than 1000).
Obsrv. Forec. An.sim. FIML LIVE In.IV M.C.
69.7 63.5 3.8 3.8 6.0 .. .
I 4.9 -1.58 2.6 2.6 9.7 . -
Wl 53.3 45.4 3.6 3.6 5.8 .. e
Y 85.3 72.7 6.2 6.2 15. . .
P 23.5 18.7 3.0 2.9 9.9 e
K 209. 208. 10. 9.7 17. . .

obtained by stochastic simulation and re-estimation with FIML and LIVE methods are

/ similar to each other; however, after 11 periods of dynamic simulation, results

from the two methods are rather different, but we observe that the results related
to FIML re-estimation are still sufficiently close to those produced by analytic
simulation.

4. RESULTS ON NONLINEAR REAL WORLD MODELS

The set of experiments on the Klein-I model has been designed to evidence the
possible situations which may arise when estimating the variance of forecasts in a
linear model. When estimating the variance of forecasts in the dynamic simulation
of a large nonlinear model, we cannot have a clear analytical insight of the
mechanisms which cause similarity or differences in results obtained with the
three methods. It seems, however, reasonable to believe that the mechanisms are
similar to those which act in the linear case.

What we want to show, in this section, is that, even for medium or large scale
nonlinear models, used in practice for forecasting purposes, we can emcounter
cases in which:

- all Monte Carlo methods converge and their results are close to each ather and
to analytic simulation results;



- soume methods do not converge, while other methods converge to results similar
to those produced by analytic simulation;

- some or all methods converge, but their results are close to those produced by
analytic simulation in the first period of forecast, but diverge from each
other and from analytic simulation after a few periods.

For computational simplicity, re-estimation has always been performed by means of
the inefficient or efficient limited information instrumental variables methods,
indicated as In.IV or LIVE, respectively. It must, however, be recalled that LIVE
is efficient, in the class of limited information estimators, only when the model
is lipear. When the model is nonlinear, as discussed in Amemiya (1977),
instrumental variables estimation methods can be inefficient, whatever number of
iterations is performed; nevertheless, we have maintained the name LIVE even in
case of nonlinear models, since the estimation procedure is exactly the same as in
the linear case.

- ISPE model of the Italian economy
Table 3
ISPE model of Italian economy. Dynamic simulation
forecasts 1960-1977. Initial estimates: 2SLS with
principal components. Standard errors of forecasts

at 1960 (percentage); at 1977 (percentage).

An.sim., LIVE In.IV M.C. An.sim. LIVE In.IV M.C.

CPNCF 1.7 1.7 1.7 1.8 5.8 6.7 6.7 8.2
DXML 3.5 3.2 3.2 3.5 6.7 7.6 7.6 9.9
IFIT 10. 10. i0. 10. 11. i2, 13. 17.
LL 2.3 2.3 2.3 2.3 3.4 3.9 4.0 4.7
MT 6.0 5.9 5.9 6.0 13. 15. 15, i8.
PCL 1.7 1.6 1.6 1.7 10. 11. 12. 15.
VAP 1.9 1.9 1.9 2.0 3.7 4.4 4.5 5.9
XT 3.5 3.2 3.2 3.5 8.8 10. 10. 13.

The results displayed in Table 3 are related to the annual model of the Italian
economy developed by ISPE (Istituto di Studi per la Programmazione Economica,
Roma)., The model, described in Sartori (1978) and Bianchi et al. (1982), consists
of 19 stochastic plus 15 definitional equations; there are 75 estimated
coefficients. The initial estimates used for the experiments have been obtained
by means of two stage least squares with principal components; the choice of the
principal components and’ of the predetermined variables to be used in the first
stage has been performed according to the method 4 described in Kloek and Mennes
(1960). For lack of data, the forecast period (1960-1977) is not external to the
sample estimation period (1955-1976).

The results in Table 3 are related to 8 of the main endogenous variables of the

model. The variables are: CPNCF= private consumption; DXML= price deflator for
exports; IFIT= private investment; LI= employees in industrial sector; MT= imports
of goods and services; PCL= price deflator of private consumption; VAP= gross
output of private sector; XT= exports of goods and services. The standard errors
are displayed as percentages of the forecast value of each endogenous variable.
It is clear from Table 3 that, for this model, most methods remain approximately
equivalent both for static simulation (1960) and after a sufficiently long dynamic
simulation period; only Monte Carlo on coefficients converges, in dynamic
simulation, to values slightly larger than those produced by the other methods.

- IBM model of the United Kingdom
Table 4
IBM model of the United Kingdom. Dynamic simulation
forecasts 1976/1-1978/IV. Initial estimates: iterative
instrumental variables. Standard errors of forecasts

at 1976/1 (percentage); at 1978/1IV (percentage).

An.sim. LIVE In.IV M.C. An.sim. LIVE In.IV M.C.

BI 3.2 3.2 3.2 3.2 8.3 14, 19. 28,
CPI 1.4 1.3 1.4 1.5 9.6 11. 11. 66.
EM 0.4 0.4 0.4 0.4 1.4 2.8 3.4 2.5
GNP 1.3 1.3 1.3 1.3 2.7 3.8 4.6 10.
GNPC 1.5 1.5 1.5 1.7 12. 15. 15, 133.
M 2.7 2.7 2.7 2.7 4.6 6.0 6.8 15.
XIP 1.9 2.1 2.2 1.9 4.6 10. 18. 16.

The results displayed in Table 4 are related to the macroeconomic model of the
United Kingdom developed by the IBM Economics Department. It 1is a quarterly
model, with 120 equations, 21 of which are stochastic, and with 32 éxogenous
variables; there are 68 structural estimated coefficients. The start of the
sample period varies from 1956/I1 to 1969/I but always ends at 1975/IV. The
initial estimates used for the experiments have been obtained by means of
iterative instrumental variables (obtained by iterating LIVE method till
convergence is reached).

The results in Table 4 are related to 7 of the main endogenous variables of the
model; standard errors are displayed as percentages of the value forecast for each
variable. The forecast period is external to the sample estimation period: from
1976/1 to 1978/1IV. The variables are: BI= private fixed investment; CPI= consumer
price index; EM= private sector employees; GNP= gross national product; GNPC= GNP
in current prices; IM= imports; XIP= index of industrial production.

It is clear from Table 4 that, while for static simulation (1976/I) all methods
are approximately equivalent, after some periods of dynamic simulation Monte Carlo
on coefficients method and stochastic simulation and re-estimation with
inefficient instrumental variables converge to results which are rather different



from each other and from the results produced by the other two methods. Smaller
differences can be observed between results produced by analytic simulation and
stochastic simulation with LIVE re-estimation.
- Bonn Forecasting System No.l0 (real sector)
Table 5

Bonn Forecasting System No.l0 (real sector).

Dynamic simulation forecasts 1970-1977.

Initial estimates: LIVE. Standard errors of forecasts

at 1970 (percentage); at 1977 (percentage).

An.sim. LIVE In.IV M.C. An.sim. LIVE In.IV M.C.

p'C L.1 L.1 1.1 1.1 3.5 3.4 3.4 3.4
WR'P 2.6 2.6 2.6 2.6 8.7 9.1 9.1 9.3
C'PR 1.5 1.5 1.5 1.5 3.1 3.4 5.8 3.4
YDP'P 1.4 1.4 1.5 1.5 2.2 2.6 8.3 2.4
M'GSNO 3.2 3.2 3.2 3.2 5.3 5.9 19. 5.6
T 3.1 3.1 3.1 3.1 6.8 6.8 9.4 6.9
FW 11, Il. 11, 1. 25, 25. 24. 28.

The results displayed in Table 5 are related to the real sector sub-model of the
Forecasting System No.l0 of the German economy, developed by the University of
Bonn. For a description of the model, reference should be made to Krelle (1976)
and to Conrad and Kohnert (1980). The sub-model wused for these experiments
consists of 136 equations, 59 of which are stochastic; it includes 39 exogenous
variables and 163 estimated coefficients (data are annual). For most of the
equations, the estimation period is 1960-1977.

The initial estimates used for the experiments have been obtained by LIVE methods
(two iterations after an initial ordinary least squares estimate). Since, for
this model, the number of structural equations 1is considerably larger than the
length of the sample period, the estimated covariance matrix of structural
coefficients is not positive definite, so that the triangular decomposition of the
matrix, required by the Monte Carlo on coefficients method, cannot be performed.
Therefore, experiments with Monte Carlo on coefficients have been performed
assuming the matrix to be block diagonal, as in Cooper and Fischer (1974), Fair
(1980), Haitovsky and Wallace (1972); of course, this introduces an additional
approximation.

Analytic simulation on coefficients has been performed both with the complete
covariance matrix and with the block diagonal matrix; as the results did not
change significantly, at least for most variables (see Bianchi et al., 1981 for
other results on this topic), only results obtained with the complete matrix are
displayed in Table 5.

The results are displayed for 7 of the main variables: P'C= price index of

consumption; WR'P= wage rate private; C'PR= private consumption; YDP'P= gross
domestic product private; M'GSNO= imports of goods and services; T= total tax
payment; FW= foreign workers.

In the first forecast period (static simulation), the results produced by all
methods are quite similar to each others. On the coantrary, in the last forecast
period (dynamic simulation from 1970 to 1977; also in this case, the forecast
period is not external to the sample estimation period) three methods produce
quite similar results, while results produced by stochastic simulation and
inefficient instrumental variables re-estimation diverge from the others.
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