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Abstract 

 

One view of the equity premium puzzle is that in the standard asset-pricing model with time-separable 

preferences, the volatility of the stochastic discount factor, for plausible values of risk aversion, is too low 

to be consistent with consumption and asset return data. We adopt this characterization of the puzzle, due 

to Hansen and Jagannathan (1991), and establish two results: (i) resolutions of the puzzle based on 

complete frictionless markets and non-separabilities in preferences are very sensitive to small changes in 

the consumption data, and (ii) models with frictions avoid this sensitivity problem. Using quarterly data 

from 1947-97, we calibrate a state non-separable model and a time non-separable model to satisfy the 

Hansen-Jagannathan volatility bound and show that the two resolutions are not robust. We support our 

argument via a bootstrap experiment where the models almost always violate the bound. These violations 

are primarily due to the fact that small changes in consumption growth moments imply changes in the 

mean of the stochastic discount factor, which render the volatility of the stochastic discount factor to be 

too low relative to the bound. Asset-pricing models with frictions, however, are much more successful in 

the bootstrap experiment relative to the case without frictions. 
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I. Introduction  

Mehra and Prescott (1985) pointed out that the historical size of the equity premium in the U.S. is 

too high to be explained by an intertemporal asset-pricing model, such as that of Lucas (1978). In a model 

with complete frictionless markets and CRRA time-separable preferences, they showed that reasonable 

values of risk aversion do not reproduce the observed equity premium. Resolutions of this equity premium 

puzzle have followed two distinct paths. One approach was to retain the complete frictionless markets 

framework, but abandon the separability assumptions in the preferences. Prominent examples of this 

approach are Weil (1989) and Epstein and Zin (1991), who use state non-separable preferences, and 

Constantinides (1990), who uses time non-separable preferences. The second approach to resolving the 

equity premium puzzle abandons the complete frictionless markets framework. Examples of this approach 

include Aiyagari and Gertler (1991), Lucas (1994) and Heaton and Lucas (1996), who consider uninsured 

risk and transactions costs.  

One way to view the equity premium puzzle is that the standard intertemporal asset-pricing model 

together with consumption data does not deliver a sufficiently volatile stochastic discount factor (or, 

synonymously, intertemporal marginal rate of substitution) to be consistent with asset return data. This 

characterization is due to Hansen and Jagannathan (1991).1  They developed a lower bound (the HJ bound) 

on the volatility of the intertemporal marginal rate of substitution (IMRS) and showed that the model with 

reasonable parameters for time separable preferences violated the lower bound.  

In this paper, we take the Hansen-Jagannathan view of the equity premium puzzle and establish two 

results: (i) resolutions of the puzzle based on complete frictionless markets are very sensitive to small 

changes in the consumption data, and (ii) models with frictions avoid this sensitivity problem.  

To demonstrate the first result, we use quarterly data on equity returns, Tbill returns and 

consumption growth from 1947-97 and calibrate the two models with non-separabilities to satisfy the HJ 

bound. We then conduct a bootstrap experiment and show that the two models violate the HJ bound in 

almost all samples. Specifically, we draw time series samples from the joint ‘empirical’ distribution of the 

IMRS, equity return and T-bill return for the period 1947-97 and show that the models routinely violate the 

bound. These violations are primarily due to the fact that small changes in consumption growth moments 

render the volatility of the IMRS to be too low relative to the HJ bound.  

To establish the second result regarding frictions, we use the volatility bound developed by He and 

Modest (1995) and Luttmer (1996). Their bound is an extension of the HJ bound to an environment with 

frictions such as short-sales constraints. We show that the models with frictions are much more successful in 

the bootstrap experiment relative to the case without frictions. Frictions in these models do not directly affect 

                                                           
1  For a recent description of this view, see Ljungqvist and Sargent (2000), pp. 263-271. 
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the volatility of the stochastic discount factor. Instead, they lower the HJ bound implied by the asset return 

data and, hence, enable the model to satisfy the bound. Moreover, the frictions flatten out parts of the HJ 

bound frontier in ways that help avoid the sensitivity problem noted earlier -- the lower bound on volatility is 

roughly constant for a wide (relevant) range of means of stochastic discount factors. 

 

II. Asset Returns, Consumption and the Equity Premium 

For preference-based asset pricing models, Hansen and Jagannathan (1991) showed that the volatility 

of the IMRS that satisfies the representative consumer’s Euler equation must exceed the HJ bound. The 

presentation of the bound here is brief. The details of the HJ bound are included in Appendix A purely for 

completeness.  

Let R denote the n × 1 (gross) return vector of risky assets. Consider an IMRS m that prices the n 

assets according to  

 ERm = ι, 

where ι is an n × 1 vector of ones. This is the unconditional version of the standard Euler condition equating 

the expected marginal cost and marginal benefit of delaying consumption one period. For all m's such that 

Em = v, Hansen and Jagannathan (1991) show that  

(1)  var(m) ≥ )vER()vER( 1 −ιΩ′−ι − , 

where Ω is the covariance matrix of risky-asset returns. The lower bound is a function of the arbitrarily 

picked v. Thus, by picking different v's we generate a lower bound frontier. A necessary condition for an 

IMRS with mean v to be consistent with asset return data is that it satisfies the inequality (1).   

 

II.1       An Asset Pricing Puzzle 

We calculate the HJ bound using quarterly equity (S&P 500) and Treasury bill returns from 1947-

1997 and equation (1).2 We also calculate the volatility of the representative agent's IMRS for CRRA time-

separable preferences used by Mehra and Prescott (1985). The preferences are described by: 

  0        ,
1

c
E=U

0=t

1

t
oo >σ

σ−
β∑

∞ σ-
t , 

where E0 denotes conditional expectation given information at time 0, ct denotes consumption at time t, β ∈ 

(0,1) is the discount factor, and σ is the measure of relative risk aversion. (The σ = 1 case will be interpreted 

as logarithmic.)  The IMRS for these preferences is given by: 

                                                           
2 The data are all in real terms. Equity returns were calculated using the S&P 500 stock price and dividends from the 

Citibase dataset. Consumption is measured by per capita consumption of nondurables and services.  
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 Figure 1 below plots the HJ bound and the volatilty of the above IMRS using quarterly consumption 

data from 1947-1997. In calculating the IMRS volatility, we set β = 0.99 and let σ vary from 225 to 263. The 

HJ bound is the solid curve; the IMRS volatility is represented by the squares.  

Figure 1: An Asset Pricing Puzzle, 1947-1997 
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The time-separable model generates enough volatility to satisfy the bound when σ = 263. In other words, for 

plausible values of risk aversion, the volatility of the stochastic discount factor implied by the model is too 

low relative to that implied by the asset return data.  

 

II.2 Resolutions of the Puzzle 

 We concentrate on two resolutions of the puzzle in this sub-section. The resolutions are based on 

relaxing separability in the utility function, in one case state separability and in the other time separability. 

Both add just 1 parameter to the Mehra-Prescott model and both increase the volatility in the stochastic 

discount factor.  

Epstein and Zin (1991) and Weil (1989) generalized the time-separable preferences to allow for an 

independent parameterization of attitudes towards risk and intertemporal substitution. Following Weil 

(1989), we assume that these state-non-separable preferences are given by: 

  ]VE,c[UV 1tttt +=  

where  



 

 5 

  
)1)(1(

1]V)1)(1(1[c)1(

]V,c[U

1

1

1

1

1

σ−β−

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

σ−β−+β+β−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−
σ−

⎟
⎠
⎞

⎜
⎝
⎛

σ−
ρ−

ρ−

. 

The elasticity of intertemporal substitution is 1/ρ and σ is the coefficient of relative risk aversion.  

The IMRS for these preferences is: 
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where Rt+1 is the return on the market portfolio. 

Constantinides (1990) models consumers as habitual, in that levels of consumption in adjacent 

periods are complementary. That is, the time-non-separable preferences of consumers (in a discrete-time 

version of Constantinides, 1990) are given by: 

  ∑
∞ σ

σ−
δ+

β
0=t

1
t

oo
1

](L))c[(1
E=U

-
t , 

where δ(L) is a polynomial in the lag operator L. Here we work with the popular one-lag habit case with δ(L) 

= δL, where δ < 0.  

  The representative agent's IMRS is given by: 

(4) 
σ−

+
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−
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Figure 2 below plots the bound and the IMRS volatilities for the two models. Again, the HJ bound is the 

solid curve; the squares represent the IMRS volatility. For state-non-separable preferences in panel a, the 

parameters are β = 0.99, ρ = 3.15 and, σ ranging from 15 to 16.4. For time-non-separable preferences in 

panel b, the parameters are β = 0.96, δ = -0.72, and σ ranging from 3.0 to 3.3.  
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Figure 2: Resolutions of the Asset Pricing Puzzle, 1947-1997 

a: Epstein-Zin     b: Habit Formation 
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These are resolutions in the sense that the models deliver sufficient IMRS volatility with a σ that is not 

excessively large, and an elasticity of intertemporal substitution that is not excessively small.3 It is difficult to 

say whether the habit parameter is ‘unreasonable’ since there is very little micro evidence on this parameter. 

In the next section, we show that the resolutions are extremely sensitive to changes in the underlying 

consumption process. 

 

III. Problems with the Resolutions: A View from Two Samples 

Consider a subsample, 1957-1987, of the overall sample. As we can see in Table 1 the moments are 

very similar for consumption growth but differ for returns in the two sample periods. (In fact, mean 

consumption growth is the same for both samples up to the third decimal point.) The correlation between T-

bill and equity returns is 0.08 for the period 1947-97 and 0.13 for the period 1957-87. 

 

Table 1 

Cons. Equity T-Bill

Growth Returns Returns

mean 1947-1997 0.45 2.06 0.28

1957-1987 0.45 1.38 0.37

std dev 1947-1997 0.55 5.80 0.64

1957-1987 0.52 6.08 0.58  

 Using the model parameters from the previous section together with the asset return and 

consumption data from 1957-1987, we calculate the HJ bound and IMRS volatility. As we see in Table 2, 
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though both models satisfy the bound by construction for 1947-1997, they violate it in dramatic fashion for 

the period 1957-87. 

Table 2 

IMRS Mean IMRS Std Dev HJ Bound

1947-97 1957-87 1947-97 1957-87 1947-97 1957-87

Epstein-Zin 0.998 0.956 0.325 0.340 0.316 7.094

Habit 0.997 0.981 0.311 0.249 0.308 2.768  

An examination of Table 1 suggests initially that the failure of the two models in the 1957-87 

subsample could be due to the changes in asset return moments, since there is little change in the 

consumption growth data. The HJ bound is a function of the asset return moments, so the changes in asset 

returns could have moved the “target”—the HJ bound— resulting in the failure of the two models. In Figure 

3 we plot the HJ bound frontier for the two sample periods and they are almost indistinguishable for a wide 

range of means. Thus, the failure of the two models is not due to the changes in asset return moments and the 

resulting changes in the HJ bound frontiers. 

Figure 3: The HJ  Bound, 1947-1997 and 1957-1987 
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Another possibility is that the volatility of the stochastic discount factors is “substantially” different 

despite small changes in the consumption growth moments. However, the IMRS volatility turns out to be 

remarkably stable: in the model with state non-separable preferences, in moving from the whole sample to 

the subsample, the standard deviation of the IMRS only increases from 0.325 to 0.340. Had the HJ bound 

remained roughly the same, as suggested by Figure 3, the Epstein-Zin model should not violate the HJ 

bound.  

                                                                                                                                                                                                 
3  Note that σ is not the coefficient of risk aversion in the habit model, though it is proportional to various measures of 

risk aversion. See Boldrin, Christiano, and Fisher (1997). 
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We are thus led to a third possibility: the failure of the models in the 1957-87 subsample must be due 

to  a combination of the change in the mean IMRS and the change in the HJ bound. A favorable clue for 

pursuing this comes from Table 2. The mean IMRS for the state-non-separable preferences fell from 0.998 to 

0.956, while the HJ bound increased by more than a factor of 20, from 0.32 to 7.09; for time-non-separable 

preferences, the mean IMRS fell from 0.997 to 0.981 and the HJ bound increased by a factor of 9, from 0.30 

to 2.76. To reconcile this with Figure 3, note that the figure not only demonstrates that changes in the asset 

return moments have negligible effects on the HJ bound at any given mean IMRS, but also demonstrates that 

the bounds are very different for small differences in the mean IMRS. That is, the sides of the V-shaped 

frontier are very steep. Thus, even though the HJ bound frontiers look identical in Figure 3, a small change in 

the mean IMRS implies a “large” change in the HJ bound. The failure of the models in the 1957-87 

subsample must therefore be due to the fact that we are evaluating the HJ bound frontiers at different mean 

IMRSs.  

Several remarks are in order at this stage. First, in the context of models with time-separable 

preferences and habit formation preferences, Cecchetti, Lam and Mark (CLM, 1994) make the related but 

distinct point that in statistical tests of the ‘distance’ between IMRS volatility and the HJ bound, much of the 

uncertainty in the distance is due to uncertainty in estimating the mean of the IMRS. Furthermore, they state 

that the uncertainty in the mean IMRS is due to considerable uncertainty in consumption growth moments. 

However, our analysis so far suggests that even though the first two moments of consumption growth are 

virtually the same in both samples (Table 1), the HJ bounds are quite different (Table 2). We argue that the 

changes in the consumption process are small, but preference-based complete-frictionless-markets 

resolutions are extremely sensitive to minor changes in the consumption process. Our argument holds not 

only for the habit formation model considered by CLM but also for the state non-separable model. 

Burnside (1994) studies the small sample properties of statistical measures of the distance between 

the HJ bound and the IMRS volatility in the time-separable model. He finds that asymptotic theory is not a 

good approximation to the finite sample distributions and that the asymptotic test over-rejects true models 

(see also Otrok, Ravikumar and Whiteman, 2002). He argues that the over-rejection is partly due to 

variations in the mean of the IMRS in his simulations of true models. While our point is related, our study is 

of the sensitivity of resolutions of the equity premium puzzle to changes in the observed consumption data 

while Burnside studies the properties of a test statistic in a controlled experiment where the time-separable 

model is true.  

Second, we are viewing the preference parameters as fixed and examining how the model responds 

to changes in consumption growth and asset return moments. Of course, it will generally be possible to find a 

set of parameter values specific to the subsample period that will enable the model to achieve the HJ bound 

for that subsample. Yet introducing as many free parameters as subsamples renders the model’s 
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“explanation” of the data largely meaningless. Still, it might be argued that such calculations are of interest if 

the parameter values do not vary “too much”. However, to achieve the bound in the 1957-1987 sample 

holding other parameters fixed, σ must be increased by 20-40% in the two models. In the Epstein-Zin model, 

where σ is the coefficient of relative risk aversion, the increase is from 16.4 to 23.6, a very large value. 

Interpreting the increase in σ in the habit model is more subtle since it is not the coefficient of relative risk 

aversion. For instance, the increase in σ from 3.3 to 4 causes the implied equity premium in the model to rise 

from 6% to 12% (annual). (The actual equity premium in the 1957-87 subsample is 3.5%.) These 

calculations suggest that in order to achieve the HJ bound in the subsample, fundamental parameters would 

need to be varied “too much”.4  

 

IV. A Bootstrap Experiment  

In this section we investigate how the HJ bound and the volatility of the stochastic discount factor 

vary across artificial samples drawn from the entire data set, 1947-97. To do this we calculate time series for 

the representative agent’s stochastic discount factor for the two asset-pricing models using actual 

consumption growth data and then use a bootstrap procedure to sample a vector of asset returns and an 

IMRS. We bootstrap the entire vector so that the observed correlation properties between the 2 returns and 

the IMRS are maintained in our experiment.5  

The bootstrap procedure is as follows: 

1) Use the structural parameters from Section II and observed consumption growth data to get time-

series for the IMRSs of the two models. 

2) Draw (with replacement) a time series of length 200 from the joint ‘empirical’ distribution of the 

IMRSs, equity returns and T-bill returns. That is for each period we draw a 3-tuple (IMRS, 

Requity, RT-bill). 

3) Calculate the mean and volatility of the IMRS. 

4) Calculate the HJ bound using the time series for equity and T-bill returns at the mean IMRS. 

5) Repeat steps 2-4 1000 times. 

Figure 4 below is a scatter plot of the vertical distance between the HJ bound and IMRS volatility, 

calculated as the IMRS volatility minus the HJ bound, for each of the 1000 bootstrap simulations.  

                                                           
4 An earlier version of this paper showed that the result hold for other subsamples of the data. The earlier version of the 

paper can be found at: http://www.people.virginia.edu/%7Ecmo3h/ 
5 Cochrane and Hansen (1992) show that the correlation between asset returns and the candidate discount factor affects 

how high the bound needs to be; when the candidate is less correlated with return data it must be more volatile to 

satisfy the bound. 
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Figure 4: Distance to the HJ Bound in Bootstrap Experiment 

a: Epstein-Zin      b: Habit Formation 
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The striking feature of this picture is that the distance is almost always negative, implying that the models 

miss the bound in most simulations. In fact, the time-non-separable model misses in 97.5% of the simulations 

and the state-non-separable model misses in 97.3% of the simulations. (Gregory and Smith (1992) provide 

similar results for the Mehra-Prescott economy.) 

Figure 5 below plots the volatility of the IMRSs of the two models. In both models, the volatility is 

not too disperse in the following sense: modest changes in the mean IMRS are not accompanied by large 

changes in the volatility of the IMRS.  

 

Figure 5: IMRS Volatility 
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Note also that the distance in Figure 4 is an order of magnitude larger than the IMRS volatility, indicating 

that the violations are due to large changes in the HJ bound. This contrast is illustrated in Figure 6. The HJ 

bound in Figure 6 is not the HJ bound frontier, but is an envelope connecting the lowest HJ bounds in the 
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bootstrap experiment. That is, each bootstrap sample yields a mean IMRS and an associated HJ bound; 

potentially, there are samples with the same mean IMRS, but a different HJ bound; the envelope picks the 

lowest HJ bound for each mean IMRS. The figure illustrates that the sample variations in the IMRS mean is 

vastly more important in generating violations of the bound than the variation in IMRS volatility. 

Figure 6: IMRS Volatility and the “minimum” HJ Bound 

a: Epstein-Zin    b: Habit Formation 
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In Figure 7, we provide a scatter plot of the consumption growth moments and return moments from 

the bootstrap experiment. It is clear from these pictures that there is substantially more variability in the 

return moments than the consumption growth moments. In fact, the variability in equity returns is an order of 

magnitude greater than the variability in consumption growth moments! Yet, the model’s success depends 

critically on the mean IMRS, which is a function just of the consumption growth moments.  

 

Figure 7: Consumption and Return Moments from the Bootstrap Experiment 
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c: Consumption Growth 
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We also considered an alternative bootstrapping method. We fit a VAR to the returns and IMRS, and 

then bootstrapped from the VAR residuals. This bootstrap, by construction, matched more properties of the 

data, such as autocovariances and cross-autocovariances. The results from this experiment were nearly 

identical to those reported above.  

 

V. Asset-Pricing with Frictions 

 One approach to ensure success of the asset-pricing models is to develop environments in which the 

HJ bound is not sensitive to changes in the mean IMRS. While it is not clear how one goes about 

constructing such environments, it turns out that the models developed by He and Modest (1995) and 

Luttmer (1996) do yield the necessary lack of sensitivity. They find that frictions such as short-sales 

constraints, borrowing constraints, transactions costs, and solvency constraints can resolve the asset-pricing 

puzzles better than the complete markets consumption-based asset-pricing models. In this section, we study 

economies with short-sale constraints and provide results on exercises similar those in the previous sections. 

 In the presence of short sales constraints, the representative agent’s Euler condition is an inequality: 

   ERm = χ,  χ ≤  ι, 

where χ is a vector of unknown parameters. For assets with no short sale constraints, the restriction holds 

with equality. Given χ and v, He and Modest (1995) show that the HJ bound for this economy is  

  var(m) ≥ (χ - vER)'Ω-1(χ - vER). 

They restrict all the Lagrange multipliers on the short-sale constraints to be the same. Since they are 

interested in constructing a lower bound, they choose the unknown χ to minimize the bound.   

 Figure 8 illustrates that the imposition of frictions allows the standard time-separable stochastic 

discount factor model in equation (2) to satisfy the bound with lower levels of risk aversion. The level of risk 

aversion is now 59.8, rather than 263. Note that the HJ bound frontier is relatively flat (at least on one side) 
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compared to that in Figure 1. Thus, there is indeed a possibility that small changes in the mean IMRS will 

not result in large changes in the HJ bound.  

Figure 8: HJ Bound with Frictions and Time-Separable Preferences 
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An inspection of Figures 2 and 8 suggests that frictions have not altered the relevant regions of the HJ bound 

frontier where the IMRS volatilities for the non-separable models exceed the bound (near mean IMRSs 

exceeding 0.99). Hence, their parameters remain the same. (Recall that for state-non-separable preferences 

the parameters are β = 0.99, ρ = 3.15 and σ = 16.4; for time-non-separable preferences the parameters are β = 

0.96, δ = -0.72 and σ = 3.3.) 

In Figure 9, we illustrate the results from the bootstrap experiment for the case with frictions. The 

distance to the bound is generally positive in the bootstrap experiment, indicating that the model satisfies the 

bound. The model with time-separable preferences violates the bound in 35.5% of the samples, the Epstein-

Zin model violates the bound in 46% and the Habit model violates the bound in 52%. 

Figure 9: Distance to the HJ Bound with Frictions 

a: Time-Separable     b: Epstein-Zin 
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c: Habit Formation 
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Figure 10 below illustrates that the mean and volatility of the IMRS for the time-separable model with 

frictions are, in some sense, similar to those illustrated for the non-separable models in Figure 5. (The figures 

for the Epstein-Zin and Habit models are the same as in Figure 5, since the model parameters remain the 

same.) However, contrary to the case in Figure 5, the success of the asset-pricing models with frictions does 

not hinge critically on the mean IMRS. Note also that the volatility of the IMRS is roughly the same order of 

magnitude as the distance in Figure 9.  

Figure 10: Mean and Standard Deviation of Time-Separable IMRS 
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 Another alternative to ensure success of the asset-pricing models is to retain the frictionless markets, 

but construct preferences that yield a roughly constant mean IMRS. Campbell and Cochrane (1999) 

constructed a functional form with slowly adjusting external habit that yields a risk free rate that is constant 

across states of a given consumption growth process. If the risk free rate in their model turns out to be 

roughly constant across different consumption growth processes (i.e., different consumption growth 

moments), then to a first approximation their model may deliver a roughly constant mean IMRS. In 

Appendix B, we show that such an alternative does not fare better than the Epstein-Zin or Habit formation 

preferences. 
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VI. Conclusion 

We have documented the sensitivity of estimates of the moments of an agent’s intertemporal 

marginal rate of substitution to small changes in the underlying consumption growth process. Specifically, 

small changes in moments of consumption growth, changes that are modest relative to sampling error in their 

estimates, lead to changes in the mean IMRS. The location of the Hansen-Jagannathan bound depends 

critically on the estimate of the mean IMRS. Given the mean, large variations in properties of returns do not 

affect the bound significantly, but modest changes in the mean estimates have a dramatic effect on the bound. 

This is because HJ bound frontier, as a function of the mean IMRS, is very steep, while the volatility of the 

IMRS viewed as a function of the mean is quite flat.   We have shown that complete-markets asset pricing 

models, parameterized using post-war consumption data to satisfy the Hansen-Jagannathan bound, will 

violate the bound for most bootstrapped subsamples redrawn from the original sample. We conclude that the 

asset pricing implications of time and state non-separable models are very sensitive to small changes in the 

consumption process. Asset-pricing models that allow for frictions do not share this extreme sensitivity. In 

such models, while changes in consumption growth moments continue to affect the mean IMRS, the Hansen-

Jagannathan bound is no longer as sensitive to the changes in the mean IMRS. 
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Appendix A: The Hansen-Jagannathan Bound 

Suppose we compute the least squares projection of the IMRS onto the linear space spanned by a 

constant and contemporaneous returns. The projection is of the form  

(A1) m = mv + ε  

with  

(A2) mv = v + (R - ER)'β, 

for β in ℜn
, where v = Em = Emv, and  ε is orthogonal to a constant as well as contemporaneous returns. This 

implies Eε = 0, and ERε = 0. Together with the Euler equation ERm = ι, this implies ERm = ERmv = ι. Then  

var(m) = var(mv) + var(ε) + 2cov(mv,ε) 

= var(mv) + var(ε) + Emvε.   

By construction of mv, Emvε = 0. Thus, we have 

 var(m) = var(mv) + var(ε) ≥ var(mv), 

meaning that a lower bound on the variance of m is that of mv. This is the Hansen-Jagannathan (HJ) bound. 

To find this lower bound, we need an expression for the vector β. Since (A1) and (A2) describe a 

linear least squares projection, we can estimate the projection coefficient β via OLS as β = Ω-1Cov(R,m). 

Rewriting Cov(R,m), we have  

(A3) β = Ω-1 (ERm – EmER).  

Since the model implies ERm = ι, we can solve (A3) for β as   

(A4) β = Ω-1(ι - vER). 

From (A2), it is easy to see that  

(A5) var(mv) =  β'Ωβ . 

Substituting for β from (A4), we can write 

(A6) var(mv) = (ι - vER)'Ω-1(ι - vER) 

and by virtue of (A1), we have the bound 

(A7) var(m) ≥ (ι - vER)'Ω-1(ι - vER). 
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Appendix B: External Habit and the Equity Premium Puzzle 

In this appendix, we use the preferences specified by Campbell and Cochrane (1999). They designed 

the preferences to generate a constant risk free rate. To a first approximation, it is conceivable that such a 

specification may yield a constant IMRS, thereby avoiding the sensitivity due to variations in the mean 

IMRS altogether. Campbell and Cochrane specify preferences as:  

U(ct, Xt) = E0

( )∑
∞

=

σ−

σ−
−−

β
0t

1

ttt

1

1Xc
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The IMRS is given by: 
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where St is the surplus consumption ratio is given by 
t
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t

C
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−
=  and C denotes aggregate consumption. 

In equilibrium, c = C. The evolution of the Habit stock is defined in terms of ln(St): 
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S . 

The parameter κ is the standard deviation of consumption growth, while g is its mean. Note that the 

evolution of the habit stock depends on the parameters of the consumption growth process and hence will 

change in each subsample. With β = 0.89, φ = 0.87 and σ = 1.08, the volatility in the IMRS exceeds the HJ 

bound as illustrated in panel a of Figure B1.  

 Despite the additional free parameters and the complex evolution of the habit stock, the Campbell-

Cochrane model does not fair much better than either of the two models in Section IV.6  

Figure B2 repeats the bootstrap experiments from Section IV for the Campbell-Cochrane model. 

Panel a of the figure shows that the distance to the bound is generally negative, indicating that the model 

violated the HJ bound. In fact, the model violated the bound in 95.4% of the samples, an inconsequential 

improvement over the models in Section IV. Panel b of the figure shows that the mean IMRS of the 

Campbell-Cochrane model varies substantially relative to the mean IMRSs of the models in Section IV (see 

Figure 7). 

 

                                                           
6 We computed the equivalent of Table 3 for the Campbell-Cochrane model. The model misses the HJ bound in every 

subsample. 
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Figure B1: The Campbell-Cochrane Model 
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Figure B2: Bootstrap Experiment for the Campbell-Cochrane Model 

a: Distance to the Bound  b: IMRS Dispersion 
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