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The Spatial Diffusion of Social Conformity: The Case of Voting 

Participation 

 

 
Stephen Coleman1 

 
 

Abstract 
 

 
Social interaction combined with social conformity spreads attitudes 

and behaviors through a society. This paper examines such a process 

geographically for compliance with the norm that good citizens should 

vote. The diffusion of conformist behavior affects the local degree of 
conformity with the norm and produces highly specific and predictable 

patterns of behavior across a country. These are demonstrated with 

qualitative and quantitative spatial analyses of voter turnout in the 
United States and Russia. 

 
 

                                                 
1
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The Spatial Diffusion of Social Conformity: The Case of Voting 

Participation 

 

 
 

Political research has increasingly demonstrated that interaction 
between people can spread political attitudes, norms, and behavior 

through a local population (Kenny, 1992; Mutz, 1992 and 2002; 
Huckfeldt and Sprague, 1995; McClurg, 2003). The underlying cause 

for much of this behavioral effect is social conformity, which can mean 
either conformity with an ethical norm or with others’ behavior 

(Cialdini, 1993; Coleman, 2007a). People may change their behavior 

because of overt social pressure or simply to fit in with others. As 

Cialdini reports, people are increasingly likely to conform with others 
as the proportion of other people doing something increases. Even the 

thought that relatively more people are doing something is enough to 

prompt conformist behavior in many individuals. This is a self-limiting 
process, however, as not everyone can be brought into conformity.  

 
Studies on social conformity also point to the importance of spatial 

effects. The willingness of people to comply with social norms, such as 
voting, recycling, obeying laws, or giving to charity, can vary 

significantly from place to place (Coleman, 2007a). And the degree of 
conformity with a norm can change when people in one area are 

influenced by the behavior of people in other locations. In a natural 

social context, the influence of conformity on an individual is related to 

the distance from other people as well as to the relative number of 
people who may express a position or behavior. The joint influence of 

a group increases with a power function of the number (usually an 
exponent of about 0.5), but decreases approximately with the square 

of the distance to the individual (Nowak and Vallacher, 1998: 225).  

 
Voting, especially in a national election, is a good case to study the 

diffusion of compliance or conformity with an important social norm. 
Considerable research backs up the fact that people vote mainly 

because of the widely held norm that good citizens should vote (Blais, 
2000), and social pressure or information about others’ voting 

behavior can increase voting participation (Knack, 1992; Gerber, 

Green, and Larimer, 2008; Gerber and Rogers, 2009). Much of this 

research has been at the individual level, but conformity operates at 
individual, group, and societal levels (Cialdini, 1993), so one would 

expect to see a spatial effect on political behavior at higher levels of 

aggregation, such as neighborhoods, counties, or states.  
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The impact of social conformity also can extend across different social 

behaviors or norms, strengthening its community-wide effect. This 

happens when conformity with one norm or behavior spills over to 

bring people into conformity with other norms (Cialdini, Reno, and 
Kallgren, 1990.) People collectively tend to behave with a consistent 

degree of conformity in different situations, such as voting, abstaining 
from committing crimes, giving to charity, and answering the Census. 

Knack and Kropf (1998) show this at the county level and Coleman 
(2002, 2007a) at the state and county levels. Coleman (2002, 2004, 

2007a, 2010) also shows that conformity with the voting norm in a 
state or region can spill over to affect voting for political parties. So as 

this analysis shows the diffusion of voting participation, one can 

imagine a corresponding diffusion of behavior on related social norms.  

 
A growing number of studies demonstrate spatial effects in political 

behavior over larger areal units. One example is when voters change 

their voting choice to align with the local party majority in a 
constituency, as research on British voters shows (MacAllister et al., 

2001). Tam Cho and Rudolph (2008) analyze political activities of 
individuals in and around large American cities. They conclude that the 

spatial pattern of behavior around cities is consistent with a diffusion 
model and cannot be reduced to socio-demographic differences in the 

population. Other spatial analyses showing broad regional or 
community effects, all with aggregated data, concern voter turnout in 

Italy (Shin, 2001; Shin and Agnew, 2007), the Nazi vote in Germany 

in 1930 (O’Loughlin, Flint, and Anselin, 1994), realignment in the New 

Deal (Darmofal, 2008), and voting in Buenos Aires, Argentina (Calvo 
and Escolar, 2003). One also sees spatial effects at larger geographic 

scales in the diffusion or contagion of homicide rates (Cohen and Tita, 
1999; Messner, et al, 1999); in collective violence such as riots (Myers, 

2000); and in the negative association of lynching rates across 

Southern counties (Tolnay, Deane, and Beck, 1996). Although such 
evidence points toward a social diffusion process, this has not been 

demonstrated conclusively. The methods of spatial analysis used in 
most of these studies were developed for exploratory data analysis 

and do not lead directly to a test for the presence of social diffusion. 
 

The measure of voting participation here is voter turnout in national 

elections. Analysis is applied at the state level to presidential elections 

in the United States and at a regional level in a recent Russian 
parliamentary election. Because Russia and the United States have 

such different political histories and political cultures, yet have large 

geographical extension, a test of diffusion in both countries offers a 

good starting point for establishing the generality of the theory.  
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Methods2 
 

This analysis uses the geographical software GeoDa 0.9.5 developed 

primarily by Luc Anselin, who pioneered many of the methods used in 
spatial analysis. The software has good capabilities for geographical 

analysis, including spatial autocorrelation and regression, but must be 
supplemented with a statistical program for more complex data 

manipulation and other statistical analysis. GeoDa is available at no 
charge via the Internet from Arizona State University.3 Getting the 
right data in the right format is a further complication. GeoDa follows 

the ArcView standard for geometric area data files developed by ESRI, 

Inc. To construct a map and analyze the corresponding data, a set of 
at least three different files are required: a shape file (*.shp) that 

describes the geometry of each unit, an index file (*.shx), and a data 

file in dBase (*.dbf) format. It is burdensome to construct these files, 
but fortunately many such files already exist and are available online 

without charge.4 One can modify the data file to include data for 
analysis, but one cannot easily change the map layout. All these files 

must be coordinated by a unique identifier for each case and have the 
same number of cases. Missing data is not allowed.  

 
The elemental principles of spatial analysis are that distance matters 

and that being closer means a having a stronger effect, which is in 

accord with research on social conformity. The definition of distance is 

open to discussion, however. If spatial dependency is present, one 
expects to see an association or autocorrelation between neighboring 

areas on the same behavioral dimension. But one might also observe 
the same correlation in the absence of any spatial effect, perhaps 

because each area had been simultaneously affected by a remote 

influence, or because of random chance events or historical 
circumstances. So an analysis must first determine whether an 

observed spatial autocorrelation is not random and also is a function of 
distance. Because spatial dependency weakens with increasing 

distance from a location, the analysis must focus on areas or regions 
around a location where one might reasonably find a strong 

autocorrelation. For each areal unit one identifies its nearest 

                                                 
2
 For a general reference on spatial analysis, see Haining (1990 or 2003). 

3
 http://geodacenter.asu.edu 

 
4
 Map files (shape files) for administrative units of most countries are available from www.maplibrary.org. 

See also the Centers for Disease Control, www.cdc.gov/epiinfo/maps.htm. 
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neighboring units where one would expect to see the strongest spatial 

autocorrelation. The selection of neighbors is somewhat arbitrary, 

however, which is one of several research issues that make spatial 

analysis much more complex than classical statistical analysis. In this 
analysis the neighbors are the units that share a common border with 

the unit of interest.  
 

With geographically based data at hand, and neighborhoods identified, 
one can move on to investigate spatial autocorrelation. A spatial 

autocorrelation may refer to an attribute of an entire country, or it 
may refer to regions within a country. This analysis reports 

countrywide estimates of spatial autocorrelation, as well as identifying 

nonrandom regional clusters. The spatial autocorrelation for a state is 

the correlation between its turnout and its spatial lag. Under the 
definition of neighbors used here, spatial lag is the average turnout in 

the bordering states.  

  
As in classical statistical analysis one can graduate from correlation to 

regression analysis (Ward and Gleditsch, 2008). Here again, many 
problems arise, chief among them being the likely fact that the units of 

analysis are not independent of one another as to the values of the 
variables. This situation is typically ignored in cross-sectional analysis, 

although it can result in faulty inferences owing to Type I error. But it 
is at the heart of spatial regression analysis. Indeed if it were not a 

problem, one could dispense with spatial analysis. A further 
complication is that the regression model itself may have a spatial 

dependence owing to local clustering. Examples of spatial regression 
can be found in Tam Cho and Rudolph (2008), Brunsdon, 

Fotheringham, and Charlton (1998), and Beck, Gleditsch, and 
Beardsley (2006). This analysis uses OLS and spatial regression 

models, but the concern here is more to identify whether specific types 

of diffusion models fit the data than to estimate coefficients for the 
purpose of explaining turnout. In that sense the analysis is as much 

qualitative as quantitative. The emphasis on theoretical model 
identification over regression estimates reflects that view that in much 

social research an over-reliance on regression estimates in specific 
cases has hindered development of a predictive social science 

(Coleman, 2007b; Taagepera, 2008).  

 

 
Models 

 

It may come as a surprise to most political scientists that there is a 

large body of research on diffusion models of voting, because this 
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research has been done by physicists. This line of research draws on 

models from physics which are explored using computer simulations. 

Here I try to present the essentials of the method and main results; 

for an exhaustive review see Castellano, Fortunato, and Loreto (2009). 
This research tries to model a very simple abstraction of individual 

behavior in an artificial social context. Imagine that people in a 
population are represented as points on a lattice, and that people are 

assigned a value of, say, one or zero depending on whether they will 
vote or not. Now one can add various complexities to the model by 

making an individual’s hypothetical voting decision dependent on the 
decisions of his neighbors on the lattice. This is where the model of 

social conformity enters. In a simple model one might introduce a rule 

that each person or agent makes his behavior agree with the next 

neighbor on the lattice. One can start with a random distribution of 
voters and nonvoters, and then run a computer simulation to see what 

will happen under the rule. At successive computer iterations, the 

status of each agent is modified sequentially according to the rule on 
social influence. This type of model can become very complex 

depending on the degree of influence among neighboring agents and 
their rules of behavior; probabilistic behavior can be added for 

increased realism. 5 
  

This is called an Ising model after its discoverer who proposed it to 
explain ferromagnetism. A magnet consists of a very large number of 

atomic mini-magnets, each spinning in one of two directions. The 

overall behavior depends on statistical properties of the ensemble and 

factors such as dimension and temperature. Physicists have applied 
such models to a variety of social phenomena, including voting, 

political party choice, the spread of opinions, language dynamics, 
hierarchy emergence, and crowd behavior. (See, for example, Fosco, 

Laruelle, and Sanchez (2009); Dodds and Watts, 2008; and Sznajd-

Weron and Sznajd, 2001).  
 

These physics-based models (as with other agent-based computer 
models) face several great challenges: the need for realistic micro-

level models of behavior, the problem of inferring macroscopic 
phenomena from the microscopic dynamics, and the compatibility of 

results with empirical evidence (Castellano, Fortunato and Loreto, 

2009). In their critique, they write, “Very little attention has been paid 

to a stringent quantitative validation of models and theoretical results” 

                                                 
5
 For a more accessible analysis of social conformity by social scientists using agent-based models, see 

Nowak and Vallacher (1998).  Similar models are used in epidemiology and biology but the field is too 

extensive to review here. Although these models refer to spatial dimensions, they usually have little 

connection to an actual geographical system.  
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(p. 3). Even if macroscopic behavior seems to mimic reality, it has not 

been proved that it is unique to the micro-level model. In the simplest 

voting models, the result of a computer simulation is that every agent 

ends up voting or not voting, which is not realistic. But clusters of 
agents with different behaviors can persist for long periods. Much 

attention in these analyses is on the path of change over time in 
aggregate behavior measures, cluster patterns across the lattice, and 

their degree of stability. These findings do not concern us here, 
however, because the focus of this analysis is on the final outcome of 

change over time.  
 

The Ising model is an early prototype of cellular automata models, 

which originated with von Neuman and others in the 1940s. In the 

Ising model the agent is in only one two possible states, voting or not 
voting.  But one can extend the model to continuous cellular automata 

where the agent can have a value over a continuous range, usually 

[0,1]. This type of model is better suited to an areal spatial analysis 
where one must consider an aggregate, continuous quantity such as 

voting turnout. Instead of individual agents on a lattice, the model 
here uses agents that represent voter turnout in a small areal unit.  

 
The model assumes that one can represent a country by a large 

number of small geographic areas much like a chess board; each areal 
unit is identified by a point on the lattice, say at its geographical 

center. And assume that voter turnout u is known for each small area. 

Let each area be identified by its xi and yj location on the (x,y) 

geographical coordinates of the lattice with i counting lattice points 
from left to right and j from top to bottom. A small unit at (xi,yj)  has 
four neighbors (xi,yj+1), (xi+1,yj), (xi,yj-1), (xi-1,yj). Consider next how 
an individual in the center unit is influenced by turnout in the 

neighboring units. A rule is needed, as in other cellular models, to 

describe how each unit will change at each iteration. By the Nowak 
and Vallacher (1998) model and Cialdini’s (1993) research, influence is 

proportional to the relative frequency of people in neighboring units 
who are expected to vote. The neighboring units are equidistant from 

the center, so distance is not a factor. What might be the net result on 
voter turnout in the center unit? Suppose that two of the neighboring 

units have turnout 50% and two have 70%. One would expect people 

in the center who are closer to the 50% neighbors to shift their voting 

behavior in that direction, while voters closer to the 70% areas would 
tend that way. So a commonsense prediction would be that turnout in 

the center would tend toward the average, 60%. So for the moment 

consider as a working hypothesis that turnout in the center unit will be 
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approximately the average of turnout in the neighboring units. The 

analysis subsequently will try to validate this hypothesis.  

 

More formally, let us express the idea that because of the influence of 
social conformity each unit becomes more like its neighbors, with the 

turnout at (xi, yj) tending toward the average of the turnouts in the 
four neighbors. The units might have any turnout values initially. One 

can extrapolate what will happen in this arrangement by a mental or 
computer simulation similar to the procedure used in the physics 

models. At each iteration one successively replaces the turnout value 
at each point by the average turnout of its four neighbors. That is, at 

each turn for every point let  

  u(xi,yj) = ¼ u(xi,yj+1) + ¼ u(xi+1,yj) + ¼ u(xi,yj-1) + ¼ u(xi-1,yj)  
If one does this simulation the result is that after some large number 
of iterations all units end up with the same turnout value. But this 

would be an unrealistic outcome. With one additional hypothesis, 
however, this becomes an interesting and realistic model, namely, that 

turnout values in the units on the geographic boundary of the country 
(or lattice) do not change, or at least change very little in relation to 

change in the interior. This seems reasonable because each boundary 
unit interacts with two neighbors that are also boundary units but with 

only one interior unit; change in the interior will propagate slowly to 
the boundary. The analysis subsequently will check how realistic this 

hypothesis is.  
 

What can one say about the result of this model after a simulation of 

many iterations? As it turns out, it is not necessary to simulate this on 
a computer to know the general form of the result. No matter what the 

initial turnout values are, or the boundary values, this model leads to a 
distribution of turnout values across the country or lattice that is 

unique and depends only on the values on the boundary. If the 
simulation continues until no further change occurs—the steady 

state—the distribution of turnout values fits a mathematical function 

u(x,y) known as a harmonic or potential function (Garabedian, 1964: 

458ff). It is this type of function that interests us, not the actual 
turnout values. Such a function is a solution of the Laplace equation 

(1), namely that the sum of the continuous partial derivatives of a 
differentiable function equals zero, 

 
uxx + uyy = 0             (1) 
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This is a famous equation of mathematics and physics. To solve it for a 

given area one must know the values on the boundary. If the 

boundary values are held constant, finding a solution to the values 

across the interior is known as the Dirichlet problem.6 This was a very 
difficult problem for mathematicians of the 1800s to solve analytically, 

and more recently it was discovered that one can also solve the 
problem numerically by a computer simulation of the type just 

described (Garabedian, 1964: 485ff).7 This problem arises in physics 
when one tries to explain the effect of gravitation, electrostatic charge, 

or the diffusion of heat, across a distance on a surface or sphere. The 
analogy of heat diffusion fits best here as, for example, the daily 

weather map that shows contours of temperature change across the 

country.  

 
A harmonic function has unique properties (Kellogg, 1953): (1) The 

product of a harmonic function multiplied by a constant is harmonic, as 

is the sum or difference of two such functions. (2) It is invariant under 
translation of the axes. (3) The function over an area is completely 

determined by the values on the boundary; the solution is unique. (4) 
A harmonic function over a closed, bounded area takes on its 

maximum and minimum values only on the boundary of the area (if it 
is not a constant). (5) If a function is harmonic over an area, the value 

at the center of any circle within the area equals the arithmetic 
average value of the function around the circle. This implies that 

averages around concentric circles are equal. The converse is also true. 

If the averages around all circles equal the values at their centers, the 

function is harmonic. Harmonic functions have many other, more 
complex properties as well.  

 
Examples of harmonic functions are: 

 

(1) A plane surface Ax + By + Cz +D = 0 for constants A, B, C, D 
(2) In polar coordinates, f(r) = c/r or c/r2 
(3) f(x,y) = ln(x2 +y2) 
(4) f(x,y) = ex sin(y) 

(5) constant functions 
 

Because a harmonic function is the unique solution to the diffusion 

problem represented by the lattice model of social conformity, one can 

                                                 
6
Dirichlet’s interest in proving the stability of the solar system led to the study of harmonic functions.  

7
 The Laplace equation is solved by approximation with its Taylor expansion to a difference equation that, 

by rearranging terms, is exactly the equation used in this model. The boundary must be fairly smooth. For  

Monte Carlo solutions to the Laplace equation see Haji-Sheikh and Sparrow (1966). In 1944 Kakutani had 

showed that a numerical solution is also possible with random walks.  
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use the properties of harmonic functions as approximate tests for the 

validity of the model. Here three properties of harmonic functions are 

tested: (1) that the geographical distribution of turnout is a harmonic 

function; (2) that turnout averages around concentric circles are 
equal; and (3) that the maximum and minimum turnouts are in border 

areas. These hypotheses would be satisfied trivially if the distribution 
of turnout were random or constant, so these situations must be ruled 

out as well. A broad class of alternatives to the harmonic function can 
be tested with quadratic equations, such as u(x,y) = a x2 + b x +c or 

u(x,y) = a x2 + b x y + c y2 + d when a + b + c ≠ 0. If the geographic 
distribution fits these models, it is not harmonic. The analysis is limited, 

however, to testing these hypotheses with areal data, which lacks 

precision as to location. So the hypotheses must be adapted to fit this 

type of data.  
 

 

Analysis 
 

United States. The analysis begins with an exploratory examination of 
the spatial distribution of voter turnout in three presidential elections 

in the 48 contiguous  states, and the harmonic distribution hypothesis 
is tested on these three elections. The other two hypotheses about 

harmonic functions are tested in all elections from 1920 to 2000. The 
first research question is to determine if spatial dependency is present 

and, if so, that it is not the result of random chance. Three elections—

somewhat arbitrarily chosen—are scrutinized as to regional spatial 

autocorrelations and national patterns; these are 1920, 1968, and 
1992. The elections in 1920 and 1968 come after important 

expansions of eligibility for voting participation. The 1920 election was 
the first with women’s suffrage; 1968 followed the Voting Rights Act of 

1965. The 1992 data was chosen for convenience because it was 

already in the map database. As it happens, the general distribution of 
turnout across the states does not change much, so it is not necessary 

to look in detail at spatial autocorrelation in every election.  
 

As stated previously, for this analysis the local area or region around 
each state is defined as the set of states that have a boundary in 

common with it; this is called rook contiguity by analogy with chess. 

This is a gross approximation of the lattice model discussed earlier but 

is sufficient to begin testing the model. In the US this identification of 
neighbors leads to different numbers for the states.8 The most 
                                                 
8
 Because the boundary values completely determine the solution to the Laplace equation, it does not matter 

what the exact geometric arrangement of states is or how many share borders. This arrangement can affect 

the rate of convergence toward the steady-state solution, however.  
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common number of neighbors is four, and forty states have between 

three and six states sharing a border. 

 

The rule for change in the lattice model, which leads uniquely to the 
harmonic function hypotheses, is to set each unit’s turnout equal to 

the average of its neighbors at each iteration. So the analysis first 
checks on how well this applies to states. The result is in Table 1, 

which shows the OLS regression of turnout in each state against its 
spatial lag, which is the average turnout in the contiguous states. If 

the state turnout approximately equals the average, the coefficient 
should be very close to 1. Indeed for all elections the coefficients are 

close to 1, especially for 1992, and less than one standard error from 

1; one cannot reject the statistical hypothesis that the coefficient 

equals 1. The constant terms are not statistically significant. So the 
model is on firm ground as to the working hypothesis of the lattice 

model.  

 
Table 1. OLS regression of turnout against spatial lag (average turnout 

in contiguous states).   
 

Election Constant 
(error) 

Coefficient 
(error) 

p R 
square 

Mean Std. 
Dev. 

1920 4.0 (7.0) 0.91 (0.13) <.0001 0.50 50 18 

1968 7.6 (8.2) 0.88 (0.13) <.0001 0.50 62   7.9 

1992 1.8 (8.1) 0.97 (0.14) <.0001 0.51 57   7.2 

 

 
For each election the analysis shows both a state-level map of the 

distribution of turnout and a map of regions that have significant 
spatial autocorrelations; see Figures 1, 3, and 5. As the first map in 

each figure shows, the lowest turnout values typically are in the South 

and higher values are in the North. The second map in each figure 

identifies local clusters of nonrandom spatial autocorrelation that are 
statistically significant (p < .05) by a permutation test (repeated 999 

times) using the LISA (Local Indicators or Spatial Association) method9 
(Anselin, 1994); in 1920, for example, these clusters were the South 

and a group of states from Illinois to Pennsylvania. (Darker states are 

significant at lower p values.) 
 

                                                 
9
 For each unit the neighbors are replaced by other units randomly selected and the local statistic calculated; 

this is repeated many times to approximate a statistical distribution for the null hypothesis. For more on 

permutation tests see Efron and Tibshirani (1998).  
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Spatial autocorrelation for the entire country is assessed with Moran’s 

I. This is a measure of spatial autocorrelation with range [-1,1].10 As 
with Pearson’s correlation, Moran’s I can be positive or negative, and 

zero implies no correlation. It is based on the aggregate of 
autocorrelations in the neighborhoods of all states. When states with 

above average turnout are neighbors of states that also have above 
average turnout, the I value increases; the same holds when below 

average turnout states border other low turnout states. As seen in 
Figure 2, for example, the I value for 1920 is 0.55 (p< .0001), 

indicating significant spatial autocorrelation across the country. The 
significance levels of the Moran’s I estimates are determined by a 

permutation test (repeated 9,999 times). In 1968 higher turnout 

values are in the North but extend broadly across the country, and 

there is a high turnout cluster from Montana to Wisconsin (Figs. 3 and 
4). Again, the South stands out as a local cluster of low turnout. 

Moran’s I is 0.57 (p = .0001). The spatial dependency patterns for 

1992 are in Figure 5. Results show a familiar north-south gradient with 
regional clustering of high turnout states in the North, as in 1968, and 

low turnout states in the southeast. Moran’s I is 0.53 (p = .0001).11  
 

Because Moran’s I refers to the entire country, it can cause one to 
overlook heterogeneity at the regional level. To overcome this 

weakness in interpretation one can examine the Moran scatterplot 
(Anselin, 1993). It is like a regression of a spatially lagged turnout 

against turnout with the slope of the regression line equal to I, as 

represented by the solid line. The figure also shows the null hypothesis 

(the dashed line along the x-axis) and the 95% confidence bands—the 
paired dashed lines—of the null hypothesis; when the solid Moran 

regression line is outside of those the result is significant. The origin is 
at the mean turnout value; units are standard deviations. Points in the 

upper right quadrant are states with higher than average turnout that 

border other states with higher turnout; in the lower left quadrant are 
states with lower than average turnout that border other states with 

low turnout. States in the other two quadrants are not like their 
neighbors; that is, one finds a high turnout state next to a low turnout 

state. While it is normal to find some of these cases, a large number 
would suggest areas with little or no spatial autocorrelation or, 

perhaps, negative autocorrelation.  

 

                                                 
10

 I = (N/∑i∑j  wij)   ∑∑ wij (Xi – Xavg) (Xj – Xavg)/ ∑ (Xi – Xavg)
2 
 for weighted neighbor pair wij . The w 

matrix has a weight for each connected pair and equals zero if not connected.  
11

 Results are similar if  the neighbors chosen for spatial analysis are the four nearest states, regardless of 

whether they share a border or not.  
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Figure 1. US, 1920, turnout quantiles by state and statistically 

significant regional clusters as determined by a permutation test. 
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Figure 2. US, 1920, Moran scatterplot. 
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Figure 3. US, 1968, turnout quantiles by state and statistically 

significant regional clusters as determined by a permutation test. 
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Figure 4. US, 1968, Moran scatterplot. 
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Figure 5. US, 1992, turnout quantiles by state and statistically 

significant regional clusters as determined by a permutation test. 
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Figure 6. US 1992, Moran scatterplot. 
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The spatial autocorrelation analysis shows that turnout has a distinct 

and nonrandom distribution across American states. The strong north-

south gradient in the turnout data suggests modeling the state turnout 
distribution as a function of latitude. The map shapefile contains 

information on the longitude and latitude of the polygon used to map 
each state. For each state GeoDa can compute a centroid, which is the 

latitude-longitude location of the geometric center of gravity of the 
state. This location is used in the analysis. Table 2 shows the results of 

linear regression of turnout against latitude at the state centroid. 
Longitude is not statistically significant.  

 

Table 2. Regression model: turnout % = constant + b * latitude 

 

Year 

Turnout 

Constant 

(error) 

Coefficient 

b (error) 

Significance R squared 

1920 -39.9 (17.6) 2.28 (0.44) <.00001 0.36 

1968   13.9 (6.5) 1.23 (0.16) <.00001 0.55 

1992   13.2 (6.0) 1.12 (0.15) <.00001 0.55 Note: Latitude is at the centroid. 
 

One can see from Table 2 that the relationship with latitude 
strengthened after 1920 but with a gradient that was less steep; 1968 

and 1992 are more alike in that regard. Checking for curvature with a 
quadratic model, one finds a better model (with errors) for 1920, 

 
turnout = -457 (117) + 24.1 (6.1) latitude – 0.281 (0.088) latitude2   
 

For this estimate, R square = 0.51, and the fitted quadratic surface 
has a maximum at about latitude 43 degrees (the latitude of Madison, 

Wisconsin). As one can see on Figure 1, turnout drops a bit in the 

north-central states.  

 
As an additional check on the regression models, they were re-

estimated with a spatially lagged turnout term. As seen in Table 3, the 
lagged term has marginal statistical significance in 1992. So, for 1992, 

latitude almost completely suffices to encompass spatially 
autoregressive turnout effects. The same analysis for 1968 shows that 

the spatial term is not significant, but it is significant in 1920.12  
 

 
 

                                                 
12

 On interpretation of  spatial regression models, see also Ward and Gleditsch (2008).   
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Table 3. Regression model for 1992 with spatially lagged turnout. 

 

Variable Coefficient Std. Error p 

Constant 6.25 6.7  .35 

Lagged Turnout 0.30 0.16  .06 

Latitude 0.85 0.20 <.0001 Likelihood ratio test for spatial dependence = 3.3, p = 0.7. R square = .59. OLS model w/o lagged term, Lagrange Multiplier for lag =3.9, p = .05 OLS model w/o lagged term, Lagrange Multiplier for error = 4.3, p = .04   
As another check for regression problems that might be caused by 

omitted variables, a regression model with SES and demographic 
variables was tested for 1992; no problem was found. (See the 

Appendix.) The goal here is not to explain turnout, however, but to 

test whether the distribution fits the predicted harmonic equation 
model. 

 
The regression analysis shows that a plane dependent only on latitude 

fits the turnout data well in 1968 and 1992, but not so well in 1920 
when the distribution is curved. Recall that a plane is a harmonic 

function, so 1968 and 1992 satisfy the diffusion hypothesis but not 

1920. The plane is a good fit to the data in 1968 and 1992, though 

unexplained variability remains. The finding that turnout varies linearly 
with latitude also supports the working hypothesis of the lattice model 

that turnout in the center unit is approximately the average of values 
in neighboring units. Of course, precision is limited by use of state-

level data.  
 

Although the regression analysis leads to a harmonic function in 1968 

and 1992, it is not necessarily the case that the estimated function is 
the solution for the given boundary values. If it is not an approximate 

solution, one can anticipate continued change in turnout across the 
country until a steady state is attained. Because the steady-state 

solution is completely determined by the boundary values, one can 

compare the previous regression to one based only on values in 

boundary states. Classification of boundary states is a bit subjective 
for a few states, but here 30 states are identified as boundary states 

and 18 as interior states.13 Results are in Table 4. Comparing Tables 2 
and 4, one finds that the coefficients for latitude trend toward equality 

in 1992, but with higher R square in the boundary regression. So the 

                                                 
13

 Boundary states are: WA, OR, CA, AZ, NM, TX, LA, MS, AL, FL, GA, SC, NC, VA, MD, DE, NJ, NY, 

CT, RI, MA, VT, ME, OH, MI, WI, MN, IL, ND, MT. Interior states: ID, NV, UT, CO, WY, SD, OK, AK, 

IA, IN, KY, WV, TN, NH, PA, NE, KS, MO.  
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distribution of turnout has approached that of a steady state over this 

period. Theoretically one could try to solve the equation numerically 

for the given boundary values, but this might not lead to the exact 

mathematical form of the solution and a numerical result would still be 
an approximate solution because state-level data lacks geographic 

precision.  
 

 
Table 4. Regression model: turnout % = constant + b * latitude, for 

boundary states only (N = 30). 
 

Year 
Turnout 

Constant 
(error) 

Coefficient 
(error) 

Significance R squared 

1920 -46.7 (18.5) 2.35 (0.47) <.00001 0.47 

1968   14.4 (6.3) 1.18 (0.16) <.00001 0.66 

1992   13.2 (6.4) 1.10 (0.16) <.00001 0.62 Note: latitude is for the centroid. Longitude and quadratic terms are not statistically significant.  
 
The second hypothesis test for harmonic functions is that the average 

value around circles equals the value at the center. Instead of trying to 

draw a circle on the US map, however, the analysis divides the states 
into two groups: 30 on the boundary or border, and 18 in the interior. 

The harmonic property suggests that to an approximation the average 
value of turnout in the boundary states should equal the average in 

the interior states. This is tested with a t-test for every election.  
 

The trend from 1920 to 2000 is strongly toward equality of means as 

seen in Figures 7. Of the 21 elections in the analysis, the boundary 

and interior means are equal (the null hypothesis is not rejected) in 13, 
at a significance level of p = .05. (T-tests were adjusted for unequal 

variance but not corrected for multiple tests.) Elections with statistical 
rejection of equal means run from 1920 to 1936 and 1952 to 1960. 

But in the seven elections from 1976 on, the difference between mean 
boundary and interior turnouts is consistently less that 2 percentage 

points and is less that 1 point in four elections.  

 
As seen in Figure 8, which plots the trend in the difference in means, 

there is a remarkably consistent convergence of the difference to zero. 
The trend is strongly linear (linear regression, R square = 0.94), and 

the difference between boundary and interior averages decreases at a 
rate of about 0.2 percentage points per year or 0.8 points per 
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election.14 The strong linearity of the change, meaning a constant rate 
of change, would not be the expected result. Typically in models like 

this one expects that the rate of change would depend on the 

difference—larger differences would lead to faster change—so that the 
rate of convergence would be exponential.15  
 
The third hypothesis test of a harmonic function is that the maximum 

and minimum are on the boundary. Over almost all the elections the 
minimum has been on the boundary, namely in a southern state. The 

maximum has been less often on the boundary, but from 1976 has 
been in Minnesota or Maine. Utah or Idaho had the top values in 

elections from 1944 to 1968. From 1976 on, the minimum was in 

South Carolina five times, and once each in Nevada and Arizona. So 

six of the seven elections from 1976 to 2000 satisfy the hypothesis. 
The chance of either the maximum or minimum being on the boundary 

in a given election is about 0.62 if all combinations are equally likely; 

for both to be on the boundary about 0.38. By the binomial 
distribution the probability of six of the seven elections having the 

predicted result by chance is p = 0.013. So the analysis confirms the 
hypothesis for the group of elections from 1976, which agrees with the 

other results that the country has gradually converged toward a 
harmonic distribution from 1920 to 2000.  

 
A final test is whether the boundary values are stable, which was 

hypothesized when developing the lattice model. Analysis of linear 

trends from 1920 to 2000 shows that average turnout of interior states 

is decreasing (p = .01), but there is no trend for boundary states (p 
= .08). The turnout in boundary states remained in a narrow range 

with the average turnout for boundary states 54.7% and 95% CI 
[52.5-56.8]. This is consistent with other findings the pointed toward a 

harmonic distribution. 

 
Analysis shows that the geographic distribution of turnout across the 

states has increasingly approximated a harmonic function, namely a 
plane, with the results closest to prediction from about 1980 on. Over 

half the variation in state turnout rates can be accounted for by the 
latitudes of the states. Regional spatial autocorrelations have remained 

significant over this time, but one can conclude that the US as a whole 

now shows a much broader pattern of diffusion over its entirety. It 

cannot be determined, however, if the locally significant spatial 
association in the South is a result of diffusion or the shared historical 

                                                 
14

 Linear model: Difference = 364 – 0.18 Year. Std error 0.009; 95% CI = [-0.20, -0.16].  
15

 In the analogy of a thermodynamic system, the expected result would follow Newton’s Law of  Cooling.  
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circumstances of the states. Variation in turnout has decreased greatly, 

the standard deviation of turnout falling from 18 in 1920, to 7.9 in 

1968, and to 7.2 in 1992 (Table 1). As one can see in the decreasing 

difference between boundary and interior states, regional differences 
have moderated. Moreover, the steady convergence of interior and 

boundary mean turnout for at least 80 years suggests a process 
toward social homogeneity that is little affected by short-term political 

or economic changes. In essence the US has undergone a slow 
averaging or smoothing of turnout across its territory, as assumed in 

the lattice model of social diffusion and caused by social conformity. 
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Figure 7. US elections, 1920-2000, average interior and boundary 

turnout with LOWESS smoothing.   
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Figure 8. US elections, 1920-2000, difference between average interior 

state turnout and average boundary state turnout.  
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Russia. Previous research has showed a moderate to strong influence 

of social conformity in Russian national elections (Coleman, 2004, 

2007a, 2010; Borodin, 2005). So one would expect evidence of spatial 
autocorrelation in voting. Apparently no specific research on this has 

been published, but several econometric studies demonstrate 
significant spatial effects at the regional level (Kholodilin, Oshchepkov, 

and Silivertovs, 2009; Ledyaeva, 2007; Buccellato, 2007). For a 
general review of geographical voting in Russia see Clem (2006).  

 
The analysis concerns the Russian parliamentary (Duma) election of 

2007 for 85 federal subjects, which are a mixture of different kinds of 

governmental units. The spatial analysis shown on the maps and the 

spatial autocorrelations cover only the 55 units of European Russia, 
however, because of availability of the geographic shape file for this 

area.16 Other analyses include all units. A minor issue that can be 
safely ignored is that the boundaries of some units have changed 
occasionally, so that the map displayed here may not align exactly 

with election data for all the units. The federal subjects in 2007 are not 
the same election reporting units as in earlier elections, however. 

Election data is available in Russian from the Central Election 
Commission of the Russian Federation.17 
 
The map analysis follows the path of US elections. The rook method is 

used to define neighbors, and forty units have between three and six 

bordering units, most commonly five. Figure 9 shows the level of 

turnout across European Russia and several regional clusters therein. 
Figure 10 shows the Moran scatterplot. The measure of spatial 

autocorrelation Moran’s I is weaker than in the US at 0.19 (p = .02). 
The highest turnout was in Chechnya and lowest in St. Petersburg--

both on the border (this applies to all of Russia though both are in 

European Russia). Chechnya is in a high turnout cluster in the 
Caucasus region, where turnout was so high that it raised questions 

about ballot stuffing. There are clusters of low turnout areas in the 
north. To check on the sensitivity of the results to the definition of 

neighbors, Moran’s I was recalculated using the four nearest neighbors 
method. This gives Moran’s I equal to 0.32 (p = 0.0004), a somewhat 

stronger indication of spatial autocorrelation.  
 

                                                 
16

 The Federal cities of Moscow and St. Petersburg are not included as shapes in the map file and in the 

corresponding analysis, but the cities are included in the other statistical analysis for the entire country..  
17

 http://www.cikrf.ru. For English language data, see website of Electoral Geography 2.0, 

http://www.electoralgeography.com/new/en/.  
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The turnout in European Russia can also be fitted to a regression 

model as a function of latitude and longitude at the centroids of the 

units. The model (with errors) is 

 
turnout % = 99 (15) + 0.44 (0.20) longitude – 0.97 (0.23) latitude 

 
For this model R square equals 0.30, p < .00001; squared terms were 

not statistically significant. Again the estimated surface is a plane and 
a harmonic function. For boundary units of European Russia only (N = 

27), the model is 
 

turnout % = 125 (16) - 1.12 (0.30) latitude 

 

R square equals 0.36, p < .0001. Longitude is not statistically 
significant. The coefficients for latitude in these models nearly equal 

latitude coefficients in the corresponding US models for 1968 and 1992 

with the direction reversed. But the spatial effect is weaker in Russia, 
and the country is farther from a steady-state distribution.  

 
Additional checks on the OLS regression model were done to 

determine if the model captured all spatially lagged effects. Unlike the 
US case, SES variables were not available, so a spatial regression 

model was used. Results are in Table 5.  
 

Table 5. Regression model with spatially lagged turnout.  

 

Variable Coefficient Std. Error p 

Constant 104 18.1 <.00001 

Lagged Turnout -0.070   0.14   .63 

Longitude  0.50   0.22   .03 

Latitude -1.02   0.25 <.0001 Diagnostic test for spatial dependence, Likelihood Ratio Test = 0.10, p = 0.74 OLS, w/o lagged term, Lagrange Multiplier test for lag effect = 0.07, p = .80. OLS, w/o lagged term, Lagrange Multiplier test for error effect = 0.06, p = 0.81. 
 

 
The OLS results with rook neighbors confirm the significance of 

latitude and longitude while rejecting any additional significance of 
spatially lagged turnout or the possibility of spatially clustered omitted 

variables and spatial dependence between errors.18 If the spatially 
lagged turnout term is included in the regression, it is not statistically 
significant (p = .63); and the spatial lag dependence likelihood ratio = 

                                                 
18

 On interpretation of spatial regression models, see also Ward and Gleditsch (2008).   
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0.10, p = 0.74. So latitude and longitude are sufficient to determine 

the lagged spatial effect of turnout.  

 

The last statistical test is for the property of harmonic functions that 
the averages around concentric circles equal the average at the center. 

To approximate this, all 85 units are sorted into three groups: 
boundary units, interior units adjacent to the boundary units, and 

central units another step removed from the boundary. Descriptive 
statistics for these groups are in Table 6. Differences between the 

means are not statistically significant19 (ANOVA, F = 0.23, p = .79). 
 

 

Table 5. Russia, 2007, turnout in concentric regions. 

 

Region N Mean Median  SD Maximum Minimum 

Boundary 45 66.7 63.2 13.1 99.5 51.6 

Interior 26 65.4 63.2  9.5 89.7 52.2 

Central 14 64.5 61.5 11.1 94.5 54.8 

 

                                                 
19

 Because the means are so nearly equal, the statistical test lacks power to detect a difference and should 

not be given much weight in this context.  
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Figure 9. European Russia, 2007, turnout quantiles by Federal subject 

and statistically significant regional clusters as determined by a 

permutation test. 
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Figure 10. European Russia 2007, Moran Scatterplot. 
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Discussion 

 

The degree of social conformity with an important norm, such as 

voting, can vary across both time and geography. As people in one 
area influence those in the next, and so on, the degree of conformity 

can change across a landscape, with a general trend toward a smooth 
transition in behavior from one area to the next. Because conformity is 

a universal human characteristic one can expect to see this process at 
work in every society, and a general model of diffusion should be the 

goal of research. The methods of spatial analysis were developed 
primarily for exploratory data analysis, however, and they do not help 

much in developing and testing general theories about spatial 

dependency. The analysis here adds another layer of explanation to 

what is offered by spatial analysis—a layer more aligned with theory 
construction and testing. The methods can be extended to other social 

norms beside voting.  

 
The goal here was not to explain voter turnout, but to examine how 

the diffusion of conformity has affected the degree of compliance with 
the norm for voting. Nevertheless, one can readily see from the results 

that studies of voting behavior should include spatial lags or 
geographical location, which has not been common practice. Location 

matters as to compliance with social norms.  
 

Two research findings stand out. First is the fact that from 1968 on the 

US looks similar to Russia in the spatial diffusion of voting participation. 

In both cases statistical tests show good evidence of spatial 
autocorrelation, and a harmonic function—a plane—fits the spatial data 

well; the rate of change across latitude is almost the same in each 
country though the slope of the north-south gradient is reversed. This 

speaks strongly to the generality of the model. The second important 

finding is the very slow, exceptionally steady rate of change in voting 
participation over time in the US, as average turnout in interior states 

converged toward that of the boundary states, and the country as a 
whole began to show the characteristics of diffusion. The diffusion 

model did not fit the US in 1920 but it did by 1968. Clearly, the degree 
of compliance with the social norm of voting does not change easily. 

There are situations when conformist change can diffuse rapidly 

through a society; fashions, fads, and crime waves are examples. But 

they look more like epidemics in their rapid and transient spread, 
which would suggest a different type of mathematical model than the 

Laplace equation. (Epidemics, for example, can show spatial wave 

patterns, which cannot result from a Laplace model.) But in the US 

elections one sees a diffusion process in voting participation that has 
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taken several generations and 80 years or more to reach its current, 

nearly harmonic distribution close to a steady state. This also means 

that the turnout distribution is not going to change much from now on. 

Local bumps might get smoothed out, but the north-south gradient will 
remain mostly as it is for the foreseeable future.  
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Appendix 

 

 

Expanded regression models for USA state turnout in 1992 including 
latitude, and SES and demographic variables. 

 

Variable Coefficient Std. Error p 

Constant -21.4 11.4 .07 

Latitude    0.82   0.14 <.00001 

Verbal SAT    0.083   0.021 .0003 

Marriage Rate -  0.095   0.042 .03 

Population 1990 -  0.00026   0.00012 .04 

Income    0.00043   0.00018 .02 

Pop. Density -  0.0074   0.0036 .05 N= 48, R square = 0.75, F = 21. Average Verbal SAT test scores are an indicator of educational achievement among students applying for college. Latitude is at the centroid. Latitude 95% CI = [0.54, 1.10] 
 
 

Above model with latitude and verbal SAT only. 
 

Variable  Coefficient Std. Error p 

Constant -20.9 8.9   .02 

Latitude     1.01  0.13 <.00001 

Verbal SAT      0.085  0.02   .00004 R square = 0.69, F = 50.  
 

 
 

Model for boundary states (for variables with p < .05). 

 

Variable Coefficient Std. Error p 

Constant -15.1 12.0   .22 

Latitude   1.00   0.15 <.00001 

Verbal SAT   0.073   0.027   .01 N = 30, R square = 0.70, F = 32. 95% CI for Latitude = [0.69. 1.32].
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