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Abstract

The Wald, likelihood ratio and Lagrange multiplier test statistics are commonly used to test

linear restrictions in regression models. It is shown that for testing these restrictions in the classical

regression model, the exact densities of these test statistics are special cases of the generalized beta

distribution introduced by McDonald (1984); McDonald and Xu (1995a). This unified derivation

provides a method by which one can derive small sample critical values for each test. These results

may be indicative of the behavior of such test statistics in more general settings, and are useful

in visualizing how each statistic changes with different parameter values in the simple regression

model. For example, the results suggest that Wald tests may severely underreject the null hypothesis

when the sample size is small or a large number of restrictions are tested.

Keywords: Test of linear restrictions, Generalized beta distribution, Small-sample probability dis-

tribution, Regression model

1 Introduction

The Wald, likelihood ratio and Lagrange multiplier (or Rao score) tests are quite well known methods

of testing linear hypotheses in regression analysis; i.e., hypotheses of the form

H0 : Rβ = δ

They are usually easily constructed; Engle (1984), for example, shows that these tests can be expressed

as simple functions of regression residuals. Exact small sample distributions for these test statistics

tend to be intractable, but given typical regularity conditions their distributions converge under the

null hypothesis to a χ2 variable that depends on the rank of the restrictions being tested. Because

asymptotic χ2 critical values are usually used for finite sample inference, the three statistics can lead to

different decisions in hypothesis testing situations — see for example Berndt and Savin (1977) or Buse

(1982).
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In the classical regression setting, exact distributions for all three of these test statistics can be de-

rived by ignoring the construction of the statistics themselves and focusing instead on the relationships

between the distributions of the three statistics and the F distribution. McDonald and Xu (1995a) de-

velop a parametric family of generalized beta distributions for use in econometric applications. The F

distribution is a member of this family, and the distributions of all three test statistics can be expressed

as special cases of the generalized beta family via their relation to the F distribution. The generalized

beta family is closely related to the beta distribution, and quantiles of the beta distribution can easily

be transformed to give corresponding quantiles of the distributions of all three test statistics, for any

sample size, number of parameters, or rank of restrictions.

2 Definitions and relationships

Suppose we have the classical linear model y = x ′β + ǫ based a sample of n observations, β ∈ Rk and

ǫ ∼N(0,σ2 I). Suppose furthermore that we would like to conduct a test of the linear restrictions

H0 : Rβ = δ, (1)

where the rank of R is r. Then letting β̃ and β̂ be maximum likelihood estimates of β respectively with

and without the restrictions implied by the null hypothesis, define the following test statistics:

W = (Rβ̂ −δ)′
�

RI(β̂)−1R′
�−1
(Rβ̂ −δ) (2)

LR= 2
�

ℓ(β̂)− ℓ(β̃)
�

(3)

LM = d(β̃)′ I(β̃)−1d(β̃) (4)

where W, LR and LM stand for the Wald, likelihood ratio and Lagrange multiplier test statistics respec-

tively, and ℓ(·), I(·), and d(·) are the likelihood, information matrix and score evaluated at a certain

parameter value. It can be shown that these three statistics converge (under the null hypothesis) to

a χ2
r random variable, where r is the rank of R, although they have different distributions in finite

samples.

These three statistics are related to the F distribution in small samples. One way to illustrate the

relationship between the F and Wald statistics is through a simple example in which the rank of R is

1. To test the hypothesis of a single linear restriction, for example a test of the location parameter

H0 : µ = µ0 against a two sided alternative, under the null hypothesis (using the mle σ̂2),
x̄−µ0p
σ̂2/(n−1)

has a tn−1 distribution. As can be seen,

t2 = ( x̄ −µ0)
′�σ̂2/(n− 1)
�−1
( x̄ −µ0) =

n− 1

n
W (5)
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because in this case,

W = ( x̄ −µ0)
′�σ̂2/n
�−1
( x̄ −µ0). (6)

Because of the identity t2
n−1 = F1,n−1, we have the following equality:

W =
n

n− 1
F1,n−1. (7)

This relationship, and the relationship between the F , likelihood ratio and Lagrange multiplier test

statistics can be generalized to a rank k matrix of independent variables and rank r ≤ k null restrictions.

The general F statistic with r and n− k degrees of freedom has density function defined by

fF (x; r, n− k) =

�

r

n−k

�
r

2
x

r

2
−1

B
�

r

2
, n−k

2

�

�

1+ r

n−k
x
�

r+n−k

2

, x ∈ [0,+∞) (8)

where B is the beta function. For general n, k and r, we have the following relationships (writing F ,

W , LR and LM as the random variables that take the value of the various test statistics.) The exact

relation between the Wald and Fr,n−k statistics is (Engle, 1984, p. 788 for example)

W =
nr

n− k
Fr,n−k. (9)

The relationship between the likelihood ratio statistic and the Fr,n−k statistic is

LR= n log

�

1+
W

n

�

= n log

�

1+
r

n− k
Fr,n−k

�

. (10)

Finally,

LM =
W

1+ W

n

=

nr

n−k
Fr,n−k

1+ r

n−k
F

r,n−k

. (11)

The existence of the above relationships is not new, but these links allow one to express the distributions

of all of the test statistics as special cases of one parent model, as will be shown below.

3 Test statistics and their densities

Using the relationships described in Section 2, the following basic formula from calculus will be used

repeatedly. If random variable X has density fX (x) and Y = G(X ) (G a nonstochastic function), then
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the density of Y may be expressed as

fY (y) = fX

�

G−1(y)
�

�

�

�

�

�

dG−1(y)

dy

�

�

�

�

�

. (12)

For example, calling fF (·; r, n−k) the density function of the Fr,n−k statistic and fW (·; r, n−k) the density

function of the Wald statistic (a convention that will be repeated in the sequel), we use the function

W = G(F) from equation (9), which is linear and therefore invertible:

fW (x; r, n− k) = fF

�

n− k

nr
x

�

n− k

nr
(13)

where W is the value of the Wald statistic. A little algebra using (8) reveals that this can be compactly

expressed as

fW (x; r, n− k) =
( x

n
)

r

2
−1

nB
�

r

2
, n−k

2

�

(1+ x

n
)

r+n−k

2

, x ∈ [0,+∞). (14)

The same technique (that is, the use of (8), (10) and (12)) shows that the exact density of the

likelihood ratio statistic is

fLR(x; r, n− k) =
e

x

n

�

e
x

n − 1
�

r

2
−1

nB
�

n−k

2
, r

2

�

�

e
x

n

�
r+n−k

2

, x ∈ [0,+∞). (15)

This transformation is possible because of the monotonicity of the relationship in equation (10).

Finally, the density of the Lagrange multiplier statistic can be derived similarly:

LM =

nr

n−k
F

1+ r

n−k
F

=⇒ F =
LM

nr

n−k
− r

n−k
LM

(16)

implies that the Jacobian is

|J |=
nr

n−k
− r

n−k
LM + r

n−k
LM

�

nr

n−k
− r

n−k
LM
�2

=
n

r

n−k
(n− LM)2

. (17)

This case is different than the previous two; it can be seen above that the domain of this relationship is
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[0, n) and not [0,∞). Performing the same process as above for the other two statistics, we have

fLM (x; r, n− k) =

�

r

n−k

�
r

2

�

x
nr

n−k
− r

n−k
x

�
r

2
−1

B
�

r

2
, n−k

2

�

�

1+ r

n−k

x
nr

n−k
− r

n−k
x

�
r+n−k

2

·
n

r

n−k
(n− x)2

(18)

=

�

x

n−x

�
r

2
−1

B
�

r

2
, n−k

2

�

�

n

n−x

�
r+n−k

2

·
n

(n− x)2
(19)

and some rearrangement implies the exact density function for the Lagrange multiplier statistic is

fLM (x; r, n− k) =

x

n

r

2
−1

nB
�

r

2
, n−k

2

�

(1− x

n
)

2−n+k

2

, x ∈ [0, n). (20)

4 The generalized beta distribution

The densities derived in the previous Section are all closely related. This section identifies those distri-

butions as special cases of a generalized beta distribution, introduced to the econometrics literature by

McDonald (1984) and generalized by McDonald and Xu (1995a,b).

4.1 The generalized beta distribution

McDonald (1984) defines two distributions for applications to the analysis of national income distribu-

tions. This work is generalized in McDonald and Xu (1995a) and McDonald and Xu (1995b) to a single

distribution that nests both cases from McDonald (1984); this single distribution will be referred to as

the generalized beta distribution. As will be seen below, all three test statistics may be expressed as

special cases of this distribution. The “usual” beta distribution, for reference, is the density

fB(x; p, q) =
x p−1(1− x)q−1

B(p, q)
, 0< x < 1 (21)

for p, q ∈ [0,∞). The generalized beta distribution is similar, but defined with five parameters. Its

density is defined by

fGB(x; a, b, c, p, q) =
|a|xap−1(1− (1− c)(x/b)a)q−1

bapB(p, q)(1+ c(x/b)a)p+q
, 0< xa <

ba

(1− c)
(22)

for a ∈ R, b, p, q ∈ [0,∞) and c ∈ [0, 1]. This model is extremely flexible and nests many well-known

models such as the gamma, F , t, χ2, Pareto, Weibull, exponential and normal distributions. The usual

beta distribution satisfies fB(x; p, q) = fGB(x; a = 1, b = 1, c = 0, p, q). Below it will be shown that the

distributions of the three test statistics described above are special cases of this model. It is unsurprising

that the distributions of the test statistics are special cases of this model; they are distributions that are

5



closely related to the F distribution and that converge to the χ2 distribution, two other special cases of

the model.

4.2 Wald and Lagrange multiplier statistics

It can be seen that by setting a = 1, b = n, c = 1, p = r

2
and q = n−k

2
in expression (22), one obtains

fGB

�

x; a = 1, b = n, c = 1, p =
r

2
, q =

n− k

2

�

=
x

r

2
−1

n
r

2 B( r

2
, n−k

2
)(1+ x

n
)

r+n−k

2

(23)

which is the density of the Wald statistic given in equation (14).

Similarly, the density of the Lagrange multiplier statistic can be expressed in terms of the generalized

beta distribution. By letting a = 1, b = n, c = 0, p = r

2
, and q = n−k

2
, we obtain

fGB

�

x; a = 1, b = n, c = 0, p =
r

2
, q =

n− k

2

�

=

�

x

n

�
r

2
−1 �

1− x

n

�
n−k

2
−1

nB( r

2
, n−k

2
)

(24)

which is identical to equation (20). Here it becomes evident that the only difference between the Wald

and Lagrange multiplier statistics, in terms of the parameters of the generalized beta model, is the value

of c.

4.3 Likelihood ratio

McDonald and Xu (1995a) also define a variant of the generalized beta distribution given in equa-

tion (22) via a simple transformation. If Y is distributed with a generalized beta distribution and

X = ln(Y ), then the distribution of X is called the exponential generalized beta distribution, and it is

defined via the generalized beta:

fEGB(x;δ,σ, c, p, q) = fGB(e
x ; a = 1/σ, b = eδ, c, p, q) · ex (25)

or more explicitly

fEGB(x;δ,σ, c, p, q) =
ep(x−δ)/σ(1− (1− c)e(x−δ)/σ)q−1

|σ|B(p, q)(1+ ce(x−δ)/σ)p+q
, −∞ <

x −δ
σ
< ln

�

1

1− c

�

. (26)

The likelihood ratio statistic follows an exponential generalized beta distribution. First, restrict the

parameters of the generalized beta distribution as follows: let σ = n, δ = 0, c = 0, p = n−k

2
and q = r

2
.

Then x should be replaced by −x to obtain a statistic with the desired domain. We then have the
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following:

fEGB

�

−x;δ = 0,σ = n, c = 0, p =
n− k

2
, q =

r

2

�

=

�

e
−x

n

�
n−k

2
�

1− e
−x

n

�
r

2
−1

nB
�

n−k

2
, r

2

� . (27)

Multiply top and bottom by
�

ex/n
�

r

2
−1

:

=

�

e
x

n − 1
�

r

2
−1

nB
�

n−k

2
, r

2

�

�

e
x

n

�
r+n−k

2
−1

(28)

and it can be seen that this is equal to equation (15).

5 Quantiles via the beta distribution

To summarize the previous Section, the densities of the Fr,n−k, Wald, likelihood ratio, Rao score densi-

ties can be expressed as cases of the generalized beta density given n, r and k :

fF (x; r, n− k) = fGB

�

x; a = 1, b =
n− k

r
, c = 1, p =

r

2
, q =

n− k

2

�

fW (x; r, n− k) = fGB

�

x; a = 1, b = n, c = 1, p =
r

2
, q =

n− k

2

�

fLR(x; r, n− k) = fGB

�

e−x ; a =
1

n
, b = 1, c = 0, p =

n− k

2
, q =

r

2

�

· e−x

fLM (x; r, n− k) = fGB

�

x; a = 1, b = n, c = 0, p =
r

2
, q =

n− k

2

�

.

Quite conveniently, as generalized beta distributions, their cumulative distributions, and therefore

critical values used for testing, can easily be found. McDonald and Xu (1995a) note that if x ∼
GB(a, b, c, p, q), then the distribution of the transformation of x defined by

y = (x/b)a/(1+ c(x/b)a) (29)

follows the usual beta distribution1. This makes the calculation of exact quantiles very easy.

The easiest quantiles to obtain are the Lagrange multiplier quantiles because c = 0 in its formulation

as a generalized beta variable; letting B1−α be the (1−α)th quantile of the usual B( r

2
, n−k

2
) distribution,

the transform B1−α 7→ nB1−α is extremely simple — this statistic is simply a rescaled version of the usual

beta distribution.

Quantiles for the Wald statistic can be determined using the relationship y = (x/n)/(1+ (x/n)) =

x/(n+ x), which is distributed as a beta distribution. That is, if B1−α is the (1− α)th quantile of the

1This is provable using formulas (21), (22), (12) and lots of algebra.
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B( r

2
, n−k

2
) distribution, the same quantile of the Wald statistic is found through the transform B1−α 7→

nB1−α/(1− B1−α).

The likelihood ratio is only slightly more complex — as McDonald and Xu (1995a, Appendix A.2.2)

point out, if X ∼ FEGB and X = ln(Y ), then FEGB(x) = P(X ≤ x) = P(eY ≤ e y) = FGB(e
y). However,

this is complicated by the domain issue noted above. The transformation y = (ex)
1

n implies that the

(1− α)th quantile of the likelihood ratio statistic is equal to −n ln
�

Bα
�

, where Bα is the αth quantile

of the B( n−k

2
, r

2
) distribution. Using the identity Bα(p, q) = 1− B1−α(q, p), we arrive at the mapping

B1−α 7→ −n log(1− B1−α).

With an appeal to a basic inequality for exponents or logarithms,2 it is immediately clear that

quantiles of the three distributions satisfy the relationship LM ≤ LR≤W , which is noted, for example,

in Engle (1984, p. 792).

In summary, the quantiles of these distributions can be expressed through mappings from quan-

tiles of the beta(r/2, (n − k)/2) distribution: letting B ≡ B1−α(
r

2
, n−k

2
), the (1 − α)th quantile of the

distribution of each test statistic is given by

Wald: nB

1−B

likelihood ratio: −n log(1− B)

Lagrange multiplier: nB

6 The effect of parameter values visually

The effect of the parameters n and k can be seen in Figures 1, 2 and 3. A decrease in n or an increase in

k or r tends to result in a greater divergence between the appropriate critical values for each test from

the asymptotic χ2 value. Since n and k often enter the density formulas as a difference, a decrease in n

is effectively the same as an increase in k in most cases. However, the effect of a change in r is slightly

different and somewhat more pronounced than effects from changes in the other two parameters,

effectively because the value of r is often small.

The exact quantiles for each of the distributions are, by and large, greater than the asymptotic value.

However, n and k do not always enter the parameterizations together. This means that changes in n and

k are not entirely analogous to one another, even if quantiles can be derived from a beta distribution

that only depends on r and n− k. In particular, as k becomes small — equal to or just greater than

r — the upper quantile of the likelihood ratio statistic can be less than the χ2 approximation. This is

illustrated in the top two panels of Figure 2. Despite these minor complications, the quantile inequality

between the test statistics is plain to see in the figures, represented by the relative placement of the

theoretical critical values on each graph.

In particular, it can be seen that the likelihood ratio statistic does not suffer very greatly from

an asymptotic χ2 approximation, but the other two test statistics, particularly the Wald, do. In fact,

2That is, since

nB ≤−n log(1− B)≤
nB

1− B
, 0< B < 1

see, for example Davidson and MacKinnon (1993, p. 456-457).
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Figure 1: The effect of n on densities and critical values: the 95th percentile of the likelihood ratio

statistic is uniformly closer to the asymptotic χ2 value than the other two statistics. However, this is for

a moderately large value of k, and this can change for smaller values of k. The Wald statistic will be

rejected more often than it should be in small samples; more so than the other two statistics.
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Figure 2: The effect of k on densities and critical values shows roughly the same pattern as that in

Figure 1, because n and k often enter as a difference in the parameterization of the exact distributions.

The apparent changes across panels are smaller than in Figure 1 because k is typically much smaller

than n, and the parameter values have been chosen to reflect this. Very small values of k relative

to r can lead to likelihood ratio distributions that have smaller upper quantiles than the asymptotic

approximation, which is not usually the case for any other arrangements of parameter values.
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Figure 3: An increase in the number of restrictions in a test, r, has a more pronounced effect than from

a decrease in n or an increase in k. This is in part because r is much smaller than n−k in most settings,

and in part because a change in r when its value is small induces such a drastic change in the shape of

the distributions.

Figure 3 reveals that the difference between the asymptotic and the true likelihood ratio quantiles

can be inversely proportional to the number of restrictions, unlike the Wald and Lagrange multiplier

tests, which behave more as is intuitively expected. Figures 1 and 2 also reveal that the asymptotic

approximation is particularly harmful to small the Wald statistic in situations where n− k is small —

see, for example, the top left panel of Figure 1 or the bottom right panel of Figures 2 and 3. In cases

where n − k is extremely small or r is large, the use of an exact critical value would improve the

theoretical size of Wald tests in particular.

7 Conclusion

The relationship LR ≤ LR ≤W is well known, but the generalized beta distribution provides a unified

distributional characterization of these test statistics in the simple linear regression setting. For cases in

which the asymptotic χ2 approximation is a poor one, for example when the sample size is small or the

number of restrictions is large, this distribution also provides more appropriate critical values for tests.
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