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1. Introduction 

It is well known that, due to the method of ‘principal coordinates’, the Goodwin’s 

Lotka-Volterra model (G-L-V hereafter) can be written in disaggregative form.
1 

This 

form can be easily recognizable as a multiple degree of freedom vibration system.
2 

Goodwin (1986, p. 208) mentions that the dynamic behavior of the whole system 

depends not on the possible complex eigenvalues of material input coefficients 

matrix, but on the sectoral interrelationships of the system. In this paper, we shall deal 

with this model and show that the behavior of the model depends on the eigenvalues 

of material input coefficients matrix. 

The remainder of the paper is structured as follows. Section 2 presents the model. 

Section 3 evaluates the finds of our investigation. Section 4 concludes.   

 

2. The Model 

The well-known G-L-V model may be described, in disaggregative form, by the 

following relations (Goodwin, 1984, 1986, 1989; Goodwin and Punzo, 1987, pp. 106-

112) 

   (1 ) , 1
j j j j

Y Xλ λ≡ − <  , 1, 2,...,j n=                                      (1) 



 2 

ˆ,j j j j jL X B B a= = −                                                      (2) 

ˆ
j jN n=                                                  (3)           

ˆ ( ) ,
j j j j j jj

W L Nρ γ γ ρ= − <                                          (4) 

[ ( )], 1j j j j j j j j j j j jX k X X X W B X k� λ �= − − − >ɺ ɺ                        (5) 

 

where , , , ,
j j j j j

a n ρ γ �  are positive constants. As usual, a ‘dot’ (‘hat’) above a 

variable denotes time derivative (logarithmic derivative), i.e., y dy dt=ɺ ( ŷ y y= ɺ ). 

Furthermore,
j

X , 
j

Y , 
j

L , 
j

B , 
j

N , 
j

k , 
j

W  and 
j

�  denote the gross output, net output, 

employment, direct labour coefficient, labour force, desired capital-output ratio, real 

wage rate, and the speed of adjustment of output to excess demand of the jth  

‘eigensector’, respectively.
3
   

Finally, 
j

λ  denotes the j  eigenvalue of the diagonalizable n n×  matrix of material 

input coefficients, A .
4
 It is also assumed that the system is viable, i.e., the Perron-

Frobenius (P-F hereafter) eigenvalue,λA , is less than 1 (for more details, see Kurz and 

Salvadori, 1995, chs 3-4). 

 

Relation (1) captures the assumption that the capital lasts for one period of 

production. Relations (2) and (3) capture the assumption of steady (‘disembodied’) 

technical progress and steady growth of the labour force, respectively. Relation (4) 

captures the assumption that the real wage rate rise in the neighborhood of full 

employment. Finally, relation (5) captures the adjustment of output to excess demand. 

We also assume that all wages and not profits are consumed, and the capital-output 

ratio and all prices are both constant. 

From the definition of workers’ share of the jth  ‘eigensector’, /
j j j j

U W L Y≡ , we 

obtain 

        /(1 )
j j j

U θ λ= −                 (6) 

 

where (1 )
j j j j j

W B Uθ λ≡ = −  is the unit labour cost of the jth  eigensector. 

Furthermore, combining (5) and (6) and rearranging, we get 

ˆ [ /( 1)](1 )(1 )j j j j j jX k U� � λ= − − −                                    (7) 
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Logarithmic differentiation of /
j j j j

U W L Y≡  yields  

ˆ ˆ ˆ ˆ
j j j jU W L Y= + −                                                        (8) 

 

But from relations (1) and (2) we also have ˆ ˆ
j j jL Y a= − . So, substituting the above 

relation and relation (4) in (8), we get 

ˆ ( )j j j j j jU L N aρ γ= − −                                                (9) 

 

From the definition of employment rate of the jth  eigensector, j j jV L N≡ , relation 

(9) can be written as                                         

ˆ ( )j j j j jU V aρ γ= − +                                             (10) 

 

Logarithmic differentiation of j j jV L N≡ yields  

ˆ ˆ ˆ
j j jV L N= −                                                         (11) 

 

Furthermore, from (1) we obtain ˆ ˆ
j jX Y= . Therefore, from ˆ ˆ

j j jL Y a= − , (3), (7) and 

(11) we get  

ˆ [ /( 1)](1 )(1 ) ( )j j j j j j j jV k U a n� � λ= − − − − +                           (12) 

 

Consequently, the model reduces to the 2n  dimensional dynamical system of (10) 

and (12). The singular points (equilibrium) of the system is given by 

0j jU V= =ɺ ɺ  or ( ) ( ) ( ){ }* *, 0,0 , ,j j j j j jU V b c dα=                      (13) 

 

where [ /( 1)](1 ) ( )
j j j j j j j

k a nα � � λ≡ − − − + , [ /( 1)](1 )
j j j j j

b k� � λ≡ − − , 
j j j

c a γ≡ + , 

j j
d ρ≡ . 

 

Linearazing the system around the non-zero point we get 

[ ( / )]j j j j jU d b Vα ′=ɺ                                                           (14) 

 

[ ( / )]j j j j jV b c d U ′= −ɺ                                                         (15) 
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where *

j j jV V V′ ≡ −  and  *

j j jU U U′ ≡ − . 

 

Relations (14) and (15) can be written in a matrix form as 

                                                       ′=< >U Φ Vɺ                                                        (16) 

′= − < >V � Uɺ                                                      (17) 

 

where [ ]jU≡Uɺ ɺ , [ ]
j

U′ ′≡U , [ ]jV≡Vɺ ɺ , [ ]
j

V′ ′≡V  and < >Φ , < >�  denote the 

diagonal matrices formed from the elements [ ( / )]
j j j

d bα  and [ ( / )]
j j j

b c d , 

respectively.  

 

Moreover, from (16) we obtain the following system of second-order differential 

equations  

       =< >U Φ Vɺɺ ɺ                                                        (18)     

 

Substituting (17) in (18) and taking into consideration < >≡< >< >M Φ � , it follows 

that relation (18) becomes  

′= − < >U M Uɺɺ                                                     (19)  

 

which represent a set of n  uncoupled single degree of freedom equations of motion.  

 

It is important to note that ‘these eigensectors do not exist–they are mere accounting 

devices: no decisions are taken by such fictitious units’ (Goodwin and Punzo, 1987, p. 

60). Regarding this, Goodwin observes that we can always go back to the ‘actual 

quantities’. Through a ‘coordinate transformation’, these n  independent single degree 

of freedom systems (see, relation (19)) are transformed back to a multiple degree of 

freedom system (‘actual quantities’) and vice versa. Thus, pre-multiplying relation 

(19) by Q  and taking into account that the vector ≡u QU  ( ≡v QV ) denotes the 

workers’ shares (the employment rates) of the actual system, we obtain
5
  

                                                          ′= −u Muɺɺ                                                      (20) 
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where [ ]ju≡ ≡u QUɺɺɺɺ ɺɺ , [ ]
j

u′ ′ ′≡ ≡u QU , 1−≡ < >M Q M Q , and [ ]
j

q≡Q  ( 1 [ ]jq
− ′≡Q ) 

is the n n×  matrix which is formed from the right-hand side (left-hand side) 

eigenvectors of A , i.e., it denotes the ‘modal matrix’ of A .
6
  

 

Similarly, pre-multiplying relation (17) by Q  we obtain  

′= −v �uɺ                                                      (21) 

 

where [ ]jv≡ ≡v QVɺɺ ɺ and 1−≡ < >� Q � Q . 

 

Hence, from (20) we obtain the solutions 
j

u , in terms of t . Finally, given ′u  we 

obtain the solution of (21). 

 

3. Discussion 

The system (20) is easily recognizable as a ‘free vibration of undamped n  degree of 

freedom system’ where the identity matrix, I , and the matrix M  are, respectively, the 

‘mass’ and ‘stiffness’ matrices (see, for example, Shabana, 1996). Moreover, the 

examination of the system (10), (12) shows that there are two possibilities regarding 

the eigenvalues of matrix A . These possibilities are:  

1. All eigenvalues are real 

2.  Some eigenvalues are complex 

We shall deal with these cases in turn: 

 

Case 1: All eigenvalues are real 

If all eigenvalues are real, then the result is a 2n  dimensional system, with n  Lotka-

Volterra (L-V hereafter) oscillating pairs, i.e., all pairsU , V  will oscillate with 

different periods and phases. Moreover, taking into consideration that the actual 

system can be described as a ‘free vibration of undamped n  degree of freedom 

system’, the motion of each actual sector (‘general motions’) can be expressed as a 

linear combination of those simpler motions (‘eigenoscillations’), each of which has a 

definite frequency.
7
 If the ratios of the frequencies are rational numbers, these 

motions are periodic. On the other hand, if one or more pairs of frequencies form an 

irrational ratio, these motions will be erratic, never repeating. It should be remarked 
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that these motions depends ‘solely’ on the ‘form of the system’, i.e., on the sectoral 

interrelationships of the system. 

 

Case 2: Some eigenvalues are complex 

In this case, some of the pairs of L-V equations involve complex parameters which 

present serious interpretatory problems. It is worth recalling that the equation of 

motion of each actual sector can be expressed as a linear combination of the motions 

of the n  independent single degree of freedom systems. Although, in contrast with 

the previous case, the actual system cannot be studied by means of standard analytical 

methods, i.e., there is no known theory available for a system consist of n  coupled 

systems of L-V differential equations some of which involve complex parameters.
8
 

Instead, we shall apply simulation methods to investigate the dynamical behavior of 

the system. A set of numerical simulations gives oscillations into monotonic 

explosions.
9
 It should be mentioned that the present analysis is based on the 

assumption of a same labour market (or , , ,
j j j j

a n ρ γ ) and ,
j j

k�  in every 

‘eigensector’. If particular , , , ,
j j j j j

a n kγ �  is assumed then the elements of matrix M  

will be complex, i.e., the actual system is recognizable as a ‘hysteretically damped n  

degree of freedom system’ (see Maia and Silva, 1997, pp. 62-4).
10 

Thus, the system 

(20) may be written as 

                                           i′ ′+ + =u Nu Du 0ɺɺ                                                     (20a) 

 

where N , D  are n n×  ‘stiffness’, ‘hysteric  damping’ matrices, respectively, 

( 1)i ≡ −  is the imaginary unit, and i≡ +M N D . It must be noted that (i) there is no 

an economic interpretation of the system (20a); and (ii) ‘this type of damping has 

been defined only for the particular case of forced harmonic vibration and presents 

some difficulties to rigorous free vibration […] analysis’ (ibid., p. 62).  

 

4. Concluding Remark 

The examination of the G-L-V model in disaggregative form showed that there are 

two possibilities regarding the eigenvalues of material input coefficients matrix. It is 

worth recalling that if all the eigenvalues are real then the result is a 2n  dimensional 

system with n  L-V oscillating pairs, where the motion of each actual sector is a linear 

combination of these pairs. On the other hand, if some eigenvalues are complex then 
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we should assume the same labour market, desired capital-output ratio, and speed of 

adjustment of output to excess demand in all eigensectors, in order to avoid serious 

interpretatory problems. Furthermore, by introducing this assumption, it is found that 

the actual system cannot be studied by means of standard analytical methods. Instead, 

we applied simulation methods, which gave oscillations into monotonic explosions. 

These no satisfactory solutions are likely to have derived from limitations of the 

present model, such as the absence of the assumption that capacity is not fully used 

and, therefore, the lack of an investment demand function à la Bhaduri and Marglin 

(1990), which is positively related to the profits share and to capacity utilization (for 

this line of research, see Mainwaring, 1991; Barbosa-Filho and Taylor, 2006; 

Mariolis, 2006, pp. 202-214). Future work should investigate the possibility to 

overcome this drawback, by introducing into the original model this assumption. 
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Footnotes 
1 

The method of  ‘principal coordinates’ is originally proposed from R. M. Goodwin 

at 1976 in Use of Normalised General Co-ordinates in Linear Value and Distribution 

Theory (1976, ch 7 1983).  With regard to this issue, see, also, Aruka, 1991; Boggio, 

1991; Steenge, 1995. 

2
 It is worth mentioning that the degrees of freedom of a system are the number of 

independent coordinates necessary to completely describe the motion of that system. 

3 
We consider, in accordance with Goodwin, n  independent labour markets, each with 

its particular, given growth rates of productivity and labour force. 

4 
Matrices (and vectors) are denoted by boldface letters.  

5 
Note that M  and < >M  are similar matrices. 
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6 
In other words, we follow the reciprocal of the method, which leads to a set of n  

independent systems.   

7 
It should be noted that it is possible 

j
u ( 

j
v ) to exceed unity. As is known, the 

original G-L-V model (Goodwin, 1967) suffers from the same basic defect (see, for 

example, Desai et al., 2006, pp.5). Recent works (Weber, 2005, pp. 17-26; Desai et 

al., 2006) show that the original model can be reformulated to ensure that these 

variables cannot exceed unity.   

8
 Taking into account that some of the eigenvalues of A  are complex, it is then not 

too difficult to show that some of the eigenvalues of matrix M  are complex too. See 

Appendix A.  

9 
In the Appendix B, we present a numerical example illustrating the points made 

above. 

10
 See Appendix A. 

 

APPENDIX A 

Let us consider a 3 3×  matrix A  with one real eigenvalue (the P-F eigenvalue), 

1( 1)λ <  and a pair of complex conjugate eigenvalues 2λ , 3λ . From (20) we get   

                                                   1−≡ < >M Q M Q                                       (A.1) 

 

where 

                                 

1 1

2 2

3 3

0 0

0 0

0 0

c

a c

a c

α 
 < >=  
 
 

M  

 

and [ /( 1)](1 ) ( )
j j j j j j j

k a nα � � λ≡ − − − + , 
j j j

c a γ≡ + . Since 2λ , 3λ  are complex, 

then 2 2cα  and 3 3cα  are complex numbers and, therefore, the matrix M  has complex 

eigenvalues. Hence, if matrix A  has complex eigenvalues, then matrix M  has also 

complex eigenvalues.    

  

Moreover, relation (A.1) after rearrangement gives: 
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1 1 11 11 2 2 12 21 3 3 13 31 1 1 11 12 2 2 12 22 3 3 13 32 1 1 11 13 2 2 12 23 3 3 13 33

1 1 21 11 2 2 22 21 3 3 23 31 1 1 21 12 2 2 22 22 3 3 23 32 1 1 21 13 2 2 22 23

c q q c q q c q q c q q c q q c q q c q q c q q c q q

c q q c q q c q q c q q c q q c q q c q q c q q

α α α α α α α α α
α α α α α α α α

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + +

′ ′ ′ ′ ′ ′ ′ ′= + + + + +M 3 3 23 33

1 1 31 11 2 2 32 21 3 3 33 31 1 1 31 12 2 2 32 22 3 3 33 32 1 1 31 13 2 2 32 23 3 3 33 33

c q q

c q q c q q c q q c q q c q q c q q c q q c q q c q q

α
α α α α α α α α α

 
 ′+ 
 ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + + 

    

(A.1a) 

 

Since 1λ  is the P-F eigenvalue, the first column (row) of Q  (of 1−Q ), is real and 

positive. On the other hand, the corresponding eigenvectors to 2λ , 3λ  will ordinary 

involve negative and complex numbers. Therefore, the element 11m  can be expressed 

as:  

1 1 11 11c q qα ′ + ( )( )( ) ( )( )( )i i i i i iε η σ β ζ δ ε η σ β ζ δ± ± ± ± ± ± + ± ± ±∓ ∓ ∓  

 

where , , , 0σ β ζ δ ≥   and 1 1 11 11, , 0c q qε η α ′ > . 

The above relation is a sum of real numbers, and, therefore the element 11κ  is real. By 

contrast, if 2 3a a≠  or 2 3n n≠  or 2 3k k≠  or 2 3γ γ≠  or 2 3� �≠  then 2 2 3 3c cα α≠ and 

then 11m  is complex (and the same holds true for any 
ij

m  of a nxn  matrix). Hence, if 

each ‘eigensector’ has its particular , , , ,j j j j ja n kγ � , then the elements of matrix 

M  will be complex. 

 

APPENDIX B 

In what follows we present two numerical examples illustrating the points made 

above. 

Example 1 

Consider the following system: 

0.1 0.015 0.001

0.16 0.35 0.06

0.14 0.14 0.275

 
 =  
 
 

A  

with  

 

0.035 0.040 0.841

0.700 0.364 0.452

0.713 0.930 0.297

− − 
 ≅ − 
 
 

Q , 
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1

0.670 0.976 0.411

0.145 0.773 0.766

1.154 0.077 0.019

−

 
 ≅ − − 
 − − 

Q , 

 

1λ ≅ 0.419, 2λ ≅ 0.214, 3λ ≅ 0.0916 

 

Also, we assume 
j

γ γ= , 
j

ρ ρ= , 
j

a a= , 
j

n n= , [ /( 1)] [ /( 1)]
j j j

k k� � � �− = −  

where 1, 2,3j = . Thus for γ = 0.03, ρ = 0.04, a =0.005, n =0.06 and [ /( 1)]k� � − = 1 

we get 

 

0.029 0.0005 0.00004

0.006 0.020 0.002

0.005 0.005 0.023

− 
 ≅ − 
 − 

M  

and  

M

1λ ≅ -0.030, M

2λ ≅ -0.025, and M

3λ ≅ -0.018 

where M

jλ  the j  eigenvalue of M .  

Moreover, we set 1 2 3(0) (0) (0) 0.1u u u′ ′ ′= = = , 1 2 3(0) (0) (0) 0.1u u u′ ′ ′= = =ɺ ɺ ɺ . Therefore, 

using Mathematica, we get  

1 0.007 cos(0.134 ) 0.0006cos(0.159 ) 0.092cos(0.172 )

0.054sin(0.134 ) 0.004sin(0.159 ) 0.536sin(0.172 )

u t t t

t t t

′ = + + +

+ +
 

2 0.144cos(0.134 ) 0.006cos(0.159 ) 0.050cos(0.172 )

1.071sin(0.134 ) 0.035sin(0.159 ) 0.289sin(0.172 )

u t t t

t t t

′ = + − +

+ −
 

3 0.147 cos(0.134 ) 0.014cos(0.159 ) 0.033cos(0.172 )

1.092sin(0.134 ) 0.089sin(0.159 ) 0.190sin(0.172 )

u t t t

t t t

′ = − − +

− −
 

 

If we set 1 2 3 0C C C= = = , where 1,2,3C  the constants of integration of ′= −v �uɺ , then 

from the above solution we get 

1 0.203cos(0.134 ) 0.016cos(0.159 ) 2.482cos(0.172 )

0.027sin(0.134 ) 0.003sin(0.159 ) 0.426sin(0.172 )

v t t t

t t t

′ = + + −

− −
 

2 4.052cos(0.134 ) 0.152cos(0.159 ) 1.333cos(0.172 )

0.544sin(0.134 ) 0.024sin(0.159 ) 0.229sin(0.172 )

v t t t

t t t

′ = + − −

− +
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3 4.131cos(0.134 ) 0.387cos(0.159 ) 0.876cos(0.172 )

0.555sin(0.134 ) 0.0615sin(0.159 ) 0.150sin(0.172 )

v t t t

t t t

′ = − − −

+ +
 

Finally, Figures 1 and 2 represent the path of ,u v′ ′ , respectively 

 

 
      Figure 1. The path of 1,2,3u′   

 

        

 

 

   Figure 2. The path of 1,2,3v′  
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Example 2 

Consider the following system: 

0.4 0.9 0.02

0.08 0.1 0.2

0.4 0.21 0.009

 
 =  
 
 

A  

with 

 

0.802 0.128 0.621 0.128 0.621

0.274 0.117 0.385 0.117 0.385

0.531 0.660 0.660

i i

i i

− − + 
 ≅ − + − 
 − − − 

Q , 

 

1

0.667 1.075 0.321

0.268 0.319 0.432 0.784 0.628 0.077

0.268 0.319 0.432 0.784 0.628 0.077

i i i

i i i

−

− − − 
 ≅ + − − − 
 − + − + 

Q , 

 

1λ ≅ 0.721, 2λ ≅ -0.106+0.253 i , 3λ ≅ -0.106-0.253 i  

 

Furthermore, we assume that γ = 0.03, ρ = 0.04, a =0.005, n =0.06 and 

[ /( 1)]k� � − = 1.  

 

Thus it is obtained that 

0.019 0.032 0.0007

0.003 0.029 0.007

0.014 0.007 0.032

− 
 ≅ − 
 − 

M  

and  

 

M

1λ ≅ -0.036-0.009 i , M

2λ ≅ -0.036+0.009 i , M

3λ ≅ -0.007 

 

Moreover, we set 1 2 3(0) (0) (0) 0.1u u u′ ′ ′= = =  and 1 2 3(0) (0) (0) 0.1u u u′ ′ ′= = =ɺ ɺ ɺ . 

Therefore, using Mathematica, we get  
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0.023 0.023 0.046

1

0.023 0.046

[0.165 cos(0.087 ) 0.046cos(0.192 ) 0.112 cos(0.192 )

1.912 sin(0.087 ) 0.172sin(0.192 ) 0.149 sin(0.192 )]

t t t

t t

u e e t t e t

e t t e t

−′ = + − +

− −
 

 
0.023 0.023 0.046

2

0.023 0.046

[0.057 cos(0.087 ) 0.027 cos(0.192 ) 0.017 cos(0.192 )

0.654 sin(0.087 ) 0.110sin(0.192 ) 0.117 sin(0.192 )]

t t t

t t

u e e t t e t

e t t e t

−′ = + + +

+ +
 

 

0.023 0.023 0.046

3

0.023 0.046

[0.1106 cos(0.087 ) 0.185cos(0.192 ) 0.176 cos(0.192 )

1.267 sin(0.087 ) 0.011sin(0.192 ) 0.082 sin(0.192 )

t t t

t t

u e e t t e t

e t t e t

−′ = − + +

− −
 

 

If we set 1 2 3 0C C C= = = , then from the above solution we get 

0.023

1

0.023 0.023 0.023

0.466sin(0.087 ) 11.233[0.480cos(0.087 ) 0.080 cos(0.192 )

0.073 cos(0.192 ) 0.013 sin(0.192 ) 0.043 sin(0.192 )]

t

t t t

v t t e t

e t e t e t

−

−

′ = − + − −

− +
 

0.023

2

0.023 0.023 0.023

0.160sin(0.087 ) 11.233[0.164cos(0.087 ) 0.049 cos(0.192 )

0.054 cos(0.192 ) 0.017 sin(0.192 ) 0.002 sin(0.192 )]

t

t t t

v t t e t

e t e t e t

−

−

′ = − + + +

− −
 

0.023

3

0.023 0.023 0.023

0.309sin(0.087 ) 11.233[0.318cos(0.087 ) 0.004 cos(0.192 )

0.029 cos(0.192 ) 0.085 sin(0.192 ) 0.084 sin(0.192 )]

t

t t t

v t t e t

e t e t e t

−

−

′ = − + + −

+ −
 

 

Finally, Figures 3 and 4 represent the path of ,u v′ ′ , respectively 

 

 

  
                                                   Figure 3. The path of 1,2,3u′  
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    Figure 4. The path of 1,2,3v′  
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