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Abstract: Typical data sets employed by economists and financial analysts do not exceed a few
hundred or thousand observations per series. However, in the last decade data sets containing
tick-by-tick observations have become available. The studies of these data have turned up new
and interesting facts about the pricing of assets.

In this article we show that foreign exchange (FX) rate returns satisfy scaling with an
exponent significantly different from that of a random walk. But what is more important,
we also show that the conditionally exponential decay (CED) model can be used to solve a
long standing problem in the analysis of intra-daily data, i.e. it can be used to identify the
mathematical structure of the distributions of FX returns corresponding to the empirical scaling
laws.
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1 Introduction

It is well known starting from Mandelbrot [24, 25] and Fama [11, 12] that market returns are
not normally distributed. In search for satisfactory descriptive models of economic data, large
numbers of distributions have been tried and even entire classes of distributional types have been
constructed. These include mixtures of normal distributions [20, 34], Student t [4], hyperbolic
[10, 21] and normal inverse Gaussian (NIG) laws [3], alternative stable distributions [28, 32]
and subordinated processes [7, 17] to name a few. In any particular case it is always possible
to find a distribution that fits the data well, provided one works within a suitably broad and
flexible class of candidates. For example, in Fig. 1 some alternatives to the normal distribution
are fitted to DJIA index daily returns. Statistical inference implies that, among the four tested
distributions, the NIG law gives the best fit.

However, it is not enough to fit given data through the choice of a ”good distribution”. It
is much more important to explain returns data behavior with a statistical model that predicts
the data’s main characteristics. This is the main problem we address in this article.

The Efficient Market Hypothesis (EMH), including Arbitrage Pricing Theory (APT) and
the Capital Asset Pricing Model (CAPM), was very successful in making the mathematical en-
vironment easier, but unfortunately is not justified by the real data. Instead, there is a need
to seek for a market hypothesis that fits the observed data better and takes into account why
markets exist to begin with. In the EMH place, the Fractal and the Heterogeneous Market
Hypotheses (FMH, HMH) have been proposed recently [29, 31]. Based on current developments
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Figure 1: Histogram of the empirical density (kernel estimator) of the Dow Jones Industrial
Average (DJIA) daily returns for the period January 1901 – December 1999 and four estimating
densities: stable, normal inverse Gaussian (NIG), hyperbolic and Gaussian. The inset illustrates
the same plot on a semilogarithmic scale.

of chaos theory and using the fractal objects whose disparate parts are self-similar, these hy-
potheses provide a new framework for a more precise modeling of turbulence, discontinuity, and
nonperiodicity that truly characterize today’s financial markets.

2 Fractal and Heterogeneous Market Hypotheses

The success of the fractal approach gave rise to the hypothesis that the market itself is fractal,
with heterogeneous trading behavior. The Fractal Market Hypothesis (FMH) emphasizes the
impact of information and investment horizons on the behavior of investors. In traditional
finance theory, the investor is generic. Basically, an investor is anyone who wants to buy, sell,
or hold a security because of the available information, which is also treated as a generic item.
The investor is considered a rational price-taker, i.e. someone who always wants to maximize
return and knows how to value current information. This generic approach, where information
and investors are general cases, implies that all types of information impact all investors equally.
That is where it fails.

The following assumptions were proposed for the FMH [31]:

• the market is made up of many individuals with a large number of different investment
horizons;

• information has different impact on different investment horizons;

• the stability of the market is largely a matter of liquidity (balancing of supply and demand)
– liquidity is present when the market is composed of many investors with many different
investment horizons;
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• prices reflect a combination of short-term technical trading and long-term fundamental
valuation;

• if a security has no tie to the economic cycle, then there will be no long term trend –
trading, liquidity, and short-term information will dominate.

The purpose of the FMH is to give a model of investor behavior and market price movements
that fits our observations. When markets are considered stable, the EMH and CAPM seem to
work fine. However, during panics and stampedes, these models break down, like singularities
in physics. This is not unexpected, because the EMH, APT, and the CAPM are equilibrium
models. They cannot handle the transition to turbulence. Unlike the EMH, the FMH says that
information is valued accordingly to the investment horizon of the investor. The key fact is
that under the FMH the market is stable when it has no characteristic time scale or investment
horizon. Instability occurs when the market looses its fractal structure and assumes a fairly
uniform investment horizon.

A statistical study of financial data from the fractal point of view is based on the analysis of
time intervals ∆t of different sizes. A reasonable question to ask is: what is the relation between
volatility and the size of time intervals? The answer to this question is the scaling law reported
in Müller et al. [30]

v(t) = c(∆t)D, (1)

which relates the volatility v(t) with ∆t. Here c is an empirical constant and D is an empirical
drift exponent. Traditionally volatility is defined as the l2 norm (standard deviation of logarith-
mic price changes), however, the Olsen & Associates group used the l1 norm (mean of absolute
logarithmic price changes) as it is better suited for the analysis of high-frequency data.

In spite of its elementary nature, a scaling law study is immediately able to reject the Gaus-
sian hypothesis and reveal an important property of financial time series. For the Gaussian case
the above formula is true with a drift exponent of 0.5, while the empirical values of drift expo-
nents D are significantly different from that value. These and other recently found properties
of empirical time series have led the researchers at Olsen & Associates to the Heterogeneous
Market Hypothesis (HMH) as opposed to the assumption of a homogeneous market where all
participants interpret news and react to news in the same way. The HMH is characterized by
the following interpretations of the empirical findings:

• different actors in the heterogeneous market have different time horizons and dealing fre-
quencies;

• the market is heterogeneous with a fractal structure of the participants’ time horizons as
it consists of short-term, medium-term and long-term components;

• different actors are likely to settle for different prices and decide to execute their transac-
tions in different market situations, in other words, they create volatility;

• the market is also heterogeneous in the geographic location of the participants.

The market participants of the HMH also differ in the other aspects beyond the time horizons
and the geographic locations: they can have different degrees of risk aversion, institutional
constraints, and transaction costs [16, 29].

Guillaume et al. [16] present stylized facts concerning the spot intra-daily FX market. They
uncover a new wealth of structures that demonstrates the complexity of this market. Further
they group empirical regularities of the FX market data under three major topics: the distri-
bution of price changes, the process of price formation, and the heterogeneous structure of the
market. Independently Gallucio et al. [14] addressed the same problem and found that FX rates

3



have a far more complex nature than random walk, since hidden correlations are present in the
data. In both papers the following problem is posed:

Problem: How to characterize the mathematical structure of the distributions of price changes

corresponding to the empirical scaling law for volatility?

In what follows we show that the CED model provides a natural solution to this problem. It
clarifies the ideas of the Fractal and Heterogeneous Market Hypotheses and provides a rigorous
mathematical framework for further analysis of financial complex processes. Moreover, the
obtained distributional form of returns has important implications for theoretical and empirical
analyses in economics and finance, since portfolio and option pricing theories are typically based
on distributional assumptions [35, 36].

3 The CED model

The market is made up of participants, from tick traders to long-term investors. Each has a
different investment horizon that can be ordered in time. When all investors with different
horizons are trading simultaneously the market is stable. The stability of the market relies,
however, not only on a random diversification of the investment horizons of the participants
but also on the fact that the different horizons value the importance of the information flow
differently. Hence, both the information flow and the investment horizons should have their own
contribution to the observed global market features. In general, the locally random markets
have a global statistical structure that is non-random.

We assume that the model is a discrete time economy with a finite number of trading dates
from time 0 to time T and its uncertainty has a global impact on the market index returns
on the interval [0, T ]. As a proxy of the capital market index we can use a stock index, for
example DJIA or S&P500, and as a proxy of the FX market index for a particular currency –
the prevailing exchange rate, i.e. the local currency rate against one of the global currencies
(e.g. USD, EUR). In the family of all world investors let us identify those N who are acting on a
given market described by a chosen index. Call them I1N , I2N , ..., INN . Let RiN be the positive
(or the absolute value of negative) part of the ith investor’s return. Each ith investor is related
to a cluster of agents acting simultaneously on common complement markets. The influence of
this cluster of agents is of the type of short-range (intra-cluster) interactions and is reflected by
a random risk-aversion factor Ai. The long-range type of interactions are imposed on the ith
investor by the inter-cluster relationship manifested by the random risk factors Bi

j for all j 6= i.
They reflect how fast the information flows to the ith investor, see [33, 38].

Condition CED1: For the ith investor the following property holds:

φiN (r|a, b) = P
(
RiN ≥ r

∣∣∣Ai = a, b−1
N max(Bi

1, . . . , B
i
i−1, B

i
i+1, . . . , B

i
N ) = b

)

= exp(−[a min(r, b)]c), (2)

where r, a and b are non-negative constants, bN is a suitable, positive normalizing constant and
c ≥ 1.

The dependence in the CED model measured by the conditional return excess decays sim-
ilarly as in some conditionally heteroscedastic models, i.e. in an exponential way, see (2), but
reflects both short- as well as long-range effects. This idea concerns systems in which the behav-
ior of each individual entity strongly depends on its short- and long-range random interactions.
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Condition CED2: Investors have different investment horizons (”short-range interaction”)
affected by different information sets (”long-range interaction”). The investment horizon of the
investor is reflected by the random variable Ai, while {Bi

j , j = 1, 2, . . . , N, j 6= i} reflect the
information flow to this investor.

The probability that the return RiN will be not less than r is conditioned by the value a
taken by the random variable Ai and by the value b taken by the maximum of the set of random
variables {Bi

j , j = 1, 2, . . . , N, j 6= i}. Therefore (2) can be rewritten as follows:

φiN (r|a, b) =






1 for r = 0

exp(−(ar)c) for r < b

exp(−(ab)c) for r ≥ b,

i.e. the conditional return excess φiN (r|a, b) decays exponentially with a decay rate a and ex-
ponent c as r tends to the value b. Then it takes a constant value ≪ 1. The basic statistical
assumption is that

Condition CED3: The random variables A1, A2, . . . and Bi
1, B

i
2, . . . form independent and con-

vergent (with respect to addition and maximum, respectively [19]) sequences of non-negative,
independent, identically distributed (i.i.d.) random variables. The variables R1N , . . . , RNN are
also non-negative, i.i.d. for each N .

Observe that the dependence on external conditions is expressed by the relationship (2)
of each RiN with Ai and max(Bi

1, . . . , B
i
i−1, B

i
i+1, . . . , B

i
N ). Condition CED3 can be partially

justified by the following argument. Institutional trading is a major factor in the determination of
asset prices. If professional investment managers have similar beliefs, then the i.i.d. distributions
assumption may hold as a first approximation. Professional managers are likely to have similar
beliefs because they have access to similar information sources. This uniformity of information
over time would tend to generate similar beliefs [33].

The basic result which allows us to see the structure of distributions describing market
returns is the following: if the global behavior of the market is given by

φ(r) = P
(

lim
N→∞

rN min(R1N , . . . , RNN ) ≥ r
)
, (3)

where rN is a suitable, positive normalizing constant, than under conditions CED1–CED3 the
function φ(r) fulfills the global return equation:

dφ

dr
(r) = −αλ(λr)α−1

(

1 − exp

(

−
(λr)−α

k

))

φ(r), (4)

where the parameters λ > 0, k > 0 and α > 0 are determined by the limiting procedure in (3).
A more general type of the above equation has been recently studied in the context of complex

stochastic systems [19, 37]. It turns out that the solution of (4) has the following integral form

φ(r) = exp

[

−
1

k

∫ k(λr)α

0

(
1 − e−1/s

)
ds

]

.

The function φ(r) monotonically decreases from φ(0) = 1 to φ(∞) = 0. Moreover, the proba-

bility density of the global return f(r) = −dφ(r)
dr is given by the formula

f(r) = αλ(λr)α−1
[
1 − exp

(
−

(λr)α

k

)]
exp

[

−
1

k

∫ k(λr)α

0

(
1 − e−1/s

)
ds

]

, (5)
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Figure 2: Double logarithmic plot of the empirical density (kernel estimator) of the USD/CHF
exchange rate 30 minute negative returns. Dashed lines represent the two power laws. For the
absolute value of negative returns the direct approach yielded the following values: α− = 1.04,
λ− = 925.4 and k− = 0.250.

and exhibits the two power-laws property, see Fig. 2

f(r) ∝

{
(λr)α−1 for λr ≪ 1,

(λr)−
α

k
−1 for λr ≫ 1.

(6)

Hence, the global return distribution is characterized by the following three parameters: α, λ
and k, where α is the shape and λ is the scale parameter. In general, parameter α slows down
– in comparison with an individual investor – the return rate αλ(λr)α−1 of the global market
return distribution and parameter k decides how fast the information flow is spread out in the
market. If k → 0 then the long-range interaction is neglected and (4) takes the form of the
Weibull probability density function.

4 Estimation

Now, that we have a model which can be used to identify the mathematical structure of the
distributions of returns corresponding to the empirical scaling laws, the basic question to ask
is: how can we fit the CED model to financial data? In what follows we present three different
estimation methods and use the best one in a detailed analysis of high frequency data.

But before we start we want to emphasize the fact that the CED probability density is defined
only on the positive half line. As a consequence, in all three presented methods, we have to carry
out the same analysis for positive returns (CED+) and then for absolute value of negative returns
(CED−). This results in obtaining two sets of estimators: {α̂+, λ̂+, k̂+} and {α̂−, λ̂−, k̂−}. To
make notation simpler in the next two sections we describe how to obtain generic estimators
{α̂, λ̂, k̂} without specifying if we are using positive or absolute value of negative returns.
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One might criticize the CED model by saying that it is possible to approximate pretty well
any empirical distribution with a six parameter law. However, as we will show later, we can
reduce the number of parameters to a three element set: {λ̂, k̂+, k̂−}, because in most cases
α̂+ = α̂− = 1 and λ̂+ = λ̂− = λ̂ both for positive and for negative returns.

4.1 Direct approach

Probably the most natural method of estimating α, λ and k makes use of the two power-laws
property (6) of the CED density. In this method we have to calculate the kernel density estimator
f̂(r) of the empirical returns and then plot it on a double logarithmic paper, see Fig. 2. If the
empirical density of returns is unimodal then – to reduce estimation errors – we first have to
center the density around its mode. Otherwise it would be impossible to ”glue” the positive and
the negative part of the CED density.

If the empirical data follows the CED law than the plot should be linear both for small and
for large λr. Namely, if for 0 < λr ≪ 1 the best linear fit of f̂(r) is given by

log
(
f̂(r)

)
= a + b log(r),

then comparing it with the logarithm of (6) we obtain estimators of α and λ

α̂ = b + 1, λ̂ =

(
exp(a)

b + 1

)1/(b+1)

. (7)

Similarly, if for λr ≫ 1 the best linear fit is given by

log
(
f̂(r)

)
= c + d log(r),

then comparing it with the logarithm of (6) we obtain

k̂ = −
α̂

d + 1
. (8)

Unfortunately some serious problems arise when we apply this method [27]. Namely, we need
a precise, yet as smooth as possible, estimate of the empirical density. This can be done – only
up to a certain degree – by manipulating the window and the kernel of the density estimator.
For a given sample R = (R1, R2, . . . , Rn), e.g. absolute value of 30 minute negative returns of
the USD/CHF exchange rate as in Fig. 2, and for any real r the kernel density estimator [9, 18]
provides an approximate value of the density in the form

f̂n(r) =
1

n

n∑

i=1

1

bn
K

(
r − Ri

bn

)
.

The kernel K(u) is a continuous, nonnegative and symmetric function satisfying

∫
∞

−∞

K(u)du = 1,

whereas the window {bn}n∈N is a sequence of positive real numbers such that limn→∞ bn = 0
and limn→∞ nbn = ∞. In our estimation procedures we used the Bertlett kernel

K(u) =
3

4
(1 − u2)1[−1,1](u),

with bn = 2.3σn−1/5, where σ is the standard deviation of the sample, as it seemed to give the
best results.
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Another weakness of the presented method is caused by the fact that a small number of
observations in the tails of the distribution (i.e. for 0 < λr ≪ 1 and for λr ≫ 1) may introduce
a large bias to the estimators. Ironically, to estimate α, λ and k we only use values from the
tails of the distribution! Thus we lose most of the information carried by the sample. Moreover,
there is still a problem of selecting data points for the linear fit on the log-log plot. We were
unable to automate this procedure and the estimators depended on subjective choice of data
points.

4.2 Minimization in L
p norm and maximum likelihood method

To overcome weak points of the direct approach we turned to more classical estimation methods:
minimization of distance in the Lp norm and the maximum likelihood method. In our case the
former one reduces to finding a minimum of a function of three variables

∞∫

0

∣∣∣f̂(r) − f(r; α, λ, k)
∣∣∣
p
dr. (9)

Unfortunately, it also uses an estimate of the empirical density f̂(r) and thus is subject to
unnecessary estimation errors.

On the other hand the maximum likelihood method is free of this flaw. In short, it is a recipe
for producing an estimator θ̂ of the vector of parameters θ = (α, λ, k), called the maximum
likelihood estimator (MLE). The MLE is defined as an estimator such that it is the value of the
argument θ which maximizes the likelihood function [6]

Lθ(R1, . . . , Rn) =
n∏

k=1

f(Rk),

where R = (R1, . . . , Rn) is the sample and f is the probability density, as a function of θ.
Notice that Lθ(R) obtains a maximum exactly for the same values of θ as the so called

log-likelihood function

log Lθ(R1, . . . , Rn) =
n∑

k=1

log f(Rk).

As it happens in our case, this observation usually leads to much easier maximization algorithms.
Namely, from formula (5) we can calculate the log-likelihood function of the CED model

log Lθ(R1, . . . , Rn) =
n∑

k=1

{

log αλα + (α − 1) log(Rk) + log

[

1 − exp

(

−
(λRk)−α

k

)]}

−
n∑

k=1





1

k

k(λRk)α∫

0

(
1 − e−1/s

)
ds





.

Then using the Nelder-Mead simplex minimization procedure (MATLAB implementation, see
also [22]) applied to the function

− log Lθ(R1, . . . , Rn)

we obtain estimates of α, λ and k. Note that this method uses information carried by all returns
and not only those in the tails of the distribution. MLEs are in general – for almost all data
sets and sampling intervals (∆t’s) – much better than those obtained using the direct approach
or by minimizing the distance in the Lp norm.
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Table 1: Empirical and CED drift exponents for the analyzed FX rates.

FX rate N0

N D D0
D0−D

D cλ DCED
DCED−D

D

USD/DEM 20% 0.46 0.51 10.9% 0.48 0.46 -0.4%
GBP/USD 22% 0.42 0.48 13.2% 0.42 0.42 -0.4%
USD/JPY 22% 0.43 0.49 12.8% 0.42 0.43 -0.2%
USD/CHF 23% 0.46 0.52 12.5% 0.48 0.46 -1.2%
AUD/USD 25% 0.42 0.48 15.6% 0.42 0.42 -0.3%
DEM/JPY 26% 0.44 0.51 15.4% 0.45 0.44 -0.8%
GBP/DEM 27% 0.48 0.55 13.4% 0.45 0.47 -3.2%
USD/FRF 27% 0.42 0.49 16.3% 0.43 0.42 -1.4%
CAD/USD 28% 0.40 0.47 16.7% 0.41 0.39 -2.8%
DEM/FRF 29% 0.32 0.40 23.8% 0.35 0.31 -4.3%
DEM/ITL 29% 0.43 0.50 15.9% 0.45 0.43 -0.6%
DEM/FIM 48% 0.34 0.48 40.6% 0.35 0.34 -1.1%

5 Empirical analysis

The empirical studies were conducted on a data set released by Olsen & Associates for the Second
International Conference on High Frequency Data in Finance, Zürich, April 1-3, 1998. The data
set comprised exchange rates of all major currencies, metal prices (gold, silver, platinum) and
two most popular stock indices (DJIA, S&P500) for the period January 1, 1996 – December
31, 1996. The data came in files where time (GMT for FX rates and metals, EST for indices)
and FX rates, metal prices or index values, respectively, were reported sequentially in 30 minute
intervals. Thus the number of data points was 17520 for each asset. It is worth noting, that these
data sets are quotations of foreign currencies and metals available from international vendors
like Reuters, Knight-Ridder and Telerate, and do not correspond to real prices in the global FX
or metals market. The actual deals are usually made over the telephone and the transaction
prices may differ from the offers or even no transactions may take place at the offered prices.
On the other hand, stock index values are neither transaction prices nor nominal quotes but
sums of selected sets of stock prices. Among the three types of assets, the FX rates were the
most actively traded. For this reason we begin our empirical analysis with these data sets.

5.1 FX market

One of the main features of the FX spot market is the fact that it is a 24 hours global market,
which is mostly inactive during weekends and national holidays. The first observation of the
week arrives at 22:30 Greenwich Mean Time (GMT) on Sunday with the opening of the Asian
markets and the last observation comes from the West Coast of the USA at about 22:30 GMT
on Friday [16], see Fig. 3. In contrast to traditional high frequency analysis [30], we exclude
inactive periods from the calculations, because they introduce a large bias to the estimators and
make comparison of scaling laws for different instruments much more difficult. In the second
column of Table 1 we give the percent of zero returns in the data, which corresponds to the
inactivity of a given market. The inactivity ranges from 20% for the most actively traded in
1996 exchange rate – USD/DEM, to 48% for the DEM/FIM exchange rate.

Analysis of high frequency (intra-daily) data relies on definitions of the variables under study
– in our case – the price and the volatility. Although these definitions are probably well known,
we give them for the sake of completeness. The (logarithmic) price at time ti is defined as
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Figure 3: Half hour returns of the USD/CHF exchange rate during the second week of 1996, i.e.
January 8th till January 14th.

[16, 38]

x(ti) ≡ x(ti, ∆t) ≡
1

2

(
log pbid(ti) + log pask(ti)

)
,

where {ti} is the sequence of the regular spaced in time data, ∆t is the time interval (∆t = 30
min., ∆t = 1 hour, etc.) and pbid(ti) (pask(ti)) is the arithmetic average of the bid (ask) quotes
just prior to and just after time ti. The definition takes the average of the bid and ask price
rather than either the bid or the ask series as a better approximation of the transaction price.
The volatility v(ti) at time ti is defined as the average of unsigned changes of the logarithmic
price (return)

v(ti) ≡ v(ti, ∆t, T ) ≡
1

n

n∑

k=1

∣∣∣x(ti−k) − x(ti−k − ∆t)
∣∣∣, (10)

where T is the sample period on which the volatility is computed (e.g. one day, one year) and
n is a positive integer with T = n∆t.

In the third and fourth column of Table 1 we give the empirical drift exponent (see eq. (1))
for data without inactive periods (D) and for data with inactive periods (i.e. with zero returns
included, D0), whereas the difference (in percent) between these two exponents is given in the
fifth column. We can clearly see that for all FX rates exponent D is significantly smaller than
0.5. Moreover, the difference between D and D0 increases with the percent of zero returns (Tab.
1, column 2), thus showing that the inclusion of inactive periods causes overestimation of the
drift exponent.

Intensive studies of all twelve FX rates and all 48 sampling intervals (∆t = 30, 60, ..., 1440
minutes) lead us to several interesting conclusions [27]. Firstly, we observed that we could reduce
the initial six parameter set to three parameters {λ̂, k̂+, k̂−}. It turned out that for all analyzed
FX rates the shape parameter α was almost equal to one both for positive and for absolute value
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Table 2: Mean values (over all ∆t’s) of the shape parameters α+ and α− and drift exponents of
the scale parameters λ+ and λ− for the analyzed FX rates.

FX rate 〈α+〉 〈α−〉 cλ+ cλ−

USD/DEM 1.04 1.00 0.47 0.48
GBP/USD 1.00 1.01 0.44 0.40
USD/JPY 1.02 1.00 0.45 0.40
USD/CHF 1.01 0.99 0.49 0.46
AUD/USD 1.04 1.06 0.44 0.40
DEM/JPY 1.07 1.03 0.46 0.43
GBP/DEM 1.01 0.99 0.50 0.42
USD/FRF 1.05 1.04 0.42 0.43
CAD/USD 0.98 1.02 0.41 0.41
DEM/FRF 0.99 0.97 0.34 0.35
DEM/ITL 1.00 1.01 0.44 0.47
DEM/FIM 0.96 0.99 0.34 0.37

of negative returns and the scale parameter λ was almost the same for positive and for absolute
value of negative returns, see Table 2 and Fig. 4.

Secondly, we found that λ was related to the time interval ∆t by a power law

λ(∆t) = Λ(∆t)−cλ . (11)

This phenomenon is illustrated in Fig. 5 for the USD/CHF rate, separately for positive (λ+) and
for absolute value of negative returns (λ−). The straight dashed and dotted lines represent the
best linear fits (linear regression) for all positive and negative returns, respectively. The slopes
are given by −cλ+ = −0.46 ± 0.03 and −cλ+ = −0.49 ± 0.03. The values of these exponents are
almost equal and their mean value cλ closely approximates the empirical drift exponent D, see
Table 1.

As a consequence of the two above observations the CED density has finite and non-zero
limits at point zero. Moreover, the left-hand limit is equal to the right-hand limit and we can
make the CED density continuous on the whole real line by setting f(0) = λ.

The third parameter k, which decides how fast the information flow is spread out in the
market, is qualitatively different for positive and for absolute value of negative returns. This
difference is responsible for the asymmetry of the density of returns. Since k defines the tails
of the distribution its estimator is very fragile. This causes a large dispersion of estimates and
prevents us from identifying k as a function of ∆t, see Fig. 6.

We can see from Table 1 that the drift exponent cλ closely approximates the empirical drift
exponent D. Yet we can do much better [27]. Recall that if a random variable R has density
f(r) then its mean value is given by

〈R〉 =

∫

A

rf(r)dr,

where A is the support of f(r). Unfortunately in our case it is not clear how to integrate∫
∞

0 rf(r)dr, because the CED probability density function itself is a quite complicated function.
However, the mean value of R can also be obtained [13] by taking the limit

〈R〉 = −
d

dt

∣∣∣∣
t=0

ϕ(t),
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Figure 4: Shape parameter α for the USD/CHF exchange rate and for all ∆t’s.
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where ϕ(t) is the moment generating function ϕ(t) = E{e−tR}. This leads us to the following

〈R〉 = −
d

dt

∣∣∣∣
t=0

∞∫

0

f(r)e−trdr =
1

λ

∞∫

0

exp




−
1

k

krα∫

0

[
1 − exp(−s−1)

]
ds




 dr. (12)

Introducing the function

Ψ(α, k) =

∞∫

0

exp




−
1

k

krα∫

0

[
1 − exp(−s−1)

]
ds




 dr,

we can rewrite (12) as 〈R〉 = 1
λΨ(α, k) and the mean of the absolute value of return is given by

〈|R|〉 =
〈R+〉 + 〈−R−〉

2
.

Analytic analysis of Ψ(α, k) is quite difficult. However, from our earlier empirical studies we
know that α = 1. This simplifies things and in Fig. 7 we can see Ψ as a function of 1/k.
Clearly for small k (large 1/k) Ψ(k) is very close to one. This justifies our earlier use of cλ as an
approximation of the empirical drift exponent D. But if we include Ψ(k) in our calculations then
the approximation is even better, see Table 1 where the CED estimate DCED and the difference
in percent between DCED and D is given in the last two columns. This is also illustrated in Fig.
8, where almost a perfect match is obtained for the USD/CHF exchange rate.

5.2 Metals and indices

Like foreign currency, metals data sets contain bid and ask quotes which were recorded by
international financial data vendors. The actual deals are typically made over the telephone and
the transaction prices usually differ from the offers. Although global, the metals market is less
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Table 3: Empirical and CED drift exponents, mean values of the shape parameters α+ and α−

and drift exponents of the scale parameters λ+ and λ− for the analyzed metals.

Metal N0

N D D0
D0−D

D DCED
DCED−D

D 〈α+〉 〈α−〉 cλ+ cλ−

Gold 41% 0.40 0.46 15.1% 0.50 25.7% 1.27 1.28 0.49 0.56
Silver 51% 0.30 0.40 32.2% 0.34 13.7% 1.28 1.27 0.44 0.30

Platinum 71% 0.38 0.43 13.4% 0.41 7.7% 1.36 1.38 0.42 0.47
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Figure 9: Half hour returns of the USD/CHF exchange rate (top panel), gold (middle panel) and
the S&P500 index (bottom panel) during the ninth week of 1996, i.e. February 26th till March
3rd. Clearly visible are the working hours of the New York Stock Exchange.

active than most foreign exchange markets. Comparison of the second columns in Tables 1 and
3 places the most actively traded metal – gold – somewhere between DEM/ITL and DEM/FIM
– the least actively traded of the twelve analyzed exchange rates. The inactivity of other metals
markets is even higher, with platinum being traded for only 29% of the time! This property of
the global metals market is also clearly visible in Fig. 9 where a sample week of the USD/CHF
exchange rate, gold and the S&P500 index 30-minute returns is presented.

Intensive studies of all three metals prices and all 48 sampling intervals (∆t = 30, 60, ..., 1440
minutes) allowed us to observe that the shape parameter α was almost the same for positive and
for absolute value of negative returns. It averaged 1.27 for gold and silver and 1.37 for platinum,
see Table 3. The larger, than for FX rates, value of α could originate either from estimation
errors (smaller samples due to lower activity of the market) or different characteristics of the
global metals market.

The scale parameter λ was also very close for both sets of returns, however, the differences
were higher than for most FX rates. Moreover, like for FX rates, we found that λ was related
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Figure 10: Scale parameter λ for gold and for all ∆t’s.

to the time interval ∆t by a power law (11), see Fig. 10, and that k, which decides how fast
the information flow is spread out in the market, was qualitatively different for positive and for
absolute value of negative returns resulting in asymmetry of the density of returns.

Compared to the metals market, the inactivity of the US stock market is higher – 80-85%,
averaging to about 5-6.5 trading hours per working day. Differences in the empirical drift
exponents (1) between data with and without inactive periods ranged from 100% for S&P500
to 250% for DJIA. The CED model did not fit to the data well and percentage errors were two
orders of magnitude higher than for FX rates. One possible explanation for this behavior is the
deficiency of data points – we were analyzing less than 3500 index values – which could cause
large estimation errors. Another possible explanation stems from the fact that the US stock
market, although the largest and most influential in the world, is not a global one. The prices
of US stocks reflect the current state of the US economy and hardly depend on the situation in
Europe or Asia.

6 Conclusions

High-frequency data means a very large amount of data. The number of observations in one
single day of a liquid market is equivalent to the number of daily data within 30 years. High-
frequency data open the way for studying financial markets at very different time scales, ranging
from minutes to years or even decades [1, 8]. As it turns out, some empirical properties are similar
at different scales, leading to fractal or scale-invariant behaviors.

But why look for fractals, scaling and power laws to begin with? The reason for this is
that complex phenomena often give rise to power laws which are universal in the sense that
they are independent – to a large extent – of the microscopic details. These power laws emerge
from collective action and transcend individual specificities [5]. The knowledge of such universal
laws would be very helpful, not only in the understanding of how the markets work, but also in
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constructing efficient and profitable trading strategies.
Scaling properties have been the objects of study since the early work of Mandelbrot [24] on

cotton prices. In 1990, the research group of Olsen & Associates working with high-frequency
data published empirical studies of volatility scaling in FX markets [30]. Later, these and
other scaling properties were found for different financial and economic time series (see eg.
[2, 15, 23, 26]).

In this article we have shown that the CED model can provide theoretical background for
the observed stylized facts, in particular the scaling law for volatility and a power law decay
of the distribution of returns. It clarifies the ideas of the Fractal and Heterogeneous Market
Hypotheses and provides a rigorous mathematical framework for further analysis of financial
complex processes.
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