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Abstract

This paper considers the application of long memory processes to describe inflation

with seasonal behaviour. We use three different long memory models taking into account

the seasonal pattern in the data. Namely, the ARFIMA model with deterministic sea-

sonality, the ARFISMA model, and the periodic ARFIMA (PARFIMA) model. These

models are used to describe the inflation rates of four different countries, USA, Canada,

Tunisia, and South Africa. The analysis is carried out using the Sowell’s (1992) maxi-

mum likelihood techniques for estimating ARFIMA model and using the approximate

maximum likelihood method for the estimation of the PARFIMA process. We imple-

ment a new procedure to obtain the maximum likelihood estimates of the ARFISMA

model, in which dummies variables on additive outliers are included. The advantage of

this parametric estimation method is that all parameters are estimated simultaneously

in the time domain. For all countries, we find that estimates of differencing parameters

are significantly different from zero. This is evidence in favour of long memory and sug-

gests that persistence is a common feature for inflation series. Note that neglecting the

existence of additive outliers may possibly biased estimates of the seasonal and periodic

long memory models.

Keywords : Long memory; Fractional integration; Seasonality; Periodic models;

inflation.

JEL classification: C22, E31

1 Introduction

Inflation has been a major problem of many economics. In order to keep inflation in check

the policy makers need to have good understanding of the dynamic properties of the inflation

rates. In the literature, time series of inflation rates are highly persistent. Persistence refers

to an important statistical property of inflation, namely the current value of the inflation rate

is strongly influenced by its history. Despite extensive researches on the dynamic properties

of inflation rates, there is still no agreement about the key question of persistence in inflation.
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These researches can be classified into tow major groups. The first group of papers test for

the existence of unit root in the inflation rates, disagreement remains in these papers on the

classification of inflation rates as stationary or nonstationary. Barsky (1987), MacDonald

and Murphy (1989), and Ball and Cecchetti (1990) provided evidence in support of unit root

in inflation rates. On the other hand, Rose (1980) found evidence of stationarity in inflation

rates. Brunner and Hess (1993) claimed that the inflation rate was stationary before 1960,

but it has become nonstationary since that time.

In response to this debate about the stationarity of inflation rates the second group pa-

pers provided an explanation by modelling inflation rates as fractionally integrated processes

I(d), Where the fractional order of differencing d is a real number. The fractionally inte-

grated model implies that the autocorrelations of inflation exhibit very slow hyperbolic

decay.

Baillie, Chung, and Tieslau (1996) used fractionally ARMA (ARFIMA) models with

GARCH errors to test for long memory in the inflation rate of the G7 countries and they

found significant evidence. Similar evidence of strong long memory in the inflation rate of

the United States, United Kingdom, Germany, France, and Italy is also provided by Hassler

and Wolters (1995). Baum, Barkoulas, and Caglayan (1999) found significant evidence of

long memory in the inflation rates for the industrial as well as the developing countries.

Baillie et al (2002) explore the long memory property in the first and second conditional

moments of inflation rates simultaneously. Furthermore, Reisen, Cribari and Jensen (2003)

suggest that the inflationary dynamics of Brazil are better modelled by a long memory

process than by a unit root mechanism.

An additional characteristic of the monthly inflation rates, in major countries, is its

marked seasonal pattern. In the literature on long memory model, it is practical to remove

seasonal fluctuations by means of including seasonal dummies variables in the ARFIMA

models or analyzing the seasonal fractionally differenced models as in Porter-Hudak (1990),

where the differenced filter is (1 − Ls)d, with s is the seasonal periodicity and d is a real

number. More recently a new model was appeared, namely, the periodic ARFIMA model.

This model yields a useful description for long memory time series characterized by a change

in its dynamics across the seasons ( see Franses and Ooms (1997) ).

This study considers the nature of seasonality in the inflation series with long memory

behaviour for four countries, USA, Canada, Tunisia, and South Africa. We use three ap-

proaches that take account of seasonality in monthly inflation rates, namely the ARFIMA

models with seasonal dummies variables, the seasonal fractional integrated model, and the

periodic ARFIMA (PARFIMA) models. To make comparison, we also estimate ARMA and

periodic AR models for monthly inflation rates.

Many estimators of the fractional parameter d, based on parametric and semiparametric

estimation, have been proposed in the literature. The parametric estimators of parameter

d are usually obtained using maximum likelihood and approximate maximum likelihood

methods. In this study, we use the sowell’s (1992) maximum likelihood estimation method,

for the ARFIMA model, and we use the approximate maximum likelihood estimation for the

PARFIMA model. It is currently practice to estimate seasonal fractionally integrated model
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using semiparametric estimation technique due to Porter-Hudak (1990). One contribution

of this study is to investigate whether we can estimate the ARFISMA (p, d, q) model by

exact maximum likelihood. The advantage of this parametric estimation method is that

all parameters of the ARFISMA (p, d, q) model, including the mean, the autoregressive

and the moving average ones, can be simultaneously estimated. This is in contrast to the

semiparametric estimation method, where the parameters are estimated in two steps. First,

we estimate d. The autoregressive and the moving average parameters are estimated in a

second step.

The plan of the rest of this paper is as follows. Section 2 briefly summarizes the standard

long memory models. Section 3 discusses the data and present some descriptive analysis.

An applications of additive outliers test reveal the exisitence of some outlying observations

in the inflation. The ADF test reject the hypothesis of unit rout in the inflation series.

In section 4, we test for long memory in the inflation rates. There is strong evidence of

long-range dependence in the inflation for all countries. Section 5 reviews the non-periodic

analysis of monthly inflation by estimating ARMA and ARFIMA models. In section 6, a

maximum likelihood estimation procedure for the seasonal fractionally integrated model is

proposed and monthly inflation rates are analyzed by this models. In section 7, we review

the periodic analysis of monthly inflation by estimating PAR(1) and PARFIMA models.

Section 8 summarize a comparison between various models employed in this study for the

inflation rates. Finally, we conclude in section 9 with some remarks

2 Long memory time series

Over the last few years, a new model has been introduced for modelling data with long

memory behaviour. This model is an extension of ARIMA models introduced by Box and

Jenkins (1970). Recalling the ARMA (p,q) in which the process is stationary. However, if

the process is nonstationary thus it is integrated. This process is known as ARIMA (p,d,q)

models where d is an integer. As a generalization of this type of models to incorporate long-

range dependence, Granger and Joyeux (1980) and Hosking (1981), independently, discuss

fractionally integrated processes which is commonly referred to as "long memory" model

and in which the difference parameter d is allowed to be a non-integer. The fractional

integration in a time series yt is defined as follows:

(1− L)d(yt − µ) = εt (1)

Where the parameter “d” is a real number and called the fractional degree of integration

of the process , {εt} is a sequence of uncorrelated random variables with zero means and

constant variances σ2, “L” is the backshift operator such that Lyt = yt−1, and µ is the

expectation of yt.and (1− L)d is the fractional difference operator and it can be expanded

as:

(1−L)d = 1−dL− d(1− d)
2!

L2− d(1− d)(2− d)
3!

L3− ...− d(1− d)...(j − 1− d)
j!

Lj− ... (2)
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As a generalization to the fractionally integrated model in (1), The autoregressive frac-

tionally integrated moving average process of order (p,d,q), denoted by ARFIMA(p,d,q),

with mean µ , is defined as

Φp(L)(1− L)d(yt − µ) = θp(L)εt (3)

where Φp(L) = 1−Φ1L− ......−ΦpLp is the autoregressive operator, θq(L) = 1+ θ1L+
......+ θqL

q is the moving average operator.

The stochastic process yt is both stationary and invertible if all roots of Φp(L) and θq(L)

lie outside the unit circle and |d| < 0.5.For d ∈
]
0,
1

2

[
,the process is said to be long memory

stationary with non-summable autocorrelations, that is,
∑∞
k=0 |ρk| =∞,where the ρk is the

aurocorrelation function of {yt} at lag k. For d < 0; the model is an intermediate memory
process, or long-range negative dependence with zero spectral density at frequency zero and

summable autocorrelations,
∑∞
k=0 |ρk| < ∞. For 0.5 6 d < 1,the process is said to be non

stationary and is mean reverting and no long run impact of an innovation on future values of

the process. For d = 1, the time series corresponds to an autoregressive integrated moving

average (ARIMA) model. And for d = 0, the time series is short memory, corresponding to

stationary and invertible ARMA process.

ARFIMA models are said to have long memory because their autocorrelations decay

towards zero at a hyperbolic rate, that is, ρk ∼ |k|−α , α > 0, for large k. On the other hand,
ARMA models are called short memory processes since their autocorrelations converge to

zero at an exponential rate, that is ρk ∼ e−a|k|, a > 0,for large k.

If data are stationary, external shocks can have a short-term impact, but little long-term

effects, as the data reverts to the mean of the series at an exponential rate. In contrast,

integrated data do not decay; that is to say, do not return to the previous mean after an

external shock. By allowing d to take fractional values, we allow data to be mean reverting

and to still have long memory in the process.

A popular application of long memory time series models concerns inflation and returns

on exchange rates and their volatility. See Cheung (1993), Hassler and Wolters (1995),

among others.

3 Data and descriptive analysis:

3.1 The data:

Our data set consists of monthly Consumer Price Index (CPI) based inflation rates for

four countries; USA, Canada, Tunisia, and South Africa. All the data were obtained

from the IMF’s International Financial Statistics except Tunisian data were obtained from

the Tunisian National Statistics Institute (INS). All data series are seasonally unadjusted

monthly observations beginning in 1978.02 and ending in 2002.12 for Tunisia and United

States (for a total of 299 observations) and beginning in 1979.02 until 2002.12 for Canada and
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Figure 1: Time series plot of the inflations rates

Figure 2: Autocorrelations (ACF) and Partial Autocorrelations (PACF) functions of

monthly Inflation Rates

5



South Africa (for a total of 287 observations). Inflation rates are constructed by taking 100

times the first difference of the natural logs of CPI.

Figure 1 shows the plots of the monthly inflation rates in the different countries. Looking

for these plots, there is indication of the existence of one or more outlying observations in

each of the inflation series. Figure 2 shows the sample ACF and PACF of the inflation

rates for each countries and it is clear that there is a marked seasonal pattern in all inflation

series since the autocorrelation is highly significant at the seasonal lag. The ACF of Tunisian

inflation rate exhibits a slow decay at the seasonal lags which is the behaviour of the seasonal

fractionally differenced process. An additional characteristic in the ACF of the inflation is

the persistence or the long memory properties, which is checked specially for USA and

Canada. However, it is better to check the long memory property by plotting ACF of the

seasonally adjusted data, adjustment of the data is derived from the application of monthly

seasonal dummies.

Figure 3: Autocorrelations (ACF) and Partial Autocorrelations (PACF) functions of

monthly Inflation Rates (seasonally demeaned)

Figure 3 shows the ACF and PACF of the seasonally demeaned monthly inflation rates.

A visual examination of the correlogram suggests that the data are nonstationory and pos-

sibly characterized by long memory behaviour since the sample autocorrelations do not die

out quickly especially for United States and Canada. This may indicate long memory prop-

erty of the inflation in these two counties. For Tunisia and South Africa, the persistence

is less important but there are significant autocorrelations at a high order lag. The signif-

icance of the partial autocorrelation at a high order of lag may indicate the existence of

some outlying observations. Furthermore, the ACF and the PACF of the differenced series,

seasonally demeaned, are shown in figure 4. It is clear that the autocorrelation of the differ-
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Figure 4: Autocorrelations (ACF) and Partial Autocorrelations (PACF) functions of first

differences of monthly Inflation Rates (seasonally demeaned)

enced inflation series displays some negative values at low lags, which strongly suggestive of

overdifferencing. Before testing for stationarity in the inflation rates, we must test for the

existence of additive outliers in the data.

3.2 Testing for outlying observations:

To test for the presence of additive outliers in the data, we use the systematic testing

procedure proposed by Vogelsang (1999), which is based on estimating

yt = α0 + α1D(TAO) + εt (4)

Where D(TAO) is a dummy variable corresponding to an Additive Outlier in the data

occurring at time TAO. Then D(TAO) takes 1 if t = TAO and zero otherwise. The statistic to

test for an additive outlier is simply based on the t-ratio, which tests for the null hypothesis

α1 = 0. The procedure is applied as follows: First we compute t for the entire series and we

take τ = max |t(TAO)| and if τ is significant, then the outlier and the corresponding row of
the regressors are dropped from (4) and the equation is reestimated sequentially to test for

a new outlier. We repeat these steps until no outlier is found.

The t-test statistic for α1 is nonstandard since it is established under the assumption

that yt is nonstationary and contains unit root. The critical values for t(α1) have been

tabulated by Vogelsang (1999).

Table 1 shows the results from testing for additive outliers in the inflation. For all

monthly inflation series, the obtained results show the existence of a number of additive

outliers. Thus, the presence of outlying observations in the inflation rates for all countries

must be taken into account in testing for unit root and in the various models that we will

estimate in this paper.
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Table 1: Test for outliers results
USA Canada Tunisia South Africa

T̂AO t T̂AO t T̂AO t T̂AO t

1980.03 3,323

1980.01 3,384

1980.02 3.250

1991.01 6,133

1981.06 3,526

2001.11 3,350

1982.05 3,219

1994.02 3,183

1980.01 3,548

1979.05 3,305

1981.08 3,208

1981.01 3,131

1979.07 5,488

1985.02 4,649

1986.01 3,858

1980.09 3,289

1993.04 3,269

Significant levels : 5% 1%

Critical values : 3.13 3.55

3.3 Testing for unit root:

To test for the presence of unit root in the time series we use the Augmented Dickey Fuller

(ADF) test. We take account of seasonality and of the existence of additive outliers in the

data. Then the ADF statistic is based on the Ordinary Least Square (OLS) estimation of

the auxiliary regression:

∆yt = µ0 + ρyt−1 +

p∑

i=1

αi∆yt−i +

S−1∑

s=1

µsDt,s +

m∑

j=1

δjD(TAOj) + εt (5)

Where p is the lag length. m is the number of outlying observations detected in the time

series. S is the number of seasons within one period and is equal to 12 for our data. Ds,t is

a dummy variable for season s, being equal to 1 when yt is an observation from that season

and being 0 otherwise. D(TAOj) is a dummy variable on additive outlier j.

To choose the lag length for (5) we use three criteria: the Akaike Information Criterion

(AIC), the Schwarz information criterion (BIC), and the third criterion is based on the

following procedure, we choose a sufficiently important value of p = pmax, then we estimate

the ADF regression with p = pmax, If the last lagged difference is significant then we set

p = pmax and we perform the unit root test. Otherwise, we reduce the lag length by one

and we repeat the process. We initially check if at least two of three criteria agree at lag

length, if there is no agreement, then we use the result of the criterion that provides us with

the longest lag length since our objective is to remove any residuals autocorrelation.

In table 2 shows the ADF test results for the different inflation series and for both

cases, with and without Additive Outliers dummies. These test results indicate that the

null hypothesis of unit root in the inflation rates is strongly rejected for Tunisia, South

Africa and Canada. For these countries, the estimation of the ADF regression gives highly

significant parameters ρ̂ (significant at 1% level) for both cases with and without Additive

Outliers, except in Canada where ρ̂ is significant at only 5% level when the Additive Outliers

are not added to the ADF regression. In contrast, the ADF results of the United States

inflation rates cannot reject the null hypothesis of unit root when ignoring Additive outliers,

but when we take account for the outliers in the ADF regression, the null hypothesis of unit

root is rejected at 5% level. In summary, the ADF results indicate a strong evidence for
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Table 2: ADF test results
Countries WithAO Dummies WithoutAO Dummies

p ADF LB(24) p ADF LB(24)

USA 6 -3.016** 26.989 (0.305) 6 -2.499 29.376 (0.206)

Canada 6 -4.217*** 17.564 (0.824) 4 -3.146** 18.913 (0.757)

Tunisia 6 -5.426*** 34.220 (0.081) 7 -3.863*** 29.603 (0.198)

South Africa 6 -4.581*** 31.575 (0.138) 6 -3.964*** 24.770 (0.418)

Significant levels: 10% 5% 1% ** significant at 5% level

Critical values: -2,57- 2.87 -3,44 *** significant at 1% level

stationarity in the inflation rates.

4 Testing for Long memory in the inflation rates

To detect long-range dependence in time series, Hurst (1951) suggested the normalized

rescaled range (R/S) test. Lo (1991) modified the R/S statistic to accommodate short-range

dependence. In addition to the R/S test, Geweke and Porter-Hudak (1983) and Robinson

(1995) suggested a frequency domain approach to test for long memory in the time series.

4.1 The R/S test

The R/S statistic is the range of partial sums of deviations of a time series from its mean,

rescaled by its standard deviation. Specifically, consider a time series yt, for t = 1, 2, ..., T .

Then the classical rescaled range (R/S) statistic proposed by Hurst (1951) is defined as:

QT =
1

sT



 max
1≤k≤T

k∑

j=1

(yj − ȳ)− min
1≤k≤T

k∑

j=1

(yj − ȳ)



 (6)

Where ȳ = T−1
T∑

i=1

yi is the mean of the time series yt and sT =

[

T−1
T∑

i=1

(yi − ȳ)2
]−1/2

is the sample standard

deviation. If yt are i.i.d normal random variables, then
1√
T
QT converge to V, where V

is the range of Brownian bridge on the unit interval.

4.2 The modified R/S test

The weakness of the standard R/S analysis is that is not robust to the short-range de-

pendence. Thus, Lo (1991) modified the R/S statistic (6) by incorporating short-range

dependence into the statistic. Then, the modified R/S statistic is written as

Q̃T =
1

σ̂T (q)



 max
1≤k≤T

k∑

j=1

(yj − ȳ)− min
1≤k≤T

k∑

j=1

(yj − ȳ)



 (7)
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Where sT in (6) is replaced by the square root of the Newey-West estimate of the long

run variance with bandwidth q. Lo (1991) showed that in the presence of short memory but

no long memory in yt, Q̃T also converge to V, the range of Brownian bridge. When q = 0,

Q̃T = QT , the classical R/S statistic.

The GPH test

Geweke and Porter-Hudak (1983) suggest a semiparametric procedure in the frequency

domain to testing for long memory. The spectral density of the fractionally integrated

process yt is defined as

f(ξ) = [4 sin2( ξ
2
)]fε(ξ) + ηλ,

Where ξ is the Fourier frequency, and fε(ξ) is the spectral density corresponding to εt

in (1). The estimate of the fractional differencing parameter d is based on the slope of the

spectral density function around the angular frequency ξ = 0. The spectral regression is

defined by

ln{I(ξλ)} = β − d ln{4 sin2(ξλ
2
)}+ ηλ, λ = 1, ...., ν, (8)

where I(ξ) = 1

2πT

∣∣∣∣
T∑

t=1
eitξ(yt − ȳ)

∣∣∣∣

2

is the periodogram of the time series at the Fourier

frequencies of the sample ξλ = (2πλ/T ), (λ = 1, ...., (T − 1)/2), T is the number of obser-
vations, and ν = g(T ) << T is the number of Fourier frequencies included in the spectral

regression.

Assuming that limT→∞ g(T ) =∞, limT→∞ {g(T )/T} = 0, and limT→∞ {ln(T )2/g(T )} =
0, the ordinary least squares (OLS) estimate of the slope coefficient in Equation (8) provides

an estimate of d.

4.3 Testing for long memory results

Table 3 displays the results of R/S, Modified R/S, and GPH tests. The R/S and the modified

R/S tests suggest that the inflation rates in all countries have long memory at 1% level.

Similarly, for different choice of ν, the GPH test also shows that d is significantly different

from zero. Hence, there is strong evidence of long memory and strong persistence in the

inflation.

5 Non periodic models

In this section, we analyze the inflation by the ARFIMA models to show the long memory

properties. In order to compare the ARFIMA model with conventional approaches, we also

used information criteria to select the most appropriate (ARMA) model for the inflation

rate in each country.

5.1 ARMA models

In the ARMA models used to modelling inflation rates, we take account of the seasonal

properties of the inflation rates by including seasonal dummies variables. We also take
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Table 3: Long memory tests results for monthly inflation rates

R/S test

Countries USA Canada Tunisia South Africa

test-statistic 4.7056** 4.3832** 3.5878** 3.7205**

Modified R/S test

Countries USA Canada Tunisia South Africa

test-statistic 2.322** 2.4819** 2.5325** 2.6023**

GPH test

Countries USA Canada Tunisia South Africa

d̂ d̂ t-stat d̂ t-stat d̂ t-stat d̂ t-stat

α = 0.55 0.8194 4.8007** 1.0003 5.8589** 0.5888 3.4495** 0.3356 1.9654*

α = 0.65 0.7442 6.2771** 0.8320 6.9101** 0.4448 3.7517** 0.4971 4.1283**

α = 0.75 0.6802 7.8841** 0.5154 5.8743** 0.2369 2.7462** 0.4361 4.9702**

α = 0.85 0.7669 11.6579** 0.4249 6.3168** 0.3982 6.053** 0.4785 7.1126**

ν = [T/2] 0.7743 12.4873** 0.3871 6.1047** 0.4315 6.9592** 0.4375 6.8990**

* : significant at 5% level, ** : significant at 1% level

into account the existing of additive outliers in the data. Therefore, the ARMA models

estimated for the inflation rates are

yt = µ0 +

11∑

s=1

µ0,sDs,t +

m∑

j=1

δjD(TAOj) +

p∑

i=1

Φiyt−i +

q∑

i=0

θiεt−i (9)

where θ0 = 1 and m is the number of additive outliers in the data.

The best ARMA model that has significant parameters is selected by the AIC and

BIC. The results from the ARMA models estimations, for both cases with and without

outlier correction are reported in Table 6, for USA and Canada, and in Table 7, for Tunisia

and South Africa. The appropriate ARMA models selected for the inflation rates in United

States, Canada, Tunisia and South Africa are AR(2), AR(4), AR(1), and AR(3) respectively.

For United States, the estimation results from AR(2) reveal that there is no need to

include dummies variables on additive outliers because the estimated dummies variables

are not significant and the AIC and BIC criteria are too lower in the case without outlier

correction than in the case with outlier correction. The estimation results from ARMA (2,

0) model specification, show the highly significance of the two autoregressive parameters,

where the estimates values of the parameters are Φ̂1 = 0.6505, and Φ̂2 = 0.1252. It is to be

noticed that not all the seasonal dummies variables are significant.

In contrast to USA inflation case, including dummies variables on additive outliers in the

ARMA model specifications selected for Canada, Tunisia, and South Africa lead to a good

improvement of the normality tests for the estimated residuals and the coefficients of these

dummies variables appear to be significantly different from zero. Moreover, the AIC and

BIC criteria values became too lower in this case. The results from AR(4) model applied to

Canadian inflation rate show the highly significance of the parameters, where Φ̂1 = 0.123,
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Φ̂2 = 0.176, Φ̂3 = 0.205 and Φ̂4 = 0.163. The constant and the seasonal dummies variables

are highly significant. The AR(1) estimated model for Tunisian inflation rate gives a value

of Φ̂1 = 0.343, which is significantly different from zero at 1% level. The mean and some

number of the seasonal dummies variables are significant but the rest of the parameters are

not significantly different from zero. For South African inflation, the estimation results from

AR(3) representation show that Φ̂1 = 0, 095 is significantly different from zero at 10% level,

Φ̂2 = 0, 217, and Φ̂3 = 0, 159 are significantly different from zero at 1% level.

5.2 ARFIMA models with seasonal dummies variables

5.2.1 Notation

In the ARFIMA models, we take account for the seasonal behaviour of the inflation rates by

including seasonal dummies variables in the equation of the model. Because there are some

additive outliers in the inflation data, we also included dummies variables on these outlying

observations in the ARFIMA models. Thus, the ARFIMA model that we estimated in the

analysis of the inflation series is writen as

Φp(L)(1− L)d(yt − x′tβ) = θq(L)εt (10)

Where

x′tβ = β0 + β1D1t + β2D2t + ....+ β11D11t + δ1D(TAO1) + ....+ δmD(TAOm)

Where m is the number of additive outliers in the data.

Where Φp(L) and θq(L) are polynomials in the lag operator L of degree p and q, respec-

tively, with roots outside the unit circle. εt ∼ i.i.d.(0, σ2). D1,t, D2,t, ....DS−1,t are seasonal

dummies. D(TAOj) is a dummy variables on additive outlier j.

Now, if all roots of Φp(L) and θq(L) lie outside the unit circle and −0.5 < d < 0.5; then

yt is stationary and invertible. To estimate this ARFIMA model we need an estimation

method that estimate all parameters simultaneously, which is the Exact Maximum likelihood

estimation. Sowell (1992) derives the unconditional exact likelihood function for a normally

distributed stationary fractionally integrated time series and gives recursive procedures that

allow efficient evaluation of the likelihood function.

Based on the normality assumption and with a Sowell’s (1992) procedure used to com-

pute the autocovariance function in the covariance matrix Σ = σ2εR of YT = [y1y2.....yT ]
′,

the ML estimates of the ARFIMA model are obtained by maximizing the function

−1
2
ln |R| − T

2
ln(

Ẑ ′TR
−1ẐT
T

) (11)

Where ẐT = YT −Xβ̂,and β̂ = (X ′R−1X)−1X ′R−1YT .
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5.2.2 Empirical estimates for the inflation rates

For the different inflation series analyzed in this research, we estimate ARFIMA(p, d, q)

models with p, q 6 1. Thus, five models are estimated for each series, and we select the

model that has the minimum AIC and BIC as the most appropriate model.

For the estimation of this ARFIMA model, we wrote a GAUSS program that estimate

the long memory parameter d, the autoregressive and the moving average parameters and

the parameters of the dummies variables by the Sowell’s maximum likelihood estimation

method.

According to the AIC, the BIC and the Loglikelihood based criteria, the most appropriate

model specifications for the inflation rates are an ARFIMA (0, d, 1) for USA and Canada.

However, an ARFIMA (0, d, 0) and an ARFIMA (1, d, 0) appear to be most adequate for

Tunisia and South Africa, respectively.

The estimation results of the selected ARFIMA model representations for USA and

Canada, and for both cases with dummies variables and without dummies variables on

additive outliers, are reported in tables 8. For United States inflation, as a comparison

between the two cases with outlier correction and without outlier correction, it is clear

that the dummies variables on additive outliers are not significantly different from zero

and they did not improve the normality tests of the residuals. In addition, the AIC and

the BIC values are at the minimum where the dummies variables are not included. Thus,

it is preferred not to include the dummies variables on additive outliers. The estimate

value of the long memory parameter d is 0.4113 with standard error value of 0.05 and 95%

confidence interval of [0.3129, 0.5096]. The estimation of the moving average parameter

θ is 0.1692 with standard error of 0.0784. Thus, both long memory and short memory

parameters are significantly different from zero. Moreover, the seasonal dummies variables

appear to be highly significant. The estimated residuals standard deviation σ̂ε = 0.1981.

Note also that looking for the ACF and PACF plots for the residuals, in figure 5, obtained

after fitting a fractional ARIMA(0, 0.4113, 1) model to United States inflation, there is no

serious indication of dependence. This confirms the results of the residuals autocorrelation

test based on the Ljung-Box statistic.

For the inflation series in Canada, Tunisia and South Africa, it is preferred to take

into account the existence of additive outliers in the inflation series by including dummies

variables in the ARFIMA models. In fact, the results from the normality tests based on

Skewness, Kurtosis and Jarque-Bera statistic, show that the null hypothesis of the residuals

normality is rejected in the case without outlier correction but the residuals become normally

distributed when the dummies variables on additive outliers are included. Moreover, the

AIC and the BIC criteria values are too lower in the case with outlier correction than in the

case without outlier correction.

For Canadian inflation, the estimate value of the fractional differencing parameter d from

an ARFIMA(0, d, 1) is equal to 0.4814 with standard error of 0.0249 and 95% confidence

interval of [0.4323, 0.5306]. The estimate value of the moving average parameter θ is also

significantly different from zero with value of -0.3956 and standard error of 0.0645. As for
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Figure 5: ACF and PACF for the estimated residuals after fitting an ARFIMA (p, d, q)

model to the Inflation Rates.

United States inflation, the seasonal dummies variables seem to be significantly different

from zero. The residuals standard deviation is estimated to be 0.2431. The Ljung-Box test

statistic at lag 20 is equal to 24.737, which is not significant at 10% level. This indicates that

there is no residuals correlation. Moreover, The ACF and PACF of the estimated residuals

after fitting an ARFIMA (0, 0.4814, 1) on Canadian inflation, in figure 5, reveal that there

is no correlation and the residuals seem to have white noise properties, which indicate that

the ARFIMA (0, 0.4814, 1) is an appropriate model for this inflation series.

The results from estimating an ARFIMA(0, d, 0) and an ARFIMA(1, d, 0) for Tunisian

inflation and South African inflation respectively, are reported in table 9. For Tunisian in-

flation, the estimate of d corresponding to ARFIMA (0, d, 0) is equal to 0.248 with standard

error of 0.045 and with 95% confidence interval of [0.1610, 0.3362]. Thus, the estimated

differencing parameter d is significantly different from zero, which suggests long memory

behaviour of Tunisian inflation rate. The estimated mean is equal to 0.687 and is signifi-

cantly different from zero as well as the dummies variables on additive outliers. However,

the estimation of the seasonal dummies variables reveals that only some coefficients are

significant. The estimated standard deviation of residuals is about 0.4001. The residuals

autocorrelation test gives a value of Q statistic at lag 20 equal to 24.885, which is not signifi-

cant at 10% level and we cannot reject the hypothesis of no residuals correlation. Moreover,

the ACF and PACF of the estimated residuals are plotted in figure 5 and reveal that the

estimated residuals for Tunisian inflation rates have to be white noise.
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Figure 6: ARFIMA residuals QQ-plots of the inflation rates.

The estimated value of the long memory parameter d from ARFIMA (1, d, 0) for South

African inflation is equal to 0.3216 with standard error of 0.057 and with 95% confidence

interval of [0.2088, 0.4344]. The highly significance of this parameter provides strong evi-

dence of long memory behaviour in South African inflation rate. The estimate value of the

autoregressive parameter Φ is equal to −0.2153 with standard error of 0.0788 is also signifi-
cantly different from zero at 1% level. The mean and the the dummies variables on additive

outliers are highly significant. The residuals standard deviation is estimated to be 0.476. It

is to be noticed that not all the seasonal dummies variables are significant. The value of the

Ljung-Box test statistic Q at lag 20 is equal to 30.855 is not significant at 5% level. Thus,

the null hypothesis of residuals dependence cannot be rejected. As we did for other inflation

series, we evaluate the autocorrelation and partial autocorrelation of the estimated residuals

shown in figure 5. It is clear that there is no serious indication of dependence. This confirms

the hypothesis of no residuals correlation shown by the Ljung-Box test. The QQ-plots of

the residuals are shown in figure 6. A visual examination reveals that, for Canadian, South

African, and Tunisian residuals, the QQ-plots lie on a straight line, which indicates that

the residuals are normally distributed. For United States, the residuals are not normally

distributed. This confirms the results of the normality tests presented above.

In summary, for all countries, there is evidence of significant long memory in the inflation

rates. In addition, in all series, the long memory parameters estimates are below 0,5 implying

stationarity in the inflation series.

6 Seasonal fractionally integrated processes

The fractional differencing filter (1−L)d , for −0.5 < d < 0.5, was proposed in the economet-

ric literature by Hosking (1981) and Granger and Joyeux (1980). It has been generalized

to seasonal fractional differencing (1 − Ls)d, where s denotes the number of seasons, by

Andél (1986), Porter-Hudak (1990), Hassler (1994), Ooms (1995), and Arteche and Robin-
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son (1998).

6.1 Notation and properties

The seasonal fractionally integrated model with zero mean as in Porter-Hudak (1990) is

defined as

(1− Ls)dyt = εt (12)

Where d is the fractionally differenced component and lie inside the interval (−1
2
,
1

2
),

εt are assumed to be independently and identically distributed (i.i.d) with zero mean and

variance σ2, and s is the seasonal periodicity (s = 12 for monthly series).

The seasonal fractional filter is defined by a binomial expansion:

(1− Ls)d= 1− dLs−d(1− d)
2!

L2s−...−d(1− d)...(j − 1− d)
j!

Ljs − ... =
∞∑

j=0

djL
js (13)

(1− Ls)−d= 1 + dLs+d(1 + d)
2!

L2s+...+
d(1 + d)...(j − 1 + d)

j!
Ljs + ... =

∞∑

j=0

cjL
js (14)

If a seasonal fractionally differenced model is appropriate, then, the ACF of the processes

displays a hyperbolic decay at the seasonal lags, rather than the slow linear decay char-

acteristic of the conventional seasonal differencing model. The generalization of (12) to

an autoregressive fractionally integrated seasonal moving average model with zero mean,

ARFISMA (p,d,q) is thus

Φp(L)(1− Ls)dyt = θq(L)εt (15)

Where Φp(L) and θq(L) are the autoregressive and the moving average polynomials,

respectively, and the roots of theses polynomials are assumed to be outside the unit circle.

The ARFISMA process is stationary if d < 0.5,
∞∑

j=0
cj < ∞, and invertible if d > −0.5.

When the mean of the process is not zero, ARFISMA (p, d, q) model in (15) becomes

Φp(L)(1− Ls)d(yt − x′tβ) = θq(L)εt (16)

Where β is a k × 1 vector of parameters and xt is a vector of predetermined variables
(dummies variables, for example). To estimate all parameters simultaneously we propose a

procedure to obtain the Maximum Likelihood estimate of the ARFISMA model.

6.2 Maximum likelihood estimation procedure:

Porter-Hudak (1990) extend the nonseasonal semiparametric estimation technique devel-

oped in Geweke and Porter-Hudak (1983) (GPH) to the fractionally differenced seasonal

model. Unfortunately, this semiparametric method cannot estimate all parameters in (16)
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simultaneously. Therefore, we propose a procedure to obtain the maximum likelihood esti-

mate of the ARFISMA model. This maximum likelihood technique allows the estimation

of all parameters in one step.

6.2.1 Evaluation of the autocovariance function

Chan and Palma (1998) used a simple procedure to compute the autocovariance of the

ARFIMA processes from the MA representation

zt = Φp(L)
−1(1− L)−dθq(L)εt =

∞∑

j=0

ψjL
jεt (17)

With ψ0 = 1.Then the autocovariance function is defined as

γk =
∞∑

j=0

ψjψj+|k|σ
2
ε. (18)

To compute the autocovariance function of the autoregressive moving average (ARMA)

model with a fractionally differenced seasonal component in (16), we extend the procedure

proposed by Chan and Palma (1998) for the nonseasonal ARFIMA model to the ARFISMA

model. Then the MA representation of the processes is

zt = Φp(L)
−1(1− Ls)−dθq(L)εt =

∞∑

j=0

ψjL
jεt

Where the seasonal fractional filter (1− Ls)−d is expanded as in (14). Then, the auto-

covariance function of the ARFISMA model can be defined as

γk =

∞∑

j=0

ψjψj+|k|σ
2
ε. (19)

6.2.2 Evaluation of the loglikelihood function:

Let YT be a sample of T observations such that YT = [y1 y2........yT ]
′. We assume that yt

is a stationary normally distributed fractionally integrated time series. Then, YT ∼ N(Xβ,

Σ).

Stationarity implies that the covariance matrix is a Toeplitz form:

V [Y ] =






γ0 γ1 ... ... γT−1

γ1 γ0 ... ... γT−2

.

.

.

.

.

.

.

.

.

.

γT−2 ... ... γ0 γ1

γT−1 ... ... γ1 γ0






= Σ

Where γk is the autocovariance function evaluated using the procedure presented above.

Let zt = yt−x
′
tβ, Then ZT = [z1, z2, .... zT ]

′
∼ N(0, Σ) with probability density function:
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f(ZT ,Σ) = (2π)
−T/2 |Σ|−1/2 exp{−1

2
Z ′TΣ

−1ZT }. (20)

Given the equation (20), the loglikelihood function is :

lnL(d,Φ, θ, β, σ2ε) = ln(f(ZT ,Σ)) = −
T

2
ln(2π)− 1

2
ln |Σ| − 1

2
Z ′TΣ

−1ZT . (21)

It is beneficial to concentrate σ2ε out of the likelihood. In fact, it is possible to write

Σ = σ2εR. Then, the loglikelihood function become:

lnL(d,Φ, θ, β, σ2ε) = −
T

2
ln (2π)−1

2
ln |R| −T

2
ln (σ2ε)−

1

2σ2ε
Z ′TR

−1ZT .

Then, differentiating with respect to σ2ε gives:

∂ lnL

∂σ2ε
= − T

2σ2ε
+

1

2σ4ε
Z ′TR

−1ZT

Solving this differentiating yields

σ̂2ε = T−1Z ′TR
−1ZT (22)

Then, the concentrated likelihood function (CLF) is:

lc(d,Φ, θ, β) = −
T

2
ln (2π)−T

2
−1
2
ln |R| −T

2
ln (T−1Z ′TR

−1ZT )

It is also beneficial to concentrate β out of the likelihood. Then, the loglikelihood

function, concentrated with respect to β̂ = (X ′R−1X)−1X ′R−1YT

lc(d,Φ, θ) = −
T

2
(1 + ln(2π))− 1

2
ln |R| − T

2
ln(T−1Ẑ ′TR

−1ẐT ) (23)

Where ẐT = YT −Xβ̂,
Finally, the function to be used in the maximization procedure is:

−1
2
ln |R| − T

2
ln(

Ẑ ′TR
−1ẐT
T

) (24)

This function must be maximized with respect to the elements of R, which included

d and the parameters of the autoregressive polynomial Φp(L) and the parameters of the

moving average polynomial θq(L).

x′tβ = µ+

m∑

j=1

δjD(TAOj)

Where d is the fractionally differenced parameter,

m is the number of additive outliers in the data, D(TAOj) is a dummy variable on the

additive outlier j.
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6.3 Simulation evidence

Some simulations evidence are reported in table 3 that supports estimation of the seasonal

fractionally integrated model by the exact maximum likelihood method. For each of the

d-values -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3 and 0.4, 100 series of size T = 200, 300 and 500

of the seasonal fractionally integrated model were simulated. The simulation results in table

3 shows the simulated mean and standard errors of d. The estimation method provides a

reasonable approximation, for each d, the sample mean and the standard deviation of the

estimated parameter d are reasonably close to the theoretical values. As expected, standard

errors and estimated values of the differencing parameter d become better as T increases.

The results from estimating seasonal fractionally integrated model are carried out using

GAUSS program written by the author. the GAUSS program is available from the author

on request.

Table 4: Simulation results of estimating the seasonal fractionally integrated model

True d -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

d̂

T=200

T=300

T=500

-0.4135

-0.4057

-0.4051

-0.3024

-0.2994

-0.3042

-0.2060

-0.2025

-0.2009

-0.0980

-0.1055

-0.1016

-0.0052

0.0037

-0.0025

0.1036

0.0930

0.1001

0.1915

0.1985

0.1942

0.3061

0.2937

0.2952

0.3952

0.3943

0.3956

Std.err.

T=200

T=300

T=500

0.0742

0.0558

0.0408

0.0699

0.0543

0.0397

0.0667

0.0521

0.0386

0.0633

0.0498

0.0375

0.0610

0.0480

0.0366

0.0579

0.0467

0.0356

0.0564

0.0452

0.0348

0.0535

0.0437

0.0336

0.0532

0.0427

0.0332

6.4 Empirical estimates for the inflation rates

For the inflation series in different countries, we estimate ARFISMA(p, d, q) models in (16)

where x′tβ = µ+
m∑

j=1

δjD(TAOj). With m is the number of additive outliers in the data and

D(TAOj) is a dummy variable on the additive outlier j.

The ARFISMA(p, d, q) model is estimated for p, q 6 1 and the appropriate model is

selected based on AIC and BIC criteria. The results of the selected models representation

based on AIC and BIC criteria, for both cases with and without dummies variables on

additives outliers, are reported in table 10 for USA and Canada and in table A.11 for

Tunisia and South Africa. Then, the appropriate ARFISMA(p, d, q) model representations

are ARFISMA(1, d, 0) for USA and Tunisia and ARFISMA(1, d, 1) for Canada and South

Africa.

For United States inflation series, it is not preferred to include the dummies variables

on additive outliers in the (16) because only one coefficient of the dummies variables is

significant and the normality tests on the estimated residuals are too better in the case

without outlier dummies than in the alternative one. In addition, the BIC value, in the case

without dummies variables on additive outliers, is is too lower than the value in the case with

dummies variables. The estimate value of the seasonal fractionally differencing parameter

d is 0.2661 with standard error value of 0.041, which indicates the highly significance of d.
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The 95% confidence interval of d is [0.1852, 0.3469]. In particular, d = 1 is not included in

the interval. Thus, taking the seasonal difference appears to be too strong. The estimate

of the autoregressive parameter Φ is 0.6223 with standard error value of 0.047 is significant

at 1% level and the residuals standard deviation is estimated to be 0.2207.

In contrast to United States, it is preferred for Canada, Tunisia and South Africa, to

take into account the existence of additive outliers in the inflation series by means of in-

cluding dummies variables in the ARFISMA models. In fact, the results from the normality

tests based on Skewness, Kurtosis and Jarque-Bera statistic, reveal that the null hypothesis

of the residuals normality is rejected in the case without dummies variables on additive

outliers, for all countries, but the residuals become normally distributed when the dummies

variables on additive outliers are included, especially for Canada and South Africa. For

Tunisian inflation, The inclusion of dummies variables on additive outliers makes the esti-

mated residuals close to the normality. Moreover, the AIC and the BIC criteria values are

too lower in the case with outlier correction than in the case without outlier correction.

For Canadian inflation, the estimate value of d is 0.2449 with standard error of 0.044

and with 95% confidence interval of [0.1586 0.3313]. The estimates values of the short

memory parameters are Φ̂ = 0.9832 with standard error of 0.013 and θ̂ = −0.8769 with
standard error of 0.036. In addition, the mean and the coefficients of the dummies variables

on additive outliers are highly significant. The estimated standard deviation of residuals is

equal to 0.2552.

For Tunisian inflation rate, an ARFISMA(1, d, 0) was found to provide an adequate

representation of Tunisian inflation series with the estimate of d being 0.2939 and a robust

standard error of 0.044 and with 95% confidence interval of [0.2078, 0.3799]. The estimated

residuals standard deviation is 0.4213. The estimate value of the autoregressive parameter

Φ is 0.3093 with standard error of 0.058. Thus, both the long memory and the short memory

parameters are highly significant.

Finally, for South African inflation rate, the estimate value of the seasonal fractionally

differencing parameter d is 0.2124 with standard error of 0.052 and 95% confidence interval

of [ 0.1091, 0.3156 ]. The estimates values of the short memory parameters are Φ = 0.8891

and θ = −0.7496 with standard error of 0.092 and 0.137 respectively. Thus, both short
memory and long memory parameters are significantly different from zero. The estimation

results shows also the highly significance of the estimated mean mu and the coefficients of

the dummies variables on additives outliers. The residuals standard deviation is estimated

to be 0.4705.

In figure 7, we plot, for the different countries, the autocorrelations and partial au-

tocorrelations of the residuals after fitting the selected appropriate representation for the

Autoregressive moving average (ARMA) with a fractionally differenced seasonal component

model, for each inflation series. It is clear that, for United States inflation, some autocorre-

lations still exist. This confirms the Ljung-Box test statistic given in table 10 with a highly

significant value of Q statistic at lag 20 equal to 60.381. For Canada, Tunisia, and South

Africa, the ACF and PACF plots show that there is no serious correlation. The Ljung-Box

test statistic shown in table 10 for Canada and in table 11 for Tunisia and South Africa
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Figure 7: ACF and PACF of the residuals after fitting an ARFISMA(1, d, 0), for United States

and Tunisian inflations, and an ARFISMA(1, d, 1) model for canadian and South African inflations

Figure 8: ARFISMA residuals QQ-plots of the inflation rates.
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gives values of Q at lag 20 equal to 18.221, 22.441 and 31.223 respectively. They are not

significant at 5% level and confirm the hypothesis that the residuals are generated by an

uncorrelated process.

The QQ-plots of the residuals are shown in figure 8. If the residuals are normally

distributed, the QQ-plots should lie on a straight line. A visual examination of the QQ-

plots reveals that the residuals seem to be normally distributed, especially for Canadian

and South African inflation rates, which confirm the results of the normality tests presented

above.

7 Periodic models:

In this section, we investigate whether it is better to modelling the inflation rates by periodic

long memory models, this means that the long memory parameter d varies with the season.

For comparison, we also estimated a periodic autoregressive, PAR(1) model for each inflation

series.

7.1 PAR model estimation

In the Periodic Autoregressive model, the parameters of the autoregressive polynomial vary

with the seasons. As in Franses and Ooms (1997) who fit a PAR (1) model for the quarterly

UK inflation rates, we fit a PAR (1) model for our monthly inflation rates series. Then the

PAR (1) representation is

yt =

12∑

s=1

µsDs,t +

m∑

j=1

δjD(TAOj) +

12∑

s=1

Φ1,sDs,tyt−1 + εt (25)

Where m is the number of additive outliers in the data.

The estimation results from the PAR (1) model for the inflation series in different coun-

tries and for both cases with and without additive outliers correction, are reported in table

12 and table 13 in the appendix. For United States, the results from estimating the PAR(1)

model with outlier correction show that the dummies variables on additive outliers are not

significantly different from zero at 5% level. Therefore, the PAR(1) model without outlier

correction seems to be most appropriate. The estimation results show also the highly signif-

icance of all periodic autoregressive parameters for United States inflation. The estimated

values of Φ1,i, i = 1, . . . , 12, range from 0.502 through 1.121. The smallest estimate is ob-

tained for periodic autoregressive parameter Φ1,10 corresponding to season s = 10 and the

largest is obtained for Φ1,12 corresponding to s = 12. For other countries, we observe from

table 12 for Canada and table 13 for Tunisia and South Africa that the dummies variables on

additive outliers are highly significant and that the PAR (1) model with outliers is best sup-

ported by both of criteria AIC and BIC. For Canadian inflation, only one parameter among

the periodic autoregressive parameters Φ1,i, i = 1, . . . , 12, is not significantly different from

zero. In contrast, for Tunisia and South Africa, the major parameters are not significant.

Thus, there is significant evidence of periodicity of the autoregressive parameters only for

USA and Canadian inflation rates.
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7.2 Periodic long memory model:

Periodic long memory modelling is an alternative seasonal modelling technique of seasonal

time series with long memory behaviour. The notion of periodic long memory was initially

suggested by Franses and Ooms (1997). They raised issue related to the extension of the

ARFIMA (0, d, 0) model, in the sense that the novel model allows for periodic variation in

differencing parameters d. They analysed the usefulness of a so-called periodic ARFIMA

(0, ds, 0) (PARFIMA) model for quarterly UK inflation, where ds indicate that the value

of d can vary with the season. Possible economic motivations for time varying parameters

models are that economic agents may have different behaviour in different seasons due to

time dependent utility function, preferences, productions, etc.

7.2.1 PARFIMA models:

The PARFIMA (0, ds, 0) model is defined as

(1− L)dsyt = εt (26)

Where ds is the periodic long memory parameter which varies with the season. This

model is similar to ARFIMA (0, d, 0) where both the mean of yt and the value of d can vary

with the season. Franses and Ooms (1997) extend the approximate Beran’s (1995) maximum

likelihood method for the estimation of the ARFIMA model, to estimate PARFIMA (0, ds, 0)

model.

7.2.2 Approximate maximum likelihood estimation:

To estimate the periodic ARFIMA(0, ds, 0) model in (26). Franses and Ooms (1997) ex-

tended the Beran’s (1995) approximate maximum likelihood estimation, for ARFIMAmodel,

to PARFIMA (0, ds, 0) model. The estimate for ds is obtained through minimizing the sum

of squared residuals
n∑

i=2

e2t (η) Where

et(η) =
t−1∑

j=0

aj,s(η)(yt−j − ȳt,s) (27)

This correspond to allowing for periodic autoregressive parameters aj,s and we subtract

seasonal means ȳt,s. aj,s can be obtained from the AR(∞) representation of (26).

7.2.3 Empirical estimation for the inflation rates

To take account of periodicity in differencing parameter d, we fitted the PARFIMA (0, ds, 0)

model to monthly inflation rates. Because there are additive outliers in the data, we make

the estimates of the seasonal means ȳt,s in (27) more robust by replacing outliers Is,T by

(Is,T−1 + Is,T+1)/2.
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The approximate maximum likelihood estimation of PARFIMA (0, ds, 0) model was

performed using GAUSS code linked to “nroptmum library” written by Marius Ooms (1997).

The results from estimating a PARFIMA (0, ds, 0) model, for both cases with and with-

out outlier correction, are reported in table 14 for United States and Canada, and in table

15 for Tunisia and South Africa. For United States inflation, it is found from the results

in table 14 that the model without outlier correction is best supported by both of the in-

formation criteria (AIC = −942.24 and BIC = −853.35), whereas the model with outlier
correction is not supported at all (AIC = −936.35 and BIC = −836.35). Moreover, the
normality tests checked for the estimated residuals, in the two cases with and without out-

lier correction, indicate that they are not normally distributed. The estimation results of

PARFIMA (0, ds, 0), for United States inflation, reveal that all periodic differencing para-

meters are significantly different from zero at 1% level, where the values of ds range from

0.2722 through 1.1330. The smallest estimate value (0.2722) is obtained for periodic differ-

encing parameter d10, and the largest one is obtained for d3. Thus, there is strong evidence

for periodicity of long memory parameter d for United States inflation rate. The residu-

als standard deviation is estimated to be 0.191. The Ljung-Box test statistic Q at lag 24

testing for residuals autocorrelation, gives a value of 34.134, which is not significant at 5%

level and supports the hypothesis of no residual dependence. For Canadian inflation, the

reported estimation results in table 14 reveal that in term of AIC and BIC, the best fitting

PARFIMA (0, ds, 0) model is obtained when the data are corrected from additive outliers.

In addition, the normality tests based on Skewness, Kurtosis, and Jarque-Bera statistic

show that the estimated residuals are not normally distributed, in the case without outlier

correction. However, in the case with outlier correction, the normality tests reveal that

the estimated residuals are normality distributed.The estimation results show also that all

periodic differencing parameters ds are significant at 5% level except d1, which is significant

at 10% level. The estimated values of ds range from 0.2138, for s = 4, through 0.6581,

for s = 3. The estimated residuals standard deviation is 0.254. The Q(24) statistic of the

Ljung-Box test for residuals autocorrelation, present a value of 54.927, which is significant

at 5% level. Thus, we cannot reject the null hypothesis of no residual autocorrelation.

For Tunisian inflation, the estimation results of PARFIMA (0, ds, 0) reported in table

15 reveal that the model with outlier correction is best supported by both criteria AIC

and BIC. As a comparison between the two cases with and without outlier correction, the

residuals normality tests based on Skewness, Kurtosis and Jarque-Bera statistic indicate

that the residuals are not normally distributed in both cases. But they become closer

to normality in the case with outlier correction. The approximate maximum likelihood

estimation of the periodic differencing parameters ds, for s = 1, . . . 12, shows that there is

no evidence for periodicity since only four differencing parameters among 12 are significantly

different from zero at 5% level. The residuals standard deviation is estimated to be 0.395.

The Ljung-Box test statistic gives a value of Q at lag 24 equal to 35.323, which is not

significant at 5% level. This reveals that the residuals are not correlated. For South African

inflation, the best fitting PARFIMA (0,ds,0) model, in term of AIC and BIC, is obtained in

the case with outlier correction. Moreover, the normality tests on the estimated residuals,
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Figure 9: ACF and PACF of the estimated residuals after fitting a PARFIMA (0, ds, 0) model to

the inflation rates

when neglecting the existence of additive outliers, reveal that the residuals are not normally

distributed. However, when taking account of the additive outliers, the normality tests

statistics indicate that the residuals are normally distributed. As, for Tunisian inflation, the

major of the estimated values of the periodic differencing parameters ds are not significantly

different from zero. The estimated residuals standard deviation is 0.470. The Ljung-Box

test statistic Q at lag 24 testing for residuals autocorrelation gives a value of 69.215, which

is highly significant and provides evidence of residuals autocorrelation.

Figure 9 shows the ACF and PACF of the estimated residuals after fitting a PARFIMA

(0,ds,0) model to the inflation rates in United States, Canada, Tunisia, and South Africa.

It is clear that there is no serious autocorrelation especially for United States inflation rate.

This confirms the results of the Ljung-Box test for residuals correlation presented above.

8 Model selection for the inflation rates

The seasonality in the inflation rates with long memory behaviour, analysed in this study,

was removed using various models. Namely, the ARFIMA models with seasonal dummies

variables, ARFISMA and the periodic ARFIMA (PARFIMA) model. For practical purpose,

it seems sensible to evaluate the various models and to select a favourite model based on

the Akaike Information Criterion (AIC) and the Schwarz information criterion (BIC). Table

5 reports the AIC and BIC criteria values for the different models applied on the inflation
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rates in different countries. For United States inflation rates, the results from this table

reveal that the AIC is at minimum for PARFIMA(0, ds, 0) model. However, the BIC is at

minimum for ARFIMA(0, 0.411, 1). For Canadian inflation, and based on the AIC criterion,

the best fitting model among these reported in table 5 is an ARFIMA(0, 0.481, 1) model.

However, when using the BIC criterion, the appropriate model seems to be an ARFISMA(1,

0.245, 1) model. For Tunisian inflation rate, the AIC is at minimum for the PAR(1) model.

However, the periodic autoregressive parameters estimates of this model are not significant.

Therefore, the PAR(1) model is not appropriate. The next model selected, in term of AIC

criterion, is an ARFIMA(0, 0.249, 0). Based on BIC criterion, the best fitting model is an

ARFISMA (1, 0.294, 0). This confirms the visual examination of the correlogram in figure

2, which suggests that Tunisian inflation displays a hyperbolic decay at the seasonal lags,

which is characteristic of seasonal fractionally integrated processes.

According to the AIC and BIC criteria, the best fitting model for South African inflation

rate seems to be an ARFISMA(1, 0.212, 1) model.

Table 5: Model selection based on AIC and BIC criteria
Models USA Canada Tunisia South Africa

ARMA
AIC

BIC

-915.171

-863.458

-731.821

-655.266

-511.277

-448.425

-371.409

-298.430

PAR(1)
AIC

BIC

-913.996

-814.174

-681.680

-575.656

-518.720

-415.201

-353.386

-247.362

ARFIMA
AIC

BIC

-940.511

-888.705

-773.899

-704.369

-514,706

-451,799

-389,167

-319,637

ARFISMA
AIC

BIC

-897.988

-886.886

-766.419

-733.484

-503.698

-477.795

-393.704

-360.769

PARFIMA
AIC

BIC

-943.761

-854.950

-729.623

-623.498

-500.802

-397.189

-375.789

-269.664

9 Conclusion

This paper considers the application of long memory processes to describe inflation rates

time series with seasonal behaviour. Thus various models were estimated for the inflation

rates in four different countries; USA, Canada, Tunisia, and South Africa. The ADF test

indicates the stationarity of the inflation for all countries . However, the long memory tests

indicate that there is long-range dependence in inflation series for all countries. It is to be

noticed that the existence of additive outliers in the inflation data was taken into account

in these seasonal and periodic long memory models. The analysis was carried out using

the Sowell’s (1992) maximum likelihood estimation of ARFIMA (p, d, q) model and using

the approximate maximum likelihood method for the estimation of PARFIMA model. We

implement a procedure to obtain the maximum likelihood estimates of ARFISMA(p, d,

q) model, in which dummies variables on additive outliers are included. The advantage

of this parametric estimation method is that all parameters are estimated simultaneously

in the time domain. We also examined the effect of additive outliers on the estimation
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results. Neglecting the existence of additive outliers may possibly biased estimates of the

parameters. For all countries, the estimates of differencing parameters, in the ARFIMA

model, are significantly different from zero. This suggests that the model is significantly

different from assuming I(0) or I(1) behaviour. Instead, the inflationary dynamics display

long memory. One interesting interpretation of these models is that an inflationary shock

will have long memory and persistence, but that ultimately will be mean reverting. Among

different models used in this study, the ARFIMA (0, d, 1) model seems to be the most

appropriate one for Canadian inflation. However, Periodic ARFIMA estimates indicate

evidence of periodicity of the parameter d, especially for USA inflation rates. We have

accumulated evidence of the usefulness of seasonal fractional models for characterizing the

inflation series. Specifically, we found that for Tunisian and South African inflation, the

ARFISMA model is outperformed by the information criteria and produces reasonably clean

residuals.

In summary, there is strong evidence of long memory in inflation rates with seasonal

behaviour. The robustness of the long memory evidence for the inflation series in all coun-

tries suggests that persistence is a common feature of these data and that ARMA and PAR

representations will generally be inadequate to capture their dynamic properties. This evi-

dence implies that policy makers may use fractionally integrated models of inflation to good

advantage in modelling inflation and to make more accurate short and long term forecasts

of the future path of inflation rates. This is instrumental to the successful implementation

of deflationary policies based on inflation targeting. Moreover, the empirical regularities of

persistence in inflation across countries raise interesting questions as to the type of mone-

tary policy rules and price transmission mechanism that would be consistent with this form

of behaviour. Baum et all (1999) have shown that the long memory property of monetary

aggregates will be transmitted to inflation, given the dependence of long-run inflation on

the growth rate of money.

An interesting issue for future research will focus on analyzing the monetary policy mech-

anism that gives rise to this persistence in the monetary aggregates, and thus in inflation

rates. Another different direction for future research concerns the analysis of possibility

of structural instability caused by changing regimes. One could develop a long memory

Markov switching model that explains the changing time series behaviour of inflation.
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Table 6: Parameter estimates of ARMA models for the inflation rates
Countries USA Canada

Parameters With AO Without AO With AO Without AO

Est. t-stat Est. t-stat Est. t-stat Est. t-stat

Φ̂1 0.6307 10.593 0.6505 11.027 0.123 2.362 0.129 2.144

Φ̂2 0.1131 1.915 0.1252 2.123 0.176 3.474 0.189 3.212

Φ̂3 — — — — 0.205 4.038 0.255 4.347

Φ̂4 — — — — 0.163 3.157 0.175 2.913

µ̂
0

-0.0625 -1.427 -0.0698 -1.593 -0.116 -2.040 -0.134 -2.016

µ̂
1

0.4496 7.409 0.4641 7.725 0.309 3.848 0.395 4.249

µ̂
2

0.1529 2.288 0.1602 2.410 0.361 4.508 0.305 3.290

µ̂
3

0.1414 2.324 0.1484 2.450 0.378 4.810 0.379 4.129

µ̂
4

0.1855 3.090 0.1794 2.981 0.138 1.751 0.125 1.357

µ̂
5

0.1237 2.054 0.1173 1.944 0.278 3.464 0.292 3.141

µ̂
6

0.2030 3.402 0.1975 3.301 0.239 3.035 0.256 2.797

µ̂
7

0.0314 0.520 0.0255 0.422 0.214 2.760 0.205 2.250

µ̂
8

0.1923 3.247 0.1888 3.178 0.050 0.645 0.034 0.372

µ̂
9

0.2708 4.493 0.2676 4.426 0.056 0.705 0.041 0.444

µ̂
10

0.0448 0.734 0.0386 0.631 0.216 2.721 0.207 2.228

µ̂
11

-0.0136 -0.230 -0.0182 -0.306 0.362 4.612 0.318 3.512

δ̂1 0.2714 1.250 — — 0.822 3.009 — —

δ̂2 0.2549 1.171 — — 0.655 2.380 — —

δ̂3 0.3282 1.508 — — 2.099 7.699 — —

δ̂4 — — — — -1.102 -4.050 — —

δ̂5 — — — — -1.031 -3.752 — —

Kurtosis 4.0740 4.0568 3.512 9.663

Skewness -0.1216 -0.16938 -0.128 0.647

JB 15.0062 15.2427 3.855 543.264

AIC -914.2667 -915.1707 -731.821 -647.316

BIC -851.4733 -863.4585 -655.266 -588.989

*: δ̂j , for j = 1, 2, .. are the estimated coefficients of the dummies variables on Additive

Outliers occuring at times 1980.01, 1980.02, and 1980.03, respectively, for USA inflation.

And occuring at times 1981.06, 1982.05, 1991.01, 1994.02, and 2001.11, respectively,

for Canadian inflation.
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Table 7: Parameter estimates of ARMA models for the inflation rates
Countries Tunisia SouthAfrica

Parameters With AO With AO With AO Without AO

Est. t-stat Est. t-stat Est. t-stat Est. t-stat

Φ̂1 0.343 6.783 0,360 6,512 0,095 1,810 0,116 1,939

Φ̂2 — — — — 0,217 4,224 0,193 3,264

Φ̂3 — — — — 0,159 3,037 0,191 3,168

µ̂
0

0.486 5.506 0,475 4,905 0,245 2,020 0,217 1,542

µ̂
1

-0.183 -1.514 -0,055 -0,424 0,360 2,412 0,442 2,582

µ̂
2

-0.361 -3.064 -0,362 -2,795 0,182 1,200 0,304 1,749

µ̂
3

-0.477 -4.070 -0,473 -3,672 0,292 1,952 0,304 1,752

µ̂
4

-0.515 -4.325 -0,507 -3,874 0,453 3,040 0,520 3,038

µ̂
5

-0.452 -3.712 -0,358 -2,698 -0,064 -0,430 -0,067 -0,390

µ̂
6

-0.236 -1.979 -0,228 -1,738 0,000 0,001 0,013 0,079

µ̂
7

0.057 0.484 0,063 0,483 0,435 2,958 0,561 3,318

µ̂
8

0.179 1.516 0,235 1,833 0,260 1,725 0,259 1,484

µ̂
9

-0.111 -0.946 -0,117 -0,903 0,319 2,119 0,395 2,294

µ̂
10

-0.008 -0.065 -0,009 -0,070 0,120 0,821 0,108 0,636

µ̂
11

-0.114 -0.975 -0,116 -0,900 -0,019 -0,130 -0,011 -0,062

δ̂1 2.120 5.033 — — 3,254 6,314 — —

δ̂2 1.820 4.314 — — 1,449 2,775 — —

δ̂3 1.286 3.035 — — 2,786 5,416 — —

δ̂4 1.421 3.371 — — 1,781 3,439 — —

δ̂5 — — — — 1,600 3,103 — —

Kurtosis 3.394 4.870 3.105 7.001

Skewness 0.397 0.793 0.181 1.067

JB 9.758 74.686 1.680 243.340

AIC -511.277 -458.596 -371.409 -291.403

BIC -448.425 -410.534 -298.430 -236.669

*: δ̂j , for j = 1, 2, .. are the estimated coefficients of the dummies variables on Additive Outliers

occuring at times 1979.05, 1980.01, 1981.01, and 1981.08, respectively, for Tunisian inflation.

And occuring at times 1979.07, 1980.09, 1985.02, 1986.01, and 1993.04, respectively, for South

African inflation.
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Table 8: Best model specification, among the ARFIMA model, for the USA and Canadian

inflation series according to the AIC and BIC criteria.

ARFIMA

Parameters

d̂

φ̂

θ̂

µ̂
0

µ̂
1

µ̂
2

µ̂
3

µ̂
4

µ̂
5

µ̂
6

µ̂
7

µ̂
8

µ̂
9

µ̂
10

µ̂
11

δ̂
∗

1

δ̂2

δ̂3

δ̂4

δ̂5

Kurtosis

Skewness

JB

σ̂∗∗ε

LB(20)∗∗∗

AIC

BIC

log-likelihood

USA

With AO Without AO

Est. Std.err Est. Std.err

0.4025 0.0507 0.4113 0.0500

— — — —

0.1635 0.0789 0.1692 0.0784

0,1197 0,1853 0.1206 0.2043

0,3784 0,0449 0.3870 0.0443

0,3099 0,0540 0.3225 0.0538

0,3068 0,0570 0.3226 0.0571

0,3395 0,0582 0.3395 0.0588

0,2887 0,0590 0.2888 0.0597

0,3383 0,0592 0.3384 0.0600

0,1926 0,0589 0.1927 0.0596

0,2676 0,0580 0.2677 0.0587

0,3774 0,0563 0.3775 0.0569

0,2295 0,0529 0.2295 0.0534

0,0905 0,0435 0.0905 0.0436

0,3944 0,1932 — —

0,2138 0,1934 — —

0,3160 0,2118 — —

— — — —

— — — —

4.2675 4.2901

-0.3470 -0.3683

26.0160 27.4926

0.1967 0.1981

31.041 (0.055) 32.120 (0.042)

-938.9070 -940.5111

-875.9994 -888.7049

63.0940 60.737066

Canada

With AO Without AO

Est. Std.err Est. Std.err

0.4814 0.0249 0.4702 0.0375

— — — —

-0.3956 0.0646 -0.3874 0.0699

0.1192 0.3907 0.1156 0.3668

0.3000 0.0680 0.3971 0.0829

0.3832 0.0648 0.3408 0.0790

0.4239 0.0647 0.4235 0.0799

0.2013 0.0653 0.2009 0.0805

0.3826 0.0663 0.4090 0.0809

0.3383 0.0664 0.3658 0.0810

0.3067 0.0655 0.3064 0.0809

0.1346 0.0652 0.1343 0.0804

0.1345 0.0646 0.1343 0.0797

0.2451 0.0639 0.2450 0.0788

0.3685 0.0671 0.3176 0.0820

2.2433 0.2373 — —

0.6672 0.2371 — —

-1.2207 0.2372 — —

0.6391 0.2371 — —

-1.009 0.2371 — —

3.4412 10.6607

-0.1201 0.7355

3.0174 727.6764

0.2431 0.2986

24.737 (0.212) 16.015 (0.716)

-773.8990 -666.1057

-704.3688 -614.8730

0.8680 -58.9352

*: δ̂j , for j = 1, 2, .. are the estimated coefficients of the dummies variables on Additive Outliers

occuring at times 1980.03, 1980.01, and 1980.02 ,respectively, for USA inflation. And occuring at

times 1991.01, 1981.06, 2001.11, 1982.05, and 1994.02, respectively, for Canadian inflation.

∗∗ : Estimated residuals standard deviation.
∗∗∗ : Probability in parentheses
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Table 9: Best model specification, among the ARFIMA model, for the Tunisian and South

African inflation series according to the AIC and BIC criteria.

Tunisia

ARFIMA With AO Without AO

Parameters Est. Std.err Est. Std.err

d̂ 0.2486 0.0445 0.2483 0.0446

φ̂ — — — —

θ̂ — — — —

µ̂
0

0,6871 0,1218 0.6907 0.1336

µ̂
1

-0,1465 0,1042 -0.0265 0.1114

µ̂
2

-0,3268 0,1073 -0.3276 0.1178

µ̂
3

-0,5677 0,1099 -0.5684 0.1206

µ̂
4

-0,6877 0,1112 -0.6883 0.1221

µ̂
5

-0,6655 0,1130 -0.5810 0.1228

µ̂
6

-0,4116 0,1121 -0.4120 0.1230

µ̂
7

-0,0598 0,1118 -0.0602 0.1227

µ̂
8

0,2005 0,1122 0.2398 0.1219

µ̂
9

-0,0035 0,1097 -0.0037 0.1204

µ̂
10

0,0173 0,1069 0.0172 0.1174

µ̂
11

-0,0811 0,1002 -0.0811 0.1100

δ̂
∗

1
1,5925 0,3933 — —

δ̂2 2,1269 0,3925 — —

δ̂3 0,9888 0,3925 — —

δ̂4 1.2938 0,3933 — —

δ̂5 — — — —

Kurtosis 3,5630 5.2255

Skewness 0,2020 0.6665

JB 5,9821 83.8417

σ̂∗∗ε 0.4001 0.4392

LB(20)∗∗∗ 24.885 (0.206) 28.122 (0.107)

AIC -514,7063 -466.9400

BIC -451,7988 -418.8341

log-likelihood -150.0663 -177.9193

South Africa

With AO Without AO

Est. Std.err Est. Std.err

0,3216 0,0573 0.2893 0.0556

-0,2153 0,0788 -0.2050 0.0757

— — — —

0,6611 0,1819 0.6694 0.1827

0,2803 0,1335 0.3578 0.1569

0,1334 0,1273 0.2369 0.1492

0,2871 0,1308 0.2852 0.1546

0,4681 0,1333 0.5379 0.1557

-0,0227 0,1327 -0.0240 0.1565

0,0506 0,1328 0.0495 0.1567

0,4147 0,1340 0.5458 0.1565

0,2098 0,1316 0.2093 0.1555

0,3578 0,1320 0.4163 0.1544

0,1836 0,1253 0.1835 0.1487

0,0139 0,1304 0.0141 0.1551

3,1681 0,4723 — —

2,5314 0,4715 — —

1,7640 0,4719 — —

1,4092 0,4716 — —

1,7151 0,4715 — —

3,2448 7.2570

0,2491 1.1232

3,6852 277.0614

0.4759 0.5601

36.755 (0.013) 30.855 (0.057)

-389,1672 -305.5176

-319,6370 -254.2850

-194,0005 -240.6370

*: δ̂j , for j = 1, 2, .. are the estimated coefficients of the dummies variables on Additive Outliers occuring

at times 1980.01, 1979.05, 1981.08, and 1981.01 ,respectively, for Tunisian inflation. And occuring

at times 1979.07, 1985.02, 1986.01, 1980.09, and 1993.04, respectively, for South African inflation.

∗∗ : Estimated residuals standard deviation.
∗∗∗ : Probability in parentheses
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Table 10: Best model specification, among the Autoregressive Moving Average (ARMA)

model whith a fractionally differenced seasonal component, for the USA and Canadian

inflation series according to the AIC and BIC criteria.

Countries

Parameters

d̂

Φ̂

θ̂

µ̂

δ̂1

δ̂2

δ̂3

δ̂4

δ̂5

Kurtosis

Skewness

JB

σ̂∗∗ε

LB(20)∗∗∗

AIC

BIC

log-likelihood

USA

(1, d, 0)

With AO dummies Without AO dummies

Est. Std.er t-stat Est. Std.er t-stat

0.2734 0.042 6.583 0.2661 0.041 6.478

0.5977 0.050 12.03 0.6223 0.047 13.15

— — — — — —

0.3713 0.069 5.358 0.3748 0.073 5.126

0.5186 0.204 2.544 — — —

0.3900 0.205 1.906 — — —

0.3228 0.227 1.421 — — —

— — — — — —

— — — — — —

3.899 3.879

-0.175 -0.148

11.599 10.722

0.2177 0.2207

62.545 (0.000) 60.381

-899.926 -897.988

-877.723 -886.886

32.788 28.761

Canada

(1, d, 1)

With AO dummies Without AO dummies

Est. Std.er t-stat Est. Std.er t-stat

0.2449 0.044 5.585 0.2182 0.045 4.877

0.9832 0.013 74.52 0.9768 0.018 55.28

-0.8769 0.036 -24.45 -0.8667 0.043 -20.17

0.4294 0.191 2.252 0.4061 0.177 2.290

2.1403 0.235 9.114 — — —

0.6227 0.236 2.645 — — —

-1.1064 0.236 -4.680 — — —

0.7974 0.235 3.391 — — —

-0.9866 0.235 -4.201 — — —

3.263 10.162

-0.111 0.851

1.416 648.011

0.2552 0.3099

18.221(0.573) 13.806(0.840)

-766.419 -665.154

-733.484 -650.516

-11.637 -68.604

*: δ̂j , for j = 1, 2, .. are the estimated coefficients of the dummies variables on Additive Outliers occuring at times

1980.03, 1980.01, and 1980.02 ,respectively, for USA inflation. And occuring at times 1991.01, 1981.06, 2001.11,

1982.05, and 1994.02, respectively, for Canadian inflation.

∗∗ : Estimated residuals standard deviation.
∗∗∗ : Probability in parentheses.
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Table 11: Best model specification, among the Autoregressive Moving Average (ARMA)

model whith a fractionally differenced seasonal component, for the Tunisian and South

African inflation series according to the AIC and BIC criteria.

Countries

Parameters

d̂

Φ

θ

µ

δ1

δ2

δ3

δ4

δ5

Kurtosis

Skewness

JB

σ̂∗∗ε

LB(20)∗∗∗

AIC

BIC

log-likelihood

Tunisia

(1, d, 0)

With AO dummies Without AO dummies

Est. Std.er t-stat Est. Std.er t-stat

0.2939 0.044 6.719 0.2759 0.043 6.464

0.3093 0.058 5.307 0.3188 0.057 5.614

— — — — — —

0.4598 0.082 5.559 0.4836 0.086 5.592

1.1341 0.391 2.899 — — —

2.1899 0.379 5.770 — — —

1.2671 0.377 3.361 — — —

0.9149 0.389 2.351 — — —

— — — — — —

3.5974 5.204

0.3870 0.788

11.9083 91.466

0.4213 0.4583

22.441(0.317) 24.107(0.238)

-503.6983 -461.358

-477.7952 -450.257

-162.5155 -188.02316

South Africa

(1, d, 1)

With AO dummies Without AO dummies

Est. Std.er t-stat Est. Std.er t-stat

0.2124 0.052 4.049 0.1914 0.049 3.883

0.8891 0.092 9.706 0.9769 0.026 36.86

-0.7496 0.137 -5.452 -0.9246 0.053 -17.46

0.8636 0.118 7.299 0.9182 0.177 5.186

3.0554 0.476 6.415 — — —

2.5155 0.462 5.442 — — —

1.9591 0.462 4.238 — — —

1.3693 0.465 2.946 — — —

1.8213 0.462 3.942 — — —

3.2382 7.678

0.2759 1.253

4.3202 336.817

0.4889 0.5773

31.223(0.052) 27.496(0.122)

-393.7042 -308.320

-360.7689 -293.682

-201.2421 -248.021

*: δ̂j , for j = 1, 2, .. are the estimated coefficients of the dummies variables on Additive Outliers occuring at times

1980.01, 1979.05, 1981.08, and 1981.01 ,respectively, for Tunisian inflation. And occuring at times 1979.07,

1985.02, 1986.01, 1980.09, and 1993.04, respectively, for South African inflation.

∗∗ : Estimated residuals standard deviation.
∗∗∗ : Probability in parentheses.
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Table 12: PAR (1) estimation results for USA and Canadian inflation rates.

Countries USA Canada

With AO Without AO With AO Without AO

Parameters Est. t-stat Est. t-stat Est. t-stat Est. t-stat

φ̂
1,1 0,517 3,00 0,705 5,25 0,483 2,12 0,262 0,99

φ̂
1,2 0,691 3,76 0,824 5,89 -0,017 -0,16 0,057 0,46

φ̂
1,3 0,876 5,85 0,940 7,61 0,707 4,80 0,707 4,09

φ̂
1,4 0,565 4,87 0,565 4,86 0,360 2,40 0,360 2,04

φ̂
1,5 0,736 5,69 0,736 5,68 0,494 2,41 0,589 2,48

φ̂
1,6 0,903 7,48 0,903 7,45 0,374 2,44 0,472 2,67

φ̂
1,7 0,568 4,84 0,568 4,83 0,356 2,38 0,356 2,03

φ̂
1,8 0,560 4,15 0,560 4,14 0,511 2,54 0,511 2,16

φ̂
1,9 0,807 4,91 0,807 4,89 0,638 2,94 0,638 2,50

φ̂
1,10 0,502 3,18 0,502 3,17 0,571 2,94 0,571 2,5

φ̂
1,11 0,824 5,12 0,824 5,11 0,566 2,82 0,804 3,94

φ̂
1,12 1,121 7,26 1,121 7,240 0,275 1,89 0,275 1,61

µ̂
1

0,411 9,30 0,412 9,30 0,320 4,97 0,437 5,94

µ̂
2

0,070 0,76 0,019 0,24 0,456 5,69 0,369 4,07

µ̂
3

0,043 0,60 0,024 0,35 0,203 2,38 0,203 2,03

µ̂
4

0,199 3,10 0,199 3,09 0,094 0,99 0,094 0,84

µ̂
5

0,063 0,90 0,063 0,90 0,307 3,79 0,319 3,35

µ̂
6

0,085 1,37 0,085 1,36 0,210 2,25 0,209 1,90

µ̂
7

0,039 0,60 0,039 0,60 0,219 2,50 0,219 2,12

µ̂
8

0,199 3,52 0,199 3,51 0,009 0,10 0,009 0,08

µ̂
9

0,177 2,46 0,177 2,45 0,071 0,96 0,071 0,82

µ̂
10

0,083 0,98 0,083 0,98 0,194 2,75 0,194 2,34

µ̂
11

-0,085 -1,29 -0,085 -1,28 0,238 2,60 0,131 1,40

µ̂
12

-0,113 -2,29 -0,113 -2,28 -0,046 -0,57 -0,046 -0,48

δ̂
∗

1
0,472 1,74 — — 1,088 3,62 — —

δ̂2 0,307 1,10 — — 0,904 3,02 — —

δ̂3 0,191 0,74 — — 2,3127 7,752 — —

δ̂4 — — — — -1,2207 -4,064 — —

δ̂5 — — — — -0,8067 -2,360 — —

JB 13.761 9.753859 0.726 596.753

AIC -914.765 -913.996 -681.680 -594.152

BIC -826.035 -814.174 -575.656 -506.409

*: δ̂j , for j = 1, 2, .. are the estimated coefficients of the dummies variables on Additive Outliers

occuring at times 1980.01, 1980.02, and 1980.03, respectively, for USA inflation. And occuring

at times 1981.06, 1982.05, 1991.01, 1994.02, and 2001.11, respectively, for Canadian inflation.
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Table 13: PAR (1) estimation results for Tunisian and South African inflation rates.

Countries Tunisia South Africa

With AO Without AO With AO Without AO

Parameters Est. t-stat Est. t-stat Est. t-stat Est. t-stat

φ̂
1,1 0,267 1,42 0,503 2,590 -0,177 -0,78 0,226 0,954

φ̂
1,2 0,381 3,03 0,381 2,749 -0,254 -1,48 -0,247 -1,232

φ̂
1,3 0,056 0,33 0,056 0,296 -0,110 -0,83 -0,110 -0,705

φ̂
1,4 0,173 0,67 0,173 0,606 0,206 1,03 0,291 1,253

φ̂
1,5 0,171 0,68 0,381 1,396 0,164 0,90 0,164 0,765

φ̂
1,6 0,391 2,80 0,391 2,535 0,225 0,84 0,225 0,72

φ̂
1,7 0,186 0,98 0,186 0,89 0,246 1,03 0,474 1,72

φ̂
1,8 -0,169 -1,02 -0,251 -1,40 0,217 1,80 0,217 1,54

φ̂
1,9 0,377 2,71 0,377 2,45 0,683 3,72 0,446 2,18

φ̂
1,10 0,711 3,71 0,711 3,36 0,417 2,58 0,417 2,21

φ̂
1,11 0,615 3,56 0,615 3,23 0,452 2,25 0,452 1,92

φ̂
1,12 0,848 4,58 0,848 4,15 0,331 1,74 0,331 1,49

µ̂
1

0,356 2,31 0,317 1,89 1,052 5,80 0,875 4,25

µ̂
2

0,099 0,84 0,099 0,76 1,047 5,04 1,163 4,80

µ̂
3

0,118 1,14 0,118 1,03 1,064 6,60 1,064 5,64

µ̂
4

-0,006 -0,06 -0,006 -0,06 0,957 4,39 0,935 3,67

µ̂
5

0,035 0,43 0,118 1,33 0,453 1,84 0,453 1,57

µ̂
6

0,244 2,97 0,244 2,69 0,578 2,84 0,578 2,43

µ̂
7

0,589 6,04 0,589 5,48 0,915 4,56 0,876 3,73

µ̂
8

1,003 7,36 1,104 7,60 0,618 3,43 0,618 2,93

µ̂
9

0,343 2,23 0,343 2,02 0,389 1,94 0,695 3,18

µ̂
10

0,221 1,42 0,221 1,29 0,401 1,96 0,401 1,67

µ̂
11

0,177 1,20 0,177 1,09 0,298 1,48 0,298 1,26

µ̂
12

0,174 1,24 0,174 1,13 0,443 2,65 0,443 2,26

δ̂1 2,166 5,23 — — 3,030 5,69 — —

δ̂2 1,832 4,46 — — 2,326 4,22 — —

δ̂3 1,346 3,09 — — 2,819 5,37 — —

δ̂4 1,199 2,89 — — 2,344 3,99 — —

δ̂5 — — — — 1,430 2,69 — —

JB 5.276 80.957 3.306 192.491

AIC -518.720 -463.794 -353.386 -267.690

BIC -415.201 -375.064 -247.362 -179.946

*: δ̂j , for j = 1, 2, .. are the estimated coefficients of the dummies variables on Additive Outliers

occuring at times 1979.05, 1980.01, 1981.01, and 1981.08, respectively, for Tunisian inflation.

And occuring at times 1979.07, 1980.09, 1985.02, 1986.01, and 1993.04, respectively, for South

African inflation.
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Table 14: Parameter estimates of PARFIMA models for the inflation rates
Countries USA Canada

Estimates With A.O Without A.O With A.O Without A.O

Est. t-stat Est. t-stat Est. t-stat Est. t-stat

d̂1 0.277 1.93 0.498 3.06 0.240 1.86 0.212 1.79

d̂2 0.429 3.12 0.501 4.24 0.240 2.63 0.142 2.07

d̂3 1.128 7.27 1.133 7.37 0.658 2.79 0.652 3.18

d̂4 0.419 3.89 0.377 3.86 0.214 1.98 0.175 1.49

d̂5 0.443 4.10 0.420 4.00 0.392 2.89 0.423 3.11

d̂6 0.960 4.32 0.948 4.24 0.252 2.74 0.309 3.03

d̂7 0.331 3.46 0.316 3.27 0.235 2.32 0.191 1.96

d̂8 0.319 2.89 0.318 2.81 0.344 2.50 0.341 2.02

d̂9 0.523 2.88 0.518 2.86 0.398 2.41 0.397 1.95

d̂10 0.276 2.74 0.272 2.71 0.357 3.00 0.355 2.47

d̂11 0.582 3.58 0.576 3.53 0.341 2.52 0.605 2.63

d̂12 1.019 3.97 1.017 3.91 0.282 2.27 0.185 1.94

K 4.203 4.221 3.130 11.248

SK -0.155 -0.176 -0.107 0.983

JB 19.235 20.122 0.747 859.648

σ̂∗ε 0.191 0.191 0.254 0.303

LB(24)∗∗ 35.585 (0.060) 34.134 (0.082) 54.927 (0.000) 41.338 (0.015)

AIC -937.294 -943.761 -729.623 -638.765

BIC -837.382 -854.950 -623.498 -550.938

∗ : Estimated residuals standard deviation
∗∗ : Probability in parentheses
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Table 15: Parameter estimates of PARFIMA models for the inflation rates
Countries Tunisia South Africa

Estimates WithA.O Without A.O With A.O Without A.O

Est. t-stat Est. t-stat Est. t-stat Est. t-stat

d̂1 0.159 1.34 0.334 1.95 -0.073 -1.29 0.005 0.06

d̂2 0.169 1.36 0.187 1.46 0.137 1.42 0.126 1.35

d̂3 0.082 0.90 0.071 0.76 0.120 1.13 0.030 0.39

d̂4 -0.002 -0.03 -0.011 -0.12 0.221 1.67 0.354 2.01

d̂5 0.160 0.95 0.317 0.86 0.228 1.56 0.138 1.14

d̂6 0.941 3.94 0.322 2.06 0.143 0.97 0.161 0.93

d̂7 0.195 1.61 0.179 1.42 0.061 0.51 0.112 0.50

d̂8 0.107 1.40 0.084 1.09 0.332 2.89 0.238 2.41

d̂9 0.169 1.43 0.305 1.81 0.398 2.65 0.365 2.36

d̂10 0.726 3.02 0.598 2.30 0.272 2.19 0.289 2.02

d̂11 0.490 3.20 0.466 2.70 0.310 2.44 0.282 1.91

d̂12 0.779 2.82 0.752 2.35 0.229 1.81 0.241 1.62

Kurtosis 3.837 5.500 3.263 7.46

Skewness 0.290 0.629 0.236 1.236

JB 12.902 97.604 3.488 310.557

σ̂∗ε 0.395 0.426 0.470 0.558

LB (24)∗∗ 35.32 (0.06) 27.46 (0.28) 69.21 (0.00) 60.63 (0.00)

AIC -500.802 -462.520 -375.789 -287.845

BIC -397.189 -373.710 -269.664 -200.018

∗ : Estimated residuals standard deviation.
∗∗ : Probability in parentheses
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