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1 Introduction

There is a large literature on tax compliance following the approach to crime and

punishment developed in Becker (1968) and Stigler (1970). For instance, Reinganum

and Wilde (1985, 1986) examine a static model where taxpayers’ incomes are private in-

formation. Using the costly state verification framework developed by Townsend (1979),

they study optimal verification schemes when the tax and the penalty are exogenously

specified. In this paper, we characterize the optimal auditing and taxation scheme in a

dynamic stochastic costly-state-verification environment.

We develop a model where the tax authority (principal) is risk neutral and taxpay-

ers (agents) have constant absolute risk-averse preferences. Each agent knows his own

income but it is unobserved by the principal. The principal may audit an agent to verify

his income, but this is costly. The tax authority designs an optimal taxation scheme

as well as an optimal auditing scheme to maximize the present value of revenue net of

audit cost. Taxpayers in our model initially have low income and receive stochastic op-

portunities each period to transit to high income. For convenience, we assume that high

income is an absorbing state. Since income is private information, the taxpayer could

conceal the fact that he has transited to high income and evade taxes. The punishment,

if the taxpayer is audited and caught cheating, is assumed to be a constant. We use

a dynamic mechanism-design approach to search for the best tax system and auditing

system within a large family of state-contingent contracts.

Our model contains persistent private information and, as demonstrated by Fer-

nandes and Phelan (2000), the principal’s problem contains two state variables: the

continuation utility for an agent who just transited to high income and the continuation

utility for a low-income agent. We follow Zhang (2009) and set up the principal’s prob-

lem in continuous time. We then formulate the Hamiltonian and apply the Pontryagin

maximum principle to study the dynamic behavior of continuation utilities.

Since high income is an absorbing state in our model, the treatment of the agent

who just transited to high income is straightforward – constant consumption forever

and, hence, constant continuation utility. Furthermore, he is never audited. However,
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the principal has to provide incentives for the low-income agent to truthfully report the

transition to high income. Since income is private information, the principal would not

fully insure the low-income agent. The distortion in the consumption path for a low-

income agent is a key object of interest. We measure this distortion as the difference

between the cost of providing the continuation utility to the low-income agent and the

cost of providing the same utility using a perfectly smooth consumption path. We show

that the distortion is determined by the ratio of the two state variables noted above.

Our main result is that it is optimal for the principal to audit the agent periodically.

The auditing mechanism in our model consists of cycles. The low-income agent could

be in one of two states: (i) not audited or (ii) randomly drawn to be audited. Within

each cycle, a low-income agent is initially in the not-audited state. He will be moved

into the random audit state if the duration of his low-income report exceeds a threshold

N , where N is pinned down by the primitives of the model. If he is randomly drawn

to be audited, then he will be moved to the not-audited state after being audited, and

a new cycle begins. While auditing is stochastic, the threshold duration N is not. Put

differently, within each cycle the principal guarantees that the agent will not be audited

until the duration N is reached. The intuition for the periodicity is that the benefit of

auditing is increasing with the number of non-audited periods, while the cost of auditing

is constant. Auditing occurs when the benefit exceeds the cost.

In our model, there are two instruments for providing incentives. One instrument

is dynamic taxation that distorts the consumption path and makes future payoffs con-

tingent on past history of reported incomes. This is the standard instrument used in

dynamic mechanism-design. For instance, Green (1987) uses this instrument to provide

incentives for truthful reporting of income by designing taxes and subsidies that are

history-dependent. The second instrument is auditing; the principal has to pay a cost

to use the instrument. The U.S. Internal Revenue Service uses the second instrument to

provide incentives for taxpayers to pay their true share of taxes – those who are caught

cheating will be penalized. The principal in our model has access not only to the past

history of reported incomes but also to the history of auditing outcomes and, hence, can

provide better incentives by using both instruments.
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To understand the interaction between the two instruments, we study two versions

of the model: one with only the dynamic taxation instrument and the other with both

taxation and audit instruments. The model with only the dynamic taxation instrument

implies that the consumption path is increasingly distorted with the duration of low-

income report. That is, the ratio of continuation utilities approaches one with the

duration of low-income report and the principal has to deliver a consumption stream

to the low-income agent that yields almost the same utility as that to the high-income

agent. In order to ensure that the high-income agent does not have the incentive to

deviate, this consumption stream is such that the static gain to the high-income agent

from deviation is small whereas the future losses are large. We show that this path is

highly distorted since it implies a steeply declining consumption profile. We also show

that the ratio of continuation utilities is close to one in the long run, meaning that

the distortion in the consumption path converges to infinity. In contrast, if the income

process was i.i.d., as in Green (1987), the distortion is constant.

When the auditing instrument is also available, we show that the principal uses

this instrument to alleviate the distortion in the consumption path implied by the first

instrument. Auditing reduces the distortion, because when the agent’s true income is

observed during the audit, the principal rewards the truth-teller relative to the cheater.

In particular, the principal removes the distortion (accumulated up to the auditing date)

in consumption and increases the continuation utility for the truth-teller. This is not

possible when there is no technology to ever verify who is the truth-teller and who is

the cheater. We show that the optimal mechanism implies a discrete upward jump in

the continuation utility for the truth-teller after the audit. We also show that no matter

how high the cost of auditing is, there always exists a threshold N at which the auditing

probability becomes positive.

If the agent’s absolute risk aversion is not constant, then he is audited minimally

when risk aversion is either extremely high or extremely low. When risk aversion is

extremely low, the distortion in consumption incurs little welfare loss, thus there is no

need to use the costly auditing instrument to reduce the distortion in consumption.

When risk aversion is large, then a small distortion in consumption will generate large
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incentive effects, hence there is again no need to use the auditing instrument. The model

also implies that, as the variance in income increases, auditing occurs more frequently.

In related literature on dynamic costly-state-verification, Wang (2005) studies deter-

ministic verification with i.i.d. hidden incomes. He finds that there is a critical level of

verification cost, below which there is verification and above which there is no verifica-

tion. That is, if it is optimal to verify in one period then it is optimal to verify in every

period. Thus, the verification in Wang (2005) is a static decision: it only depends on

the cost of verification and is independent of the continuation utility that summarizes

the past history. In our model, the auditing decision is dynamic and depends on past

history via the duration of low-income reports. Popov (2007) studies stochastic verifica-

tion with i.i.d. hidden incomes. He specifies an exogenous lower bound for the agent’s

continuation utility and every cheater is moved to the lower bound if caught during the

audit. He obtains a nonstatic verification probability: agents with high continuation

utility are verified less frequently. In his model, these agents are induced to tell the

truth because the lower bound implies a harsher punishment for them if they are caught

lying. In our model, punishment is the same across all levels of continuation utilities and

there is no lower bound on continuation utility. Our periodic auditing result comes from

the persistent income shock and the resulting distorted consumption path. Monnet and

Quintin (2005) study stochastic verification with linear utility and i.i.d. hidden incomes.

They find that the continuation utility is increasing and verification will eventually not

be used. We study the risk-averse case, thus consumption distortion plays a central role

in our model.

Although we focus on tax compliance in the paper, the issue of fraud and optimal

auditing is applicable to other areas in economics. For instance, a venture capitalist

provides start-up funds to an entrepreneur to invent a new product. In the experimen-

tal stage, the entrepreneur receives outside funding but after the product is invented,

he might have to share the profits with the venture capitalist. If the outcome of the

experiment is private information, then the entrepreneur can delay the report of being

successful, keep the profit by selling the product privately and continue to receive fund-

ing from the venture capitalist. In the problem of infant industry protection, domestic
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firms are subsidized for a certain period to help them increase their productivity and

compete with foreign firms. If productivity is private information, the firms have strong

incentives to cheat because they can earn monopoly rents and receive subsidies simulta-

neously. In the context of unemployment insurance, an unemployed worker might find

a job at a random rate. The exact date when he finds the job might not be observable.

By delaying the report of employment, the worker can receive both wage income and

unemployment benefits.

The rest of the paper is organized as follows. Section 2 describes the basic model

without auditing, and shows that the distortion in consumption increases with the du-

ration of the low-income report. In Section 3, we introduce the auditing technology and

show that it is optimal to audit the low-income agent periodically. Then we study the

dependence of auditing frequency on the primitives of the model. Section 4 concludes.

We provide the proofs of all the results in an appendix.

2 Model: No Auditing Technology

In this section we study a hidden income model in which the principal does not

have access to an auditing technology. The characterization of the optimal contract in

this section will help us examine the optimal auditing in Section 3 when an auditing

technology is available.

The tax authority is a risk-neutral principal with a discount rate r > 0. The taxpayer

is a risk-averse agent, whose preferences are given by

E

[
∫ ∞

0

re−rtu(ct)dt

]

,

where ct is consumption at time t, u(c) = − exp(−ρc) is a constant absolute risk-aversion

(CARA) utility function with risk aversion ρ, r is the discount rate (same as that of the

principal) and E is the expectations operator. Let c : (−∞, 0) → R denote the inverse

of the utility function:

(1) c(u) =
− log(−u)

ρ
.
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To simplify our presentation, we first describe a discrete-time analogue of the model,

and then consider the continuous-time model as the limit of a sequence of discrete-time

models when the period length shrinks to zero. In a discrete-time model, period n

(n = 0, 1, 2, ...) represents the time interval [ndt, (n+ 1)dt) where dt > 0 is the length of

one period.

Agents have either high income, wH , or low income, wL, where wL < wH . The

high-income state is permanent.1 All agents start with low income. In each period, a

low-income agent transits to wH with probability π.dt, where π > 0 is the Poisson arrival

rate of wH .

True income is not observable by the principal, so a high-income agent can underre-

port his income and pose as a low-income agent. We assume that the principal always

asks the agent to show his reported income, so the low-income agent can never pretend

to have wH . Hence, there are no incentive constraints when the agent reports wH .

The timing is as follows. In the initial period, the agent receives an income, either

wH or wL. He chooses to report either wH or wL to the principal. The principal assigns

current and future consumptions based on the report. In subsequent periods, if an

agent had reported wH in the past, he is in an absorbing state and no further reports

are necessary. If an agent had reported wL in every period in the past, then he receives

an income, either wH or wL. The sequence of events then is the same as in the initial

period.

The principal commits to delivering two sequences of consumptions,
{ (

cH(n), cL(n)
)

;n =

0, 1, 2, ...
}

. We will denote this pre-commitment contract as σ. If an agent transits to wH

for the first time in period j, efficiency requires that the agent’s consumption remains

constant afterwards. This is because the principal and the agent have the same discount

rate and wH is an absorbing state. We denote this constant level of consumption by

cH(j). The flow utility in each period from this level of consumption then is ru
(

cH(j)
)

.

Let H(j) ≡ u(cH(j)) denote the discounted sum of utilities to an agent who transits to

wH for the first time in period j. Note that H(j) is also the continuation utility to an

1That high income is an absorbing state allows us to focus on one spell of transiting to high
income. If high income is not permanent, then the agent might experience multiple spells;
nevertheless, the analysis within each spell would be similar to what we carry out here.
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agent who transited to wH before j but reports wH for the first time in period j, since

true income is not observable.

For a low-income agent, the consumption sequence
{

cL(n)
}

has to provide incentives

to truthfully report the transition to the high income state. The continuation utility

L(n) to an agent who has low income until n− 1 is

L(n) =

∞
∑

i=n

e−(i−n)rdt(1 − πdt)i−n
(

πdtH(i) + (1 − πdt) (rdt)u(cL(i))
)

.

The temporary incentive compatibility constraint requires that an agent who transited

to high income in the current period does not have the incentive to delay the report of

the transition to the next period, i.e., report wL in the current period and wH in future

periods:

H(n) ≥ (rdt)u(cL(n) + wH − wL) + (1 − rdt)H(n+ 1), n = 0, 1, 2, ...

The above constraint can be simplified as follows. CARA utility implies that u(cL(n) +

wH − wL) = u(cL(n))|u(wH − wL)|. Define

b ≡ |u(wH − wL)| ∈ (0, 1),

so the temporary incentive compatibility constraint can be written as

(2) H(n) ≥ (rdt)bu(cL(n)) + (1 − rdt)H(n+ 1).

The expected cost for the principal is

C(σ) =
∞

∑

n=0

e−nrdt(1 − πdt)n
(

πdtcH(n) + (1 − πdt)(rdt)cL(n)
)

.

There should, in fact, be an additional term in C(σ): the discounted income obtained

by the principal, wL+ π(wH−wL)
(r+π)

. However, unlike the unemployment insurance literature

that endogenizes search efforts and job-finding probabilities, the discounted income in

our model is a constant, so it does not affect the optimal σ.

The principal’s problem is to find an incentive compatible (I.C.) σ that delivers a
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level of initial utility L0 to a low-income agent and minimizes C(σ), i.e.,

min
σ

C(σ)

s.t. L0 =
∞

∑

n=0

e−nrdt(1 − πdt)n
(

πdtH(n) + (1 − πdt) (rdt)u(cL(n))
)

,

and (2) for n = 0, 1, 2, ...

Next we will obtain a continuous-time representation of the above problem. First,

denote u(cL(t)) as uL(t) and write the promise-keeping constraints and incentive con-

straints recursively as,

L(t) = πdtH(t) + (1 − πdt)
[

(rdt)uL(t) + (1 − rdt)L(t+ dt)
]

,

H(t) ≥ (rdt)buL(t) + (1 − rdt)H(t+ dt).

Second, transform these into differential equations and inequalities. For example, the

inequality above can be rewritten as H(t+dt)−H(t)
dt

≤ rH(t+ dt) − rbuL(t). Taking limit

dt→ 0 yields the differential inequality below.

dL(t)

dt
= (r + π)L(t) − πH(t) − ruL(t),

dH(t)

dt
≤ rH(t) − rbuL(t).

Introducing a slack variable µ(t) ≥ 0 in the above differential inequality and rewriting

the cost in continuous time, we get

min
σ

C(σ) =

∫ ∞

0

e−(r+π)t
(

πc(H(t)) + rc(uL(t))
)

dt(3)

s.t.
dL(t)

dt
= (r + π)L(t) − πH(t) − ruL(t),(4)

dH(t)

dt
= rH(t) − rbuL(t) − µ(t).(5)

Following Fernandes and Phelan (2000) and Zhang (2009), we write the principal’s

problem as a dynamic programming problem, with L and H as the state variables and

uL and µ as the control variables. With a slight abuse of notation, denote the principal’s

cost function as C(L,H).
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Remark 1 We include H in the state variable for incentive reasons. The principal

chooses H(0) freely to minimize cost (i.e., ∂C
∂H

= 0). In any continuation contract,

however, H is no longer a free variable, because H acts as a threat utility. Raising H(t)

might induce an agent who transited to wH in earlier periods to postpone the high-income

report until t.

Remark 2 The domain of the cost function C(L,H) in the dynamic programming prob-

lem is {(L,H) : L < H < 0}. If L is not strictly below H, then a high-income agent

would pose as a low-income agent and consume more than a low-income agent.

In the rest of this section, we study the solution to problem (3) in three steps. In

subsection 2.1, we prove a homogeneity property of the cost function C(L,H) and use it

to introduce a measure of consumption distortion. In subsection 2.2, we formulate the

Hamiltonian of (3) and derive a system of ordinary differential equations (ODE) that

fully characterizes the optimal contract. In subsection 2.3, we obtain properties of the

cost function and the dynamics of the state variables. In particular, we show that the

distortion is increasing with the duration of low-income report. We summarize these

results in Lemma 3 and will use them in Section 3.

2.1 A Measure of Distortion

Recall that the agent’s utility function belongs to the CARA class. A property of

the utility function is that

− exp

(

−ρ

(

−
log(α)

ρ
+ c

))

= −α exp(−ρc), for all α > 0.

Suppose that a contract σ =
{(

cL(t), cH(t)
)

; t ≥ 0
}

delivers the continuation utility pair

(L,H). Then, a contract

σα =

{(

−
log(α)

ρ
+ cL(t),−

log(α)

ρ
+ cH(t)

)

; t ≥ 0

}

delivers the pair (αL, αH). The reverse is also true. Further, σ is I.C. if and only if

σα is I.C. Therefore,
{(

cL∗(t), cH∗(t)
)

; t ≥ 0
}

is the optimal contract to deliver (L,H)

if and only if
{(

− log(α)
ρ

+ cL∗(t),− log(α)
ρ

+ cH∗(t)
)

; t ≥ 0
}

is the optimal contract to
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deliver (αL, αH). The next lemma states this homogeneity property and will be used

to establish other properties of the cost function.2

Lemma 1 The cost function C has the following properties:

(i) (Homogeneity) For any α > 0,

C(αL, αH) = C(L,H) +
− log(α)

ρ
,(6)

CLL+ CHH = −
1

ρ
;(7)

(ii) (Monotonicity) CL > 0, CH ≤ 0.

Recall that c is the inverse of the utility function, so equation (6) is the same as

C(αL, αH) = C(L,H) + c(−α).

We can thus decompose the cost C(L,H) as

C(L,H) = C

(

−1,−
H

L

)

+ c(L).

Under full information, the principal will deliver L to the low-income agent via a stream

of constant consumption and the cost of delivering L is c(L). The distortion of con-

sumption to the low-income agent in our contract can be measured by the difference

between the cost C(L,H) and the full information cost c(L):

(8) C(L,H) − c(L) = C

(

−1,−
H

L

)

.

It is helpful to compare the distortion in our model to that in Green (1987). With

i.i.d. incomes, private information and CARA utility, Green (1987) shows that the cost

function implied by the optimal contract differs from the full information cost function

only by a constant. Thus, the distortion in any continuation contract in the i.i.d. case

is constant. In particular, the distortion is independent of the history, or the level of

evolving continuation utilities. With persistent shocks, the distortion is independent of

the level of the continuation utility L, but depends on the ratio H
L

, as noted in equation

(8). Part (ii) of Lemma 1 implies that the higher the ratio is, the higher the distortion

will be.

2We use CL, CH , CLL, CLH , and CHH to denote partial derivatives ∂C
∂L , ∂C∂H , ∂

2C
∂L2 , ∂2C

∂L∂H , and
∂2C
∂H2 , respectively.
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2.2 The Hamiltonian

The problem faced by the principal is to choose a time path (uL(t), µ(t)) to mini-

mize the cost in (3). Given the path (uL(t), µ(t)) and an initial state (L(0), H(0)), the

promise-keeping and incentive constraints (4) and (5) imply a time path (L(t), H(t))

for continuation utilities. One way to think about this problem is to think of choosing

(uL(t), µ(t)) at each date, given the values of (L(t), H(t)) that have been attained by

that date. The principal faces a tradeoff between the current-period cost, c(uL(t)), and

the cost of delivering continuation utility, and hence needs to set “prices”, Φ and −λ,

on increments to the continuation utilities L and H :

Φ = CL,−λ = CH ≤ 0.

A central construct in the study of optimal allocation is the current value Hamiltonian

H defined by

H (L,H,Φ, λ, uL, µ) = (πc(H)+ rc(uL))+Φ((r+π)L− ruL−πH)−λ(rH− rbuL−µ),

which is just the sum of current-period cost and the rate of increase in continuation

utilities (see (4) and (5)), the latter valued at Φ(t) and −λ(t). An optimal allocation

must minimize H at each date t.

The first-order condition for minimizing H with respect to uL is

(9) c′(uL) = Φ − bλ.

The left hand is the marginal cost of today’s utility, while the right hand is the marginal

cost of starting with higher continuation utility tomorrow, offset by the benefit of a

slacker incentive constraint. The utility uL must be chosen to equalize the costs at each

date. Note that equation (9) implies λ ∈ [0,Φ/b] along the optimal path.

The prices Φ(t) and −λ(t) must satisfy

dΦ(t)

dt
= (r + π)Φ(t) −

∂H (L(t), H(t),Φ(t), λ(t), uL(t), µ(t))

∂L
= 0,(10)

dλ(t)

dt
= (r + π)λ(t) +

∂H (L(t), H(t),Φ(t), λ(t), uL(t), µ(t))

∂H
(11)

= π(λ(t) + c′(H(t)) − Φ(t)),
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at each date t if (uL(t), µ(t)) is an optimal path. Equation (10) implies that Φ is a con-

stant. Furthermore, since the principal chooses the optimalH(0) to satisfy CH(L(0), H(0))=0,

we can pin down Φ by the level of initial utility L0 and equation (7) in Lemma 1. Hence,

(12) Φ =
−1

ρL0
.

Using the above differential equations, the following lemma shows that the incentive

constraints are always binding.

Lemma 2 λ(0) = 0 and λ(t) > 0, for all t > 0; µ(t) = 0 for all t.

To summarize, the dynamics are given by

dλ

dt
= π(λ+ c′(H) − Φ),

dL

dt
= (r + π)L− πH − ruL,

dH

dt
= rH − rbuL.

From equation (1), the inverse of the utility function implies that c′(H) = − 1
ρH
. From

(1) and (9), we can determine uL = − 1
ρ(Φ−bλ)

.

Substituting for uL and c′(H), the dynamics are described by an ODE system:

dλ

dt
= π

(

λ−
1

ρH
− Φ

)

,(13)

dL

dt
= (r + π)L− πH +

r

ρ (Φ − bλ)
,(14)

dH

dt
= rH +

rb

ρ (Φ − bλ)
.(15)

2.3 The Analysis of the ODE System

In the ODE system, equations (14) and (15) are nonlinear in λ, while (13) is nonlinear

in H. To facilitate the analysis of the ODE system, in this subsection, we will first reduce

the above system to a system with only two variables, λ andH . Second, we will eliminate

the nonlinearity in one of the differential equations in the reduced system by a simple

transformation of variables. Finally, we will obtain some properties of the cost function
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and dynamics of the state variable in the reduced and transformed ODE system. These

properties will be used in Section 3.

To reduce the ODE system, we will show that equation (14) is redundant if equations

(13), (15), and Lemma 1 hold. Rewrite equation (7) in Lemma 1 as ΦL − λH = −1
ρ

and differentiate both sides with respect to time:

Φ
dL

dt
−
dλ

dt
H − λ

dH

dt
= 0.

After the substitution of (13) and (15), the above equation becomes

Φ
dL

dt
= π

(

λ−
1

ρH
− Φ

)

H + λ

(

rH +
rb

ρ (Φ − bλ)

)

= (r + π)λH −
π

ρ
+

rbλ

ρ (Φ − bλ)
− πΦH

= (r + π)

(

λH −
1

ρ

)

+
rΦ

ρ (Φ − bλ)
− πΦH

= (r + π)ΦL− πΦH +
rΦ

ρ (Φ − bλ)
,

which is equation (14) multiplied by a positive constant Φ.

The reduced ODE system now consists of only equations (13) and (15). Since we

will show later that limt→∞H(t) = −∞, it is convenient to eliminate the nonlinearity

in H in the reduced system. To this end, we introduce a new variable

y ≡ c′(H) = −
1

ρH

to replace H . We then have

dy

dt
=

1

ρH2

dH

dt
=

ry2

Φ/b− λ
− ry.

Thus, the ODE system in the previous section can now be written as

dλ

dt
= π(λ+ y − Φ),(16)

dy

dt
=

ry2

Φ/b− λ
− ry,(17)

where λ ≥ 0 and y > 0.

In what follows, we will characterize the solution to (16) and (17). It is easy to see

that dλ
dt
> 0 if and only if y > Φ−λ, and dy

dt
> 0 if and only if y > Φ

b
−λ. Figure 1 is the

14



λ

y

line y = Φ − λ

line y = Φ/b − λ

(Φ, 0)(0, 0)

Figure 1: Phase diagram for the system in equations (16) and (17).

L

H

45-degree line45-degree line

(0, 0)

Figure 2: Time path of (L(t), H(t)).
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phase diagram for the system in equations (16) and (17). We summarize the dynamics

of the ODE system in Lemma 3.

Lemma 3 The time path (λ(t), y(t)) and cost function C(L,H) have the following prop-

erties:

(i) The initial condition (λ(0), y(0)) satisfies λ(0) = 0. The path always stays below

the straight line y = Φ
b
− λ and above the straight line y = Φ − λ, i.e., Φ − λ(t) <

y(t) < Φ
b
− λ(t) for all t ≥ 0; (see Figure 1)

(ii) The path (λ(t), y(t)) moves southeast, converges to (Φ, 0) and also approaches (but

never reaches) the line y = Φ− λ, i.e., dλ
dt
> 0, dy

dt
< 0, limt→∞(λ(t), y(t)) = (Φ, 0)

and dλ
dt

+ dy
dt
< 0, for all t ≥ 0; (see Figure 1)

(iii) The continuation utilities L(t) and H(t) decline with low-income report, and the

path (L(t), H(t)) approaches (but never reaches) the 45-degree line, i.e., dL
dt
< 0,

dH
dt
< 0, limt→∞(L(t), H(t)) = (−∞,−∞) and

d( LH )
dt

< 0 for all t ≥ 0; (see Figure

2)

(iv) The cost function C(L,H) is strictly convex;

(v) For a fixed L, limH↓L C(L,H) = ∞.

Part (iii) states that the time path (L(t), H(t)) moves toward (−∞,−∞) and ap-

proaches the 45-degree line, i.e., limt→∞
H(t)
L(t)

= 1 (see Figure 2). That L and H decrease

with low-income report is for incentive reasons. In order to prevent an agent who tran-

sits to high income from postponing the high-income report, the principal punishes late

reporters by reducing H with the duration of low-income report. Moveover, H declines

faster than L, so the distortion (8) in the continuation contract increases with the du-

ration of low-income report.

Part (v) states that for a given L(t), the distortion approaches infinity when H(t)

is sufficiently close to L(t). Suppose H(t) = L(t) + ǫ, where ǫ > 0 is a small number.

Note that the high-income agent’s consumption path is not distorted. For the low-

income agent, consider three possibilities for the consumption path: flat, increasing, or
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decreasing. When the path is flat, a high-income agent may underreport his income and

obtain utility of at least [u(cLt +wH −wL) − u(cLt )]dt+ L. Because [u(cLt +wH −wL) −

u(cLt )]dt+L ≈ [u(cLt +wH−wL)−u(cLt )]dt+H > H , the incentive constraint is violated.

When the path is increasing, cLt must be below cHt , which leads to a similar violation of

the incentive constraint. Hence when ǫ is sufficiently small, cLt must be above cHt and

must approach infinity. Put differently,

H(t) ≥ (rdt)buL(t) + (1 − rdt)H(t+ dt),

L(t) = πdtH(t) + (1 − πdt)
[

(rdt)uL(t) + (1 − rdt)L(t+ dt)
]

,

imply that

H(t) − L(t) = (1 − πdt)
[

(rdt)(b− 1)uL(t) + (1 − rdt)(H(t+ dt) − L(t+ dt))
]

> (1 − πdt)(rdt)(b− 1)uL(t),

which implies uL(t) > −ǫ
(1−πdt)(rdt)(1−b)

. When ǫ is sufficiently small, uL(t) needs to be

sufficiently close to 0, which requires a large consumption at t. The large consumption

at t needs to be offset by much lower levels of consumption in the future, so as to deliver

a given level of continuation utility L(t). Hence the consumption path is very distorted

when H is just slightly above L.

3 Model: Costly Auditing

Besides distorting the consumption path to provide incentives, now the principal can

deter cheating by auditing the agent’s report. Auditing reveals the agent’s true income

but costs γ units of consumption good. Since high income is an absorbing state, it is

easy to see that auditing is unnecessary forever if the agent reports wH just once in

the past. In each period, conditional on low-income report, the principal chooses to

audit according to a Poisson arrival rate p(t) ≥ 0. That is, over a period of length dt,

she audits with probability p(t)dt and she does not audit with probability 1 − p(t)dt.

Note that, since our model is in continuous time, p(t) is the (endogenous) arrival rate

of an audit, not the auditing probability itself. If p(t) = 0, no auditing arrives, while

17



if p(t) = ∞, the auditing probability has an atom at t. We assume that if an agent

is audited and caught cheating, he needs to pay a finite penalty of ψ > 0 forever. We

model finite penalty, because if infinite penalty (ψ = ∞) is allowed, then an arbitrarily

small auditing probability would deliver the full information constant consumption.

The principal pre-commits not only to the two sequences of consumption, as in the

previous section, but also to the sequence of arrival rates of audit. We can again represent

the principal’s cost minimization problem as a dynamic program with L and H as state

variables. We continue to exclude the discounted income from the cost function C(L,H)

for the same reason as in the case without auditing; however, C(L,H) now includes both

the cost of delivering consumption and the cost of auditing.

Remark 3 When the principal audits and observes the true income, it is feasible for her

to deliver any continuation utility pair (L,H), (L < 0, H < 0). But when she delivers

less utility to a high-income agent than to a low-income agent (i.e., H < L < 0), it

induces the high-income agent to quit his high-income job and become a low-income

agent. Hence, we exclude the region {(L,H) : H < L < 0} from the domain of the cost

function. This is equivalent to assuming that a high-income agent can secretly become a

low-income agent whenever he wants to. Therefore, the domain of the cost function is

{(L,H) : L ≤ H < 0}.

Remark 4 The utility L = H < 0 can be delivered because the true income is observable

with an auditing technology.

The timing is as follows. In the initial period, the agent receives an income, either

wH or wL. He chooses to report either wH or wL to the principal. Then conditional

on the report, the principal chooses the auditing probability. Conditional on the report

and the outcome of the audit, the principal assigns current and future consumptions.

(Recall that auditing probability is zero if the report is wH .) In subsequent periods, if

an agent had reported wH in the past, he is in an absorbing state and no further reports

or auditing are necessary. If an agent had reported wL in every period in the past, then

he receives an income, either wH or wL. The sequence of events then is the same as in

the initial period.
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For now we impose a restriction that atomic auditing is not allowed. In subsection 3.3,

we verify that the principal will not use atomic auditing even if it is allowed. When there

is no atomic auditing (i.e., p(t) <∞), the promise-keeping and incentive constraints are

L(t) = πdtH(t) + (1 − πdt)
(

p(t)dtL̃(t) + (1 − p(t)dt)
[

(rdt)uL(t) + (1 − rdt)L(t+ dt)
]

)

,

H(t) ≥ p(t)dteρψH(t) + (1 − p(t)dt)
[

(rdt)buL(t) + (1 − rdt)H(t+ dt)
]

,

where eρψH(t) is the agent’s continuation utility if he is audited and found to be a liar,

and L̃(t) denotes the low-income agent’s continuation utility if he is audited and found

to be a truth-teller. Thus, the differential equations for the state variables are

dL

dt
= (r + π)L− πH − ruL − p(L̃− L),(18)

dH

dt
= rH − rbuL − p(eρψ − 1)H − µ,(19)

where µ is, again, a slack variable. Note that if p is exogenously set to zero, then the

above differential equations are identical to (4) and (5) in Section 2.

We can write the Hamilton-Jacobi-Bellman (HJB) equation satisfied by the cost

function C(L,H) as:

(r + π)C(L,H) = min
uL,p,L̃,H̃,µ

rc(uL) + πc(H) + p
(

C(L̃, H̃) + γ − C(L,H)
)

(20)

+CL(L,H)
(

(r + π)L− πH − ruL − p(L̃− L)
)

+CH(L,H)
(

rH − rbuL − p(eρψ − 1)H − µ
)

.

In the HJB equation, H̃ denotes the continuation utility to a low-income agent who

transited to high income immediately after he was audited.

The presence of the control variable p in the HJB equation (20) makes it difficult

to study the optimal contract directly. To simplify the analysis, in subsection 3.1, we

first study a restricted problem where the principal is able to audit only when L = H

(i.e., p(t) = 0 if L(t) < H(t)). We show the properties of the cost function under this

restriction. Then in subsection 3.2, we show that the principal would, in fact, not audit

when L < H , even if she is allowed to do so. In subsection 3.3, we show that the principal

would not use atomic auditing. Finally, in subsection 3.4, we study implications of the

optimal contract.
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3.1 A Restricted Problem

When L < H and p = 0, the HJB equation (20) reduces to

(r + π)C(L,H) = min
uL,µ

rc(uL) + πc(H) + CL(L,H)
(

(r + π)L− πH − ruL
)

(21)

+CH(L,H)
(

rH − rbuL − µ
)

.

When L = H and auditing is allowed, the HJB equation (20) applies. Recall that the

domain of the cost function in the unrestricted problem is L ≤ H < 0 (see Remark 3).

In the restricted problem, the domain remains the same. However, the feasible values of

p are restricted in parts of the domain: when L < H , the feasible set for p is a singleton

{0} and when L = H , the feasible set is [0,∞).

The restricted problem and the problem in Section 2 (where auditing is completely

shut down and the domain of the cost function is L < H < 0) share a lot of similarities.

When L < H , Lemma 1 and Lemma 2 continue to hold, i.e., the cost function is

homogeneous, µ ≡ 0 in equation (19) and the ODE system in (16) and (17) characterize

the dynamics.

But there are two important differences between the restricted problem and the

problem in Section 2. The first difference is that when L = H , C(L,H) is defined and

finite in the restricted problem, but it is not defined in Section 2 (or, the cost is infinity,

see part (v) in Lemma 3). The second difference is that the time path of (L(t), H(t))

in the restricted problem reaches the 45-degree line in finite time (see Figure 3), but it

does not reach the 45-degree line in Section 2 (see Figure 2).

To see the first difference, note that on the 45-degree line, perfectly smooth con-

sumption can be achieved as long as the arrival rate p of auditing is sufficiently large.

For example, when L = H , set uL = L = H , L̃ = H̃ = L, µ = 0 and p = r(1−b)
eρψ−1

. Then,

equations (18) and (19) imply that

dL

dt
= (r + π)L− πH − ruL − p(L̃− L) = 0,

dH

dt
= rH − rbuL − p(eρψ − 1)H − µ = 0.

Thus, both L and H are constant and the cost of implementing (L,H) cannot be infinite

when L = H , if auditing is allowed.
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45-degree line

t = N

45-degree line

t = N

(0, 0)

Figure 3: Time path of (L(t), H(t)) in the restricted problem.

To see the second difference, suppose to the contrary that the dynamic path of

(L(t), H(t)) never reaches the 45-degree line. Then in the region {(L,H) : L < H <

0}, the restricted problem is no different from the problem in Section 2 and, hence,

limH↓L C(L,H) = ∞, as in part (v) in Lemma 3. But this contradicts the property in

Lemma 1 that C(L,H) is decreasing in H and C(L,L) is finite.

Despite the two differences, we can characterize the dynamics in the restricted prob-

lem using the results from subsection 2.3. To begin, since the path of (L(t), H(t)) in the

restricted problem reaches the 45-degree line in finite time (Figure 3), let N denote the

first time that the path reaches the 45-degree line, i.e., L(t) = H(t) for the first time

at t = N . Similar to subsection 2.3 we can describe the path of (L(t), H(t)) in terms

of (λ(t), y(t)). Equations (16) and (17) completely describe the dynamic path before N

in the restricted problem. At N , H(N) = L(N), so using the prices in subsection 2.2

equation (7) implies that

ΦH(N) − λH(N) = ΦL(N) − λH(N) = −
1

ρ
.
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Thus y(N) = −1
ρH(N)

= Φ−λ and the path of (λ(t), y(t)) reaches the straight line y = Φ−λ

at time N . Lemma 4 below demonstrates that the auditing probability is positive at

t = N (when L(t) = H(t) for the first time). The evolution of L and H is then pinned

down by (18) and (19).

Lemma 4 When t = N , p > 0.

3.2 Optimal Auditing

The remaining issue is the auditing probability before N . In the restricted problem,

we forced the auditing probability to be zero for t < N (when L < H). In this subsection,

we show that the constraint p = 0 when L < H is not binding, i.e., the principal would

choose p = 0 even if the feasibility set for p is [0,∞).

Lemma 5 Let t < N . Suppose p ∈ [0,∞). Then the principal chooses p = 0.

When t < N , the path of (L(t), H(t)) is above the 45-degree line and the principal

does not audit. That is, in the pre-commitment contract, the principal guarantees that

she would not audit until N , despite the fact that income is private information.

Our main result is that the auditing pattern is periodic. The optimal mechanism

consists of cycles. A low-income agent begins each cycle with (L,H), L < H , and is

initially not audited. When the duration of his low-income reports reaches N , he will

be audited randomly according to an endogenous arrival rate p > 0. The actual instant

of audit depends on the realization of the audit random variable, so the actual audit

could be at any t ≥ N . The new cycle starts the moment after he is audited. In the

new cycle, the low-income agent begins with updated continuation utilities (L̃, H̃). Note

that while auditing is stochastic, N is deterministic and is completely pinned down by

the differential equations below:

dL

dt
= (r + π)L− πH − ruL,

dH

dt
= rH − rbuL.
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(These equations follow directly from (18) and (19), since p = 0 and µ = 0 when L < H .)

Starting from (L,H), N is the time taken to reach the 45-degree line along the path

implied by these equations.

The threshold duration N depends on primitives of the model, but does not de-

pend on the initial promised utility L0. The homogeneity property implies that, if

{(L(t), H(t)); t ≥ 0} is the optimal time path when the initial promise is L0, then

{( L̄0

L0
L(t), L̄0

L0
H(t)); t ≥ 0} is the optimal path when the initial promise is L̄0 6= L0. The

two paths reach the 45-degree line at the same time.

Proposition 1 When t ≥ N and conditional on low-income report, the principal audits

with an arrival rate p > 0. The time path (L(t), H(t)) stays on the 45-degree line and

moves along it toward (−∞,−∞) until the agent is randomly drawn to be audited. After

the audit, (L,H) jumps to a new state (L̃, H̃). Then the optimal contract enters a new

cycle.

In the unrestricted problem, there are two instruments to provide incentives for

truthfully reporting the transition to high income. The first instrument is dynamic

taxation that distorts the consumption path. The principal always uses this instrument.

The second instrument of auditing, however, is not used by the principal if L < H .

Since H
L

measures the distortion in the continuation contract (see the discussion after

Lemma 1), the closer H
L

is to 1, the higher is the distortion. Proposition 1 shows that

the principal uses the auditing instrument only when the distortion is the highest, i.e.,

when L = H .

The reason that the principal uses the two instruments asymmetrically is because

the marginal cost of the first instrument is increasing with the distortion, while that

of the second is constant. Starting with the full insurance consumption path, a first-

order distortion in consumption generates only a second-order welfare loss. Thus when

consumption distortion is small, it is nearly costless to use the first instrument and the

principal will avoid the second instrument. The principal uses the second instrument

of auditing only when the benefit of correcting the distortion is larger than the cost,

namely when (L,H) reaches the 45-degree line.
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The principal audits periodically, no matter how high the auditing cost γ is. This

is because the distortion in consumption converges to infinity and the benefit of using

the auditing instrument will eventually surpass any finite cost. This result contrasts

with that in Wang (2005), where the principal does not audit when γ is large, since the

income is i.i.d. in his environment and the distortion is constant. It also contrasts with

Monnet and Quintin (2005), where auditing is not used eventually, since the agent is

risk neutral.

3.3 No Atomic Auditing

In the previous two subsections, we have shown that the principal would set p = 0

when L < H and would set p > 0 but finite when L = H . In this subsection we will

show that the principal would never set p = ∞, i.e., she will never use atomic auditing.

For the moment, denote P as the size of the atom if there is an atom in the auditing

probability when the state is (L,H). With probability P > 0 the principal audits and

with probability 1 − P she does not. Thus, the cost minimization problem for the

principal is

M(P ) = min
L̃,H̃,L̄,H̄

P
(

C(L̃, H̃) + γ
)

+ (1 − P )C
(

L̄, H̄
)

(22)

s.t. L = PL̃+ (1 − P )L̄,(23)

H ≥ PeρψH + (1 − P )H̄,(24)

where (L̃, H̃) denotes the state if the agent is audited and (L̄, H̄) denotes the state if the

agent is not audited. Note that M(0) = C(L,H). Lemma 6 below states that atomic

auditing is not optimal.

Lemma 6 At any (L,H), L ≤ H, there is no atomic auditing, i.e., M(P ) > M(0) for

all P > 0.

3.4 Implications of the Optimal Contract

1. Reducing the cost of auditing (smaller γ) increases the auditing frequency.
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A smaller γ makes the auditing instrument cheaper than the dynamic taxation instru-

ment. As a result, the principal is willing to audit more frequently.

2. Increasing the variance of income (i.e., larger wH − wL) increases the auditing

frequency.

With a larger wH −wL, a high-income agent benefits more from underreporting income.

In the absence of auditing, the low-income agent’s consumption path needs to be dis-

torted more to provide dynamic incentives for truth telling. As a result, the auditing

instrument is used more frequently to reduce the distortion.

For instance, the rich might have more volatile income relative to the poor since capital

income might be a larger component of the income for the rich. Our model implies that

the rich would be audited more frequently, which is roughly consistent with the IRS

practice.

3. Agents with an intermediate level of risk aversion, ρ, are audited more frequently

relative to agents with either low or high risk aversion.

When ρ is small, distortion in the consumption path incurs little welfare loss, thus there

is no need to use auditing to reduce the distortion.

When ρ is large, a small distortion in consumption is able to generate large incentive

effects. Again, there is no need to audit. More specifically, let L0 = −1 and consider a no-

auditing contract in which consumptions decline linearly, i.e., cH(t) = cL(t) =
log( π

r+π
)−rt

ρ
.

This contract delivers the promised utility L0 because

∫ ∞

0

e−(r+π)t
(

πH(t) + ruL(t)
)

dt = −

∫ ∞

0

e−(r+π)t

(

(π + r)ert
π

r + π

)

dt = −1.

It is I.C. because

dH(t)

dt
= rH(t) < rH(t) − rbuL(t).

When ρ→ ∞, the cost of the contract converges to the full information cost c(L0), which

is zero. The optimal no-auditing contract has very little distortion in consumption, and

there is no need to correct it frequently by auditing.
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4 Conclusion

We have studied a repeated hidden income environment with persistent incomes. A

principal, with imperfect ability to audit, designs an optimal taxation scheme as well

as an optimal auditing scheme. When the agent’s absolute risk aversion is constant, we

have shown that it is optimal to audit the low-income agent periodically. The optimal

mechanism consists of cycles. Within each cycle, an agent reporting low income is

guaranteed that he will not be audited until the duration of the low-income reports

exceeds a threshold. After the threshold is reached, the agent is audited randomly.

Unlike repeated hidden income model with i.i.d. incomes, the distortion in the con-

sumption path increases with the duration of low-income reports in our model. Auditing

helps the principal detect who is the truth-teller and who is the cheater. She can thus

correct the distortion in the consumption path after an audit. The benefit of auditing

increases with the duration of low-income reports whereas the cost of auditing is con-

stant. Consequently, the principal would use the auditing instrument no matter how

high the auditing cost is.

Our model is limited in several respects. First, our results are valid for the case of

CARA utility. With more general utility specifications, the length of each auditing cycle

would not be constant. However, we expect the periodic feature to remain.

Second, the binary nature of income levels – income is either wH or wL – is restrictive.

One implication of this assumption is that auditing occurs only at the lowest income

level (i.e., wL). When there are more than two income levels, the principal might audit

any income level below the maximum. If the only binding incentive constraint when the

report is wi is for the agent at the next higher income level wi+1, then our measure of

distortion remains useful in the more general setup, namely, the distortion is the ratio

between the continuation utility for the agent who just transited to wi+1 and that for

the agent who remains at wi. We conjecture that the auditing in the optimal contract

would still contain cycles.
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Appendix

Proof of Lemma 1:

(i) Equation (6) holds because
{(

cL∗(t), cH∗(t)
)

; t ≥ 0
}

is the optimal contract to

implement (L,H) if and only if
{(

− log(α)
ρ

+ cL∗(t),− log(α)
ρ

+ cH∗(t)
)

; t ≥ 0
}

is the

optimal contract to implement (αL, αH). Differentiating (6) with respect to α and
then setting α = 1 yield (7).

(ii) We show CH ≤ 0 first. It is equivalent to show that C(L̄, H̄) ≤ C(L,H) for any
(L,H) and (L̄, H̄) with L = L̄, H < H̄ . The evolution of (L̄, H̄) is

dL̄(t)

dt
= (r + π)L̄(t) − πH̄(t) − rūL(t),

dH̄(t)

dt
= rH̄(t) − rbūL(t) − µ̄(t).

By picking µ̄(0) = ∞, H̄(t) could jump to H(t) immediately after time 0. Thus
C(L̄, H̄) ≤ C(L,H). It follows from (7) and CH ≤ 0 that

CL =
−1
ρ
− CHH

L
> 0.

Q.E.D.
Proof of Lemma 2: That λ(0) = 0 is because the principal chooses H(0) to

minimize the cost C(L(0), H(0)).3 To prove the second statement by contradiction,
suppose for some t∗ > 0, λ(t∗) = 0. Since λ(t) is non-negative, it achieves a minimum
at t∗, and the first- and second-order conditions are

dλ(t∗)

dt
= 0,(25)

d2λ(t∗)

dt2
≥ 0.(26)

Equations (11) and (25) imply that c′(H(t∗)) = Φ. The first-order condition (9) implies
that c′(uL(t∗)) = Φ, hence uL(t∗) = H(t∗). Therefore equation (5) and b ∈ (0, 1) imply

that dH(t∗)
dt

≤ rH(t∗) − rbuL(t∗) < 0. Thus differentiating (11) with respect to t yields

d2λ(t∗)

dt2
= π

(

dλ(t∗)

dt
+ c′′(H(t∗))

dH(t∗)

dt

)

< 0,

which contradicts (26). Q.E.D.
Proof of Lemma 3:

3By contradiction, suppose λ(0) > 0, then the principal can further lower the cost by
increasing H(0). Increasing H(0) does not violate any incentive constraints and the principal
has complete freedom in picking H(0).
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(i) We proved λ(0) = 0 in Lemma 2. To show that y(t) < Φ
b
− λ(t) for all t, suppose

to the contrary that y(t∗) ≥ Φ
b
− λ(t∗) for some t∗. Then the phase diagram in

Figure 1 shows that the path will remain above the line y = Φ
b
−λ forever, because

dy(t)
dt

> 0 and dλ(t)
dt

> 0 for t > t∗. Eventually y and λ become unbounded, which
contradicts the fact that λ ∈ [0,Φ/b].

To show that y(t) > Φ−λ(t) for all t, suppose to the contrary that y(t∗) ≤ Φ−λ(t∗)
for some t∗. Then the phase diagram in Figure 1 shows that the path will remain
below the line y = Φ − λ afterwards, because dy(t)

dt
< 0 and dλ(t)

dt
< 0 for t > t∗.

Eventually y becomes negative. This contradicts the fact that y is positive.

(ii) Part (i) states that Φ − λ(t) < y(t) < Φ
b
− λ(t). It then follows from equations

(16) and (17) that dλ
dt
> 0 and dy

dt
< 0. To show that limt→∞(λ(t), y(t)) = (Φ, 0),

note that if a path between the two straight lines does not converge to (Φ, 0),
then it will eventually hit either one of the straight lines, or the horizontal axis
y = 0. Hitting a straight line contradicts part (i) and hitting the horizontal axis
contradicts that y > 0.

To prove dλ
dt

+ dy
dt
< 0, suppose to the contrary that d(λ+y)(t∗)

dt
≥ 0 for some t∗. We

argue that d(λ+y)(t)
dt

≥ 0 for all t ≥ t∗. By contradiction, suppose t∗∗ ≡ infs{s >

t∗ : d(λ+y)(s)
dt

< 0} exists. It is easily seen that d(λ+y)(t∗∗)
dt

= 0 and d2(λ+y)(t∗∗)
dt2

≤ 0.

Adding equations (16) and (17) yields d(λ+y)
dt

= ry2

Φ/b−λ
− ry+ π(λ+ y−Φ). It then

follows from dλ(t∗∗)
dt

= −dy(t∗∗)
dt

that

d2(λ+ y)(t∗∗)

dt2
=

(

2ry(Φ/b− λ) − ry2

(Φ/b− λ)2
− r

)

dy(t∗∗)

dt

= −r
(Φ/b− λ− y)2

(Φ/b− λ)2

dy(t∗∗)

dt
> 0,

which contradicts that d2(λ+y)(t∗∗)
dt2

≤ 0. Since d(λ+y)(t)
dt

≥ 0 for all t ≥ t∗, equation
(16) and (λ+ y) > Φ imply that λ(t) grows unboundedly after t∗, and contradicts
the fact that λ(t) is bounded.

(iii) That dH
dt
< 0 and limt→∞H(t) = −∞ follow from that dy

dt
< 0 and limt→∞ y(t) = 0,

because y ≡ −1
ρH

. To see that dL
dt
< 0, recall equation (7),

ΦL = Hλ− 1/ρ.

Since λ ≥ 0 is increasing and H < 0 is decreasing, Hλ and L both decrease with
time. It follows from L(t) < H(t) and limt→∞H(t) = −∞ that limt→∞ L(t) =
−∞. Dividing both sides of equation (7) by ΦH yields L

H
= (λ + y)/Φ. Thus it

follows from part (ii) that d
(

L(t)
H(t)

)

/dt < 0 and limt→∞
L(t)
H(t)

= 1.

(iv) Differentiating equation (7) with respect toH yields CLHL+CHHH = −CH , which
is

CLH = −CHH
H

L
−
CH
L
.(27)
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Substituting equation (27) into

dCH
dt

= CLH
dL

dt
+ CHH

dH

dt
,

we get

CHH

(

dH/dt

dL/dt
−
H

L

)

=
dCH/dt

dL/dt
+
CH
L
.

Then CHH > 0 follows from dCH/dt = d(−λ)/dt < 0, dL/dt < 0, CH ≤ 0, L < 0,

and dH/dt
dL/dt

− H
L
> 0.

Equation (27) and CHH > 0 imply that CLH < 0, which, together with equation
CLL

dL
dt

+ CLH
dH
dt

= dCL
dt

= 0, imply that CLL > 0. To finish the proof, note that

CLH
dL

dt
+ CHH

dH

dt
=

dCH
dt

< 0,

CLL
dL

dt
+ CLH

dH

dt
=

dCL
dt

= 0,

imply that

∣

∣

∣

∣

CLH
dL

dt

∣

∣

∣

∣

<

∣

∣

∣

∣

CHH
dH

dt

∣

∣

∣

∣

,

∣

∣

∣

∣

CLH
dH

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

CLL
dL

dt

∣

∣

∣

∣

.

Therefore, C2
LH < CLLCHH .

(v) For a fixed L, we first show that limǫ↓0CL(L,L + ǫ) = ∞. Consider a path
(L(t), H(t)) with L(0) = L andH(0) chosen optimally so that CH(L(0), H(0)) = 0.
Homogeneity (6) implies that

CL

(

L,
H(t)

L(t)
L

)

=
L(t)

L
CL(L(t), H(t)) =

L(t)

L
CL(L(0), H(0)).

Since limt→∞ L(t) = −∞, it follows that limt→∞CL

(

L, H(t)
L(t)

L
)

= ∞. Since

limt→∞
H(t)
L(t)

= 1, we have

lim
ǫ↓0

CL(L,L+ ǫ) = lim
t→∞

CL

(

L,
H(t)

L(t)
L

)

= ∞.

Second we show limH↓L C(L,H) = ∞. Consider a path (L(t), H(t)) with L(0) = L
and H(0) = L+ǫ, where ǫ > 0 is a small number. Equation (9) implies c′(uL(t)) =
Φ− bλ ≥ (1− b)Φ = (1− b)CL(L(0), L(0) + ǫ). If ǫ is sufficiently small, uL(t) and
cLt become sufficiently large, which implies that limH↓L C(L,H) = ∞.
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Q.E.D.
Proof of Lemma 4: To show that p > 0 at t = N , suppose to the contrary that

p = 0, then equations (18) and (19) imply

dH

dt
= rH − rbuL < r(L− uL) =

dL

dt
,

which contradicts that H(t) ≥ L(t), for all t ≥ N . Q.E.D.
Proof of Lemma 5: To prove that p = 0 is optimal when L < H , it is sufficient

to show the first-order condition

C(L̃, H̃) + γ − C(L,H) − CL(L,H)(L̃− L) − CH(L,H)(eρψ − 1)H > 0, when L < H.

Firstly, we show that when L = H ,

C(L̃, H̃) + γ − C(L,H) − CL(L,H)(L̃− L) − CH(L,H)(eρψ − 1)H = 0.(28)

By contradiction, suppose C(L̃, H̃)+ γ−C(L,H)−CL(L,H)(L̃−L)−CH(L,H)(eρψ−
1)H 6= 0. If

C(L̃, H̃) + γ − C(L,H) − CL(L,H)(L̃− L) − CH(L,H)(eρψ − 1)H < 0,

then picking a large enough p > 0 makes the right side of the HJB (20) less than the
left side, which is a contradiction. If

C(L̃, H̃) + γ − C(L,H) − CL(L,H)(L̃− L) − CH(L,H)(eρψ − 1)H > 0,

then since p > 0 when L = H ,

(r + π)C(L,H) = min
uL,p,L̃,H̃

rc(uL) + πc(H) + p(C(L̃, H̃) + γ − C(L,H))

+CL(L,H)
(

(r + π)L− πH − ruL − p(L̃− L)
)

+CH(L,H)
(

rH − rbuL − p(eρψ − 1)H
)

> min
uL

rc(uL) + πc(H) + CL(L,H)
(

r(L− uL) − π(H − L)
)

+CH(L,H)
(

rH − rbuL
)

.

By continuity, the above strict inequality at t = N continues to hold when t is sufficiently
close to N , which violates the HJB equation (21) when L < H .

Secondly, we show that,

C(L̃, H̃) + γ − C(L,H) − CL(L,H)(L̃− L) − CH(L,H)(eρψ − 1)H > 0, when L < H.

The first-order conditions for (L̃, H̃) in (20) are

CL(L̃, H̃) = CL(L,H),

CH(L̃, H̃) = 0.
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Because CL(L,H) remains constant when t < N , these first-order conditions imply that
L̃ = L(0) and H̃ = H(0). Since L̃ and H̃ are constants for all t < N , the derivative of
(C(L̃, H̃) + γ −C(L,H))−CL(L,H)(L̃−L)−CH(L,H)(eρψ − 1)H with respect to t is

−CL(L,H)
dL

dt
− CH(L,H)

dH

dt
+ CL(L,H)

dL

dt

−CH(L,H)(eρψ − 1)
dH

dt
−
dCH(L,H)

dt
(eρψ − 1)H

= −CH(L,H)eρψ
dH

dt
−
dCH(L,H)

dt
(eρψ − 1)H < 0,

where the inequality follows from dH
dt

< 0, −dCH (L,H)
dt

= dλ
dt
> 0 and H < 0, as shown

in parts (ii) and (iii) of Lemma 3. Because (C(L̃, H̃) + γ − C(L,H)) − CL(L,H)(L̃ −
L) − CH(L,H)(eρψ − 1)H decreases over time and it reaches zero at time N , as shown
in (28), (C(L̃, H̃) + γ − C(L,H)) − CL(L,H)(L̃ − L) − CH(L,H)(eρψ − 1)H must be
positive when t < N . Q.E.D.

Proof of Proposition 1: The time path (L(t), H(t)) stays on the 45-degree
when t ≥ N because all the states above the 45-degree line will eventually converge to
it, as can be seen in Figure 3. To see that the state is not constant after it reaches the
45-degree line, we show that dL

dt
= dH

dt
< 0. Since L = H = − 1

ρy
and uL = − 1

ρ(Φ−bλ)
,

equation (18) is

dL

dt
= (r + π)L− πH − ruL − p(L̃− L)

= r(L− uL) − p(L̃− L)

= r

(

1

ρ(Φ − bλ)
−

1

ρy

)

− p(L̃− L).

Because y = Φ − λ on the 45-degree line, 1
ρ(Φ−bλ)

< 1
ρy

. It follows from the first-order

conditions for (L̃, H̃) that

L̃ =
−1/ρ

CL(L̃, H̃)
≥

−1/ρ− CH(L,H)H

CL(L̃, H̃)
=

−1/ρ− CH(L,H)H

CL(L,H)
= L.

Hence,

dL

dt
= r

(

1

ρ(Φ − bλ)
−

1

ρy

)

− p(L̃− L) < 0.

The auditing arrival rate p can be solved by dL
dt

= dH
dt

. Equations (18), (19), and
L = H yield

(r + π)L− πH − ruL − p(L̃− L) = rH − rbuL − p(eρψ − 1)H,

and

p =
r(b− 1)uL

L̃− eρψL
> 0.
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Q.E.D.
Proof of Lemma 6: First, we show that the objective M(P ) in (22) is a strictly

convex function of P . Denote the optimal solution by L̃(P ), H̃(P ), L̄(P ), and H̄(P ).
Suppose θ ∈ (0, 1) and P = θP1 + (1− θ)P2, P1 6= P2. Then construct a solution for the
problem M(P ) as follows,

(L̃, H̃) =
θP1

θP1 + (1 − θ)P2

(

L̃(P1), H̃(P1)
)

+
(1 − θ)P2

θP1 + (1 − θ)P2

(

L̃(P2), H̃(P2)
)

,

(L̄, H̄) =
θ(1 − P1)

θ(1 − P1) + (1 − θ)(1 − P2)

(

L̄(P1), H̄(P1)
)

+
(1 − θ)(1 − P2)

θ(1 − P1) + (1 − θ)(1 − P2)

(

L̄(P2), H̄(P2)
)

.

Using the same proof as that in part (iv) in Lemma 3, we can prove that the cost
function C(L,H) is strictly convex. Therefore,

M(P )

≥ P
(

C(L̃, H̃) + γ
)

+ (1 − P )C(L̄, H̄)

> P

(

θP1

θP1 + (1 − θ)P2
C

(

L̃(P1), H̃(P1)
)

+
(1 − θ)P2

θP1 + (1 − θ)P2
C

(

L̃(P2), H̃(P2)
)

)

+ Pγ

+(1 − P )
( θ(1 − P1)

θ(1 − P1) + (1 − θ)(1 − P2)
C(L̄(P1), H̄(P1))

+
(1 − θ)(1 − P2)

θ(1 − P1) + (1 − θ)(1 − P2)
C(L̄(P2), H̄(P2))

)

= θ
(

P1

(

C
(

L̃(P1), H̃(P1)
)

+ γ
)

+ (1 − P1)C(L̄(P1), H̄(P1))
)

+(1 − θ)
(

P2

(

C
(

L̃(P2), H̃(P2)
)

+ γ
)

+ (1 − P2)C(L̄(P2), H̄(P2))
)

= θM(P1) + (1 − θ)M(P2).

Second, we show that, for all P > 0, M(P ) > C(L,H) = M(0). Because M(P ) is
strictly convex, it is sufficient to prove that M ′(0) ≥ 0. To finish the proof, we will show
that

M ′(0) =
(

C(L̃, H̃) + γ − C(L,H)
)

−
(

CL(L,H)(L̃− L) + CH(L,H)(eρψ − 1)H
)

.

Denote the Lagrangian multipliers on constraints (23) and (24) by ξL(P ) and ξH(P ),
respectively. Then

M ′(P ) =
(

C(L̃(P ), H̃(P )) + γ − C(L̄(P ), H̄(P ))
)

−
(

ξL(P )(L̃(P ) − L̄(P )) + ξH(P )(eρψH − H̄(P ))
)

,

ξL(P ) = CL

(

L̃(P ), H̃(P )
)

= CL
(

L̄(P ), H̄(P )
)

,

ξH(P ) = CH(L̄(P ), H̄(P )).
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Since limP→0 L̄(P ) = L, limP→0 H̄(P ) = H , we have

lim
P↓0

M ′(P ) =
(

C(L̃, H̃) + γ − C(L,H)
)

−
(

CL(L,H)(L̃− L) + CH(L,H)(eρψ − 1)H
)

≥ 0.

Q.E.D.
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