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ABSTRACT

In this note we continue the study of the stress event model, a simple and intuitive dynamic

model for credit risky portfolios, proposed by Duffie and Singleton (1999). The model is

a bottom-up version of the multi-factor portfolio credit model proposed by Longstaff and

Rajan (2008). By a novel identification of independence conditions, we are able to decompose

the loss distribution into a series expansion which not only provides a clear picture of the

characteristics of the loss distribution but also suggests a fast and accurate approximation

for it. Our approach has three important features: (i) it is able to match the standard CDS

index tranche prices and the underlying CDS spreads, (ii) the computational speed of the loss

distribution is very fast, comparable to that of the Gaussian copula, (iii) the computational

cost for additional factors is mild, allowing for more flexibility for calibrations and opening

the possibility of studying multi-factor default dependence of a portfolio via a bottom-up

approach. We demonstrate the tractability and efficiency of our approach by calibrating it

to investment grade CDS index tranches.

keywords: credit derivatives, CDO, bottom-up approach, multi-name, intensity-based,

risk and portfolio.

1. Introduction

The bottom-up stress event model, proposed by Duffie and Singleton (1999), is a simple

and intuitive model for portfolio credit risk. The model is seldom applied in practice since it is

generally believed that the default times, as well as the loss distribution, of a portfolio under

this modeling framework can only be generated by computationally expensive Monte Carlo

1



simulation. In this note an alternative approach is taken, avoiding Monte Carlo simulations,

making the model tractable and leading to efficient calibrations to data. The idea of the

stress event model is easy to understand. Besides idiosyncratic default, each firm may

default if there is a joint credit event (Duffie and Singleton 1999) or alternatively referred to

as stress event (Schönbucher 2003). This allows correlation through both changes in stress

event intensity as well as through the occurrences of the stress events. The formal definition

of the default time of a firm is given in Section 3. In Section 4, we develop a new approach

to compute the loss distribution of a portfolio for the stress event model. We first identify

independence conditions under which defaults of firms are independent. The loss distribution

can then be decomposed into a series expansion for which each term admits a closed form

expression. It turns out that only the first few terms of the series are needed to accurately

approximate the loss distribution since stress events are infrequent. This leads to a very

efficient method to compute the loss distribution of a portfolio.

The multi-factor model, a top-down approach model proposed by Longstaff and Rajan

(2008), provides strong empirical evidence that default dependence of a portfolio is neces-

sarily multi-factor. The stress event model, like other bottom-up approach models, faces

significant computational challenges when the number of non-idiosyncratic factors is more

than one. This curse of dimensionality comes from the rapid increase of the number of un-

conditional loss distributions needed to compute the loss distribution. For example, if the

number of conditional loss distributions needed to compute in a one-factor model is 100,

it is expected that the number of conditional loss distributions needed in a L-factor model

would be 100L. This is not the case for our new approach due to the novel identification of

independence conditions which result in important simplifications to the corresponding series
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expansion of the loss distribution for the stress event model. It turns out that the number of

conditional loss distributions needed in our approach only increases mildly with the number

of non-idiosyncratic factors. Hence, the increase in computational time due to the addi-

tional non-idiosyncratic factors in the stress event model is much smaller than that in other

bottom-up approach models. This extra flexibility for adding additional non-idiosyncratic

factors in the stress event model leads to a better fit to market data.

We demonstrate the tractability and efficiency of our approach by two calibration exam-

ples in Section 5. In the first example, the model is calibrated to the first five tranches of

the 5-year CDX.NA.IG series 13 and the 125 underlying CDS spreads simultaneously. All

the CDS spreads are matched exactly and the model implied tranche prices are within the

bid-ask spread. In the second calibration example, we regard the stress event model as a

top-down model and calibrate it to the term structure of the iTraxx Europe series 7 on four

different days simultaneously. The 26 parameters of the model are calibrated to the 60 data

and the root-mean-square relative error of the model implied tranche prices is 4.25%.

2. Related Literature

There are two approaches in multi-name credit risk modeling. In the bottom-up approach,

individual losses of names are modeled and then aggregated over the portfolio. This approach

is pursued by Duffie and Singleton (1999), Duffie and Gârleanu (2001), Mortensen (2006),

Joshi and Stacey (2006), Papageorgiou and Sircar (2007), Peng and Kou (2008), Eckner

(2009) and others. On the other hand, the top-down approach, which models the dynamics

of a portfolio loss distribution directly, is also an active research area. Top-down models are
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investigated by Errais et al. (2006), Brigo et al. (2007), Cont and Minca (2008), Longstaff

and Rajan (2008), Arnsdorf and Halperin (2008), Bayraktar and Yang (2009), Giesecke et al.

(2010) and others.

3. Model Formulation

For notational consistency, we reserve the subscript index i for specifying a firm and the

superscript for indexing a sector in the rest of this section. In a portfolio which consists of

credit risky securities issued by N firms, the default time of firm i under the stress event

model framework is defined as follows:

τi = inf

{

s ≥ 0 : N̄i(s) +
L

∑

l=1

∞
∑

j=1

1{s>tlj}
X l

i,j > 0

}

, (1)

for i = 1, .., N , where

• tlj is the j-th jump time of a Poisson process N l(s) associated with sector l,

• all N̄i and N l are independent Poisson processes with intensities λ̄i(s) and λl(s) re-

spectively,

• 1{s>tlj}
is an indicator function that equals one if s > tlj and zero otherwise,

• X l
i,j are Bernoulli random variables indicating if a stress event at time tlj has killed the

i-th firm or not, independent of the Poisson processes,

• L is the number of non-idiosyncratic factors(sectors) affecting a portfolio; we will inter-

changeably use the terms ”non-idiosyncratic factor” and ”sector” since firms affected

by a common non-idiosyncratic factor can be considered belonging to a common sector.

4



N̄i is an idiosyncratic Poisson process associated with firm i which is driven by firm-specific

factors. Once there is a jump in N̄i, firm i defaults immediately. In addition, if N l has a

jump at tlj, firm i may default with a probability P(X l
i,j = 1) = pl

i. We say that firm i’s

default is caused by the l-th sector if pl
i > 0. It is worth noting that only the first jump in

N̄i is relevant for default triggering of the i-th firm and later jumps are irrelevant, whereas

each jump in N l could be the default triggering event.

The Poisson processes N̄i and N l considered in this note are doubly stochastic processes,

i.e. the intensities λ̄i and λl may also be stochastic. In the general exposition of the model,

it is not necessary to specify the processes followed by the intensities. In Section 5, where

the model is calibrated to data, the intensities will be taken to be constant in one case and

follow an affine-jump diffusion process in another.

4. Loss Distribution

The loss distribution of a portfolio is a dynamic process which evolves stochastically over

time. A common approach in calculating the loss distribution of a credit risky portfolio

for bottom-up approaches is by computing the loss under conditional independence. The

unconditional default distribution is then the weighted sum of the conditional ones, i.e.

P(D(t) = n) =

∫

Ω

P(D(t) = n|ω)P(dω), n = 1, ..., N, (2)

where D(t) is the number of defaults by time t and ω is a condition under which defaults of

firms are independent. We assume that the recovery rate of each security is a constant R
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and a uniform notional amount δ for all firms in the portfolio, thus the loss of a portfolio is

Lt =
N

∑

i=1

δi(1 − Ri)1{τi≤t} = δ(1 − R)
N

∑

i=1

1{τi≤t} = δ(1 − R)D(t). (3)

Therefore, modeling the loss distribution is equivalent to modeling the default distribution.

The first challenge of evaluating Eq.(2) is to find a computationally efficient scheme to calcu-

late the conditional loss distribution P(D(t) = n|ω). To this end, we adopted the recursive

algorithm suggested by Andersen et al. (2003). In fact, the recursive algorithm can also

compute the loss distribution of a portfolio with different recovery rate and notional for each

name. The computational cost for each conditional loss distribution is relatively expensive

for a large portfolio, thus the number of conditional loss distribution needed to compute

the unconditional loss distribution for each time t would significantly affect the efficiency

of the overall calculation. It turns out that only a moderate number of conditional loss

distributions are need to accurately approximate the full loss distribution in our approach.

The second challenge lies in the evaluation of P(dω). This is in fact a threefold challenge.

One needs to identify conditions under which defaults are independent, choose a partition

for the probability space Ω in order to enhance calculation, and evaluate the probabilities of

these independence conditions. We present a novel identification of independence conditions

which arises naturally from the formulation of the stress event model. We also introduce a

systematic way of choosing a countable partitions of Ω which automatically arranges the sizes

of P(dω) in descending order. In addition, we provide explicit formulas for the probabilities

of independence conditions for a wide class of stochastic intensities.
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a. Independence Conditions

For intensity-based models, like the correlated intensity model by Duffie and Gârleanu

(2001), a realization of the non-idiosyncratic part of the firms’ default intensities is usually

employed as an independence condition for defaults. We believe that this framework can

provide a similar set of independence conditions for the stress event model. However, this

approach may not be very efficient in the present situation and will not be pursued here.

Instead, we follow a different approach to identifying independence conditions for the stress

event model, which will prove to lead to more efficient analysis and calculations. These

independence conditions arise naturally from the definition of the individual firm’s default

times in the stress event model as they are related to the occurrences of the non-idiosyncratic

events in the model. Consider a scenario characterized by non-idiosyncratic events

ωu = ω(u(L, ~mL, t)) =
{

ω : tlj(ω) = ul
j ∈ (0, t], j = 1, ...,ml, l = 1, ..., L

}

, (4)

where

u(L, ~mL, t) =

























u1
1 u1

2 . . . . . . u1
m1

u2
1 u2

2 . . . u2
m2

...
...

...
...

...
...

uL
1 uL

2 . . . . . . . . . uL
mL

























and ~mL = (m1, m2, ...,mL). (5)

u(L, ~mL, t) is an array of L rows and each row has ml entries which specifies the jump

times of N l up to time t. This is the scenario that there are ml stress events occurring

at ul
1, u

l
2, ..., u

l
ml

all before time t in the l-th sector for l = 1, ..., L. For a given ωu, Eq.(1)
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becomes

τi(ω
u) = inf

s≥0

{

N̄i(s) +
L

∑

l=1





ml
∑

j=1

1{s>ul
j}

X l
i,j +

∞
∑

j=ml+1

1{s>tlj}
X l

i,j



 > 0

}

. (6)

Eq.(6) is just a splitting of the terms in the defining Eq.(1), under the condition ωu, into the

terms before t where the occurrence times of the stress events are known and after t where

they are random. Define

τ̃i(ω
u) = inf

s≥0

{

N̄i(s) +
L

∑

l=1

ml
∑

j=1

1{s>ul
j}

X l
i,j > 0

}

, (7)

which is almost identical to Eq.(6) except that the last sum inside the brackets is deleted.

Note that if τi(ω
u) ≤ t, then

τi(ω
u) = τ̃i(ω

u), (8)

since the default must be triggered by a jump of N̄i or N l
i before t and is irrelevant to

anything that happens after t. The default indicators under ωu are

1{τi(ωu)≤t} = 1{τ̃i(ωu)≤t}, (9)

for i = 1, ..., N . The key observation leading to the independence condition is that 1{τi(ωu)≤t}

are independent since all τ̃i(ω
u) are defined by independent Poisson processes and Bernoulli

random variables as indicated by Eq.(7). Consequently, we can apply the recursive algorithm

of Andersen et al. (2003) to compute the conditional loss distribution of a portfolio.

b. Conditional Individual Survival Probability and Conditional Loss Distribution

In order to build the conditional loss distribution, we have to compute the individual

survival probability for each firm under the independence condition. The conditional survival
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probability of firm i for a given ωu as specified by Eq.(4) is

P (τi > t|ωu) = P (τ̄i > t|ωu)
L

∏

l=1

P
(

τ l
i > t|ωu

)

, (10)

where τ̄i is the first jump time of the idiosyncratic Poisson process N̄i and τ l
i is a jump time tlj

of N l such that it is the first time the Bernoulli random variable X l
i,j = 1 among j = 1, 2, ....

The seeming notational inconsistency between the i and j in the random stopping times τ l
i

and tlj arises from the effort to make precise that among the stress events in the l-th sector,

τ l
i is the first time that affects the i-th firm through the random variable X l

i,j. Since the

idiosyncratic default intensity τ̄i does not depend on the occurrences of the stress events in

the sectors,

P (τ̄i > t|ωu) = P (τ̄i > t) (11)

= E
[

e−
∫ t

0
λ̄i(s)ds

∣

∣

∣
λ̄i(0)

]

. (12)

On the other hand,

P
(

τ l
i > t|ωu

)

= (1 − pl
i)

ml (13)

is the conditional survival probability that firm i is not killed by the ml stress events in the

l-th sector before t. As a result,

P (τi > t|ωu) = E
[

e−
∫ t

0
λ̄i(s)ds

∣

∣

∣λ̄i(0)
]

L
∏

l=1

(1 − pl
i)

ml . (14)

It is important to note that this conditional survival probability as well as the corresponding

conditional loss distribution depend only on the idiosyncratic intensities and, most crucially,

the number of stress events in each sector by time t, but NOT the occurrence times of the

stress events. Consequently,

P (τi > t|ωu) = P (τi > t|~mL) , (15)
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and the conditional loss distribution becomes

P(D(t) = n|ωu) = P(D(t) = n|~mL), (16)

which can be computed by using the conditional survival probabilities given by Eq.(14).

Eq.(16) makes a crucial point that although there are uncountable independence conditions

ωu, the number of conditional loss distributions is countable since the number of possible

scenarios of stress events, specified by ~mL = (m1,m2, ..., mL), is countable.

c. Unconditional Loss Distribution for Deterministic Intensities

In this subsection, we derive explicitly that the sum of probabilities of the independence

conditions equals one and present the closed form expression of the probability of the condi-

tion given by Eq.(4). Then, we aggregate the conditional loss distributions and the density

P(dωu) to form the unconditional loss distribution of a portfolio. Finally, we provide a se-

ries expansion for the unconditional loss distribution such that the terms of the series are

enumerated in descending order of their ’sizes’. We present our calculations explicitly for

the case where the intensities λl are deterministic, and the corresponding stochastic version

is provided in the next subsection.

For a deterministic intensity λl, the probability of ml stress events occuring by time t in

the l-th sector is

ql
ml

= e−Λl(t) (Λ
l(t))ml

ml!
, (17)

where

Λl(t) =

∫ t

0

λl(s)ds (18)
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is the cumulative intensity. It is clear that

L
∏

l=1

(

∞
∑

ml=0

ql
ml

)

= 1. (19)

Furthermore, the probability that the ml > 0 stress events occur at ul
1,...,u

l
ml−1 and ul

ml
is

e−Λl(t) (Λ
l(t))ml

ml!

ml
∏

jml
=1

(

λl(ul
jml

)dul
jml

Λl(t)

)

=
e−Λl(t)

ml!

ml
∏

jml
=1

λl(ul
jml

)dul
jml

. (20)

It is possible that ml = 0 which is the scenario that there is no stress event in the l-th sector.

The probability of this case is simply

ql
0 = e−Λl(t). (21)

For the sake of notational brevity, when ml = 0, define

0
∏

j0=1

λl(ul
j0

)dul
j0

0!
= 1, (22)

and

∫ t

0

0
∏

j0=1

λl(ul
j0

)dul
j0

0!
= 1. (23)

Hence the probability that there are ml stress events occurring in the l-th sector for l =

1, ..., L at times given by an array u(L, ~mL, t) is

P(dωu) =
L

∏

l=1

ml
∏

jml
=1

e−Λl(t)

ml!
λl(ul

jml
)dul

jml
, (24)
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where ωu is defined by Eq.(4). We can rearrange Eq.(19) as a sum of products

L
∏

l=1

(

∞
∑

ml=1

ql
ml

)

=
∞

∑

m1=0

· · ·

∞
∑

mL=0

(

q1
m1

· · · qL
mL

)

(25)

=
∞

∑

m1=0

· · ·

∞
∑

mL=0

(

L
∏

l=1

ql
ml

)

(26)

=
∞

∑

m1=0

· · ·

∞
∑

mL=0

(

L
∏

l=1

e−Λl(t) (Λ
l(t))ml

ml!

)

(27)

=
∞

∑

m1=0

· · ·

∞
∑

mL=0





L
∏

l=1

e−Λl(t) (Λ
l(t))ml

ml!

ml
∏

jml
=1

(∫ t

0
λl(ul

jml
)dul

jml

Λl(t)

)



 (28)

=
∞

∑

m1=0

· · ·

∞
∑

mL=0





L
∏

l=1

e−Λl(t)

ml!

ml
∏

jml
=1

(∫ t

0

λl(ul
jml

)dul
jml

)



 (29)

=
∞

∑

m1=0

· · ·

∞
∑

mL=0





L
∏

l=1

e−Λl(t)

ml!

∫

(0,t]ml

ml
∏

jml
=1

λl(ul
jml

)dul
jml



 (30)

=
∞

∑

m1=0

· · ·

∞
∑

mL=0





∫

(0,t]m1×···×mL

L
∏

l=1

e−Λl(t)

ml!

ml
∏

jml
=1

λl(ul
jml

)dul
jml



 (31)

=
∞

∑

m1=0

· · ·

∞
∑

mL=0





∫

(0,t]m1×···×mL

L
∏

l=1

ml
∏

jml
=1

e−Λl(t)

ml!
λl(ul

jml
)dul

jml



 (32)

=
∞

∑

m1=0

· · ·

∞
∑

mL=0

(∫

(0,t]m1×···×mL

P(dωu)

)

. (33)

This derivation explicitly shows how the probabilities P(dωu) aggregate to one. Since under

each ωu, default indicators 1{τi(ωu)≤t} are independent as shown in the previous subsection,

the unconditional loss distribution is then

P(D(t) = n) =
∞

∑

m1=0

· · ·

∞
∑

mL=0

(∫

(0,t]m1×···×mL

P(D(t) = n|ωu)P(dωu)

)

. (34)

The big summation above is not a very useful expression for computing the unconditional

loss distribution. We can rearrange the summation in ascending order of the total number
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of stress events occurring by t in all sectors, thus

P(D(t) = n) =
∞

∑

k=0





∑

∑

ml=k

(∫

(0,t]m1×···×mL

P(D(t) = n|ωu)P(dωu)

)



 . (35)

Define φk(t; n) as the loss distribution generated by exactly k stress events. It is easy to see

that, for k = 0, 1, 2, ...,

φk(t; n) =
∑

∑

ml=k

(∫

(0,t]m1×···×mL

P(D(t) = n|ωu)P(dωu)

)

(36)

=
∑

∑

ml=k





∫

(0,t]m1×···×mL

P(D(t) = n|ωu)
L

∏

l=1

ml
∏

jml
=1

e−Λl(t)

ml!
λl(ul

jml
)dul

jml



 (37)

=
∑

∑

ml=k



P(D(t) = n|~mL)

∫

(0,t]m1×···×mL

L
∏

l=1

ml
∏

jml
=1

e−Λl(t)

ml!
λl(ul

jml
)dul

jml



 (38)

=
∑

∑

ml=k

(

P(D(t) = n|~mL)
L

∏

l=1

e−Λl(t)

ml!

(

Λl(t)
)ml

)

. (39)

In the above derivation, we utilize the property of the conditional loss distribution that

it does not depend on the occurrence times of the stress events but depends only on the

number of stress events in each sector (see Eq.(16)). We call φk(t; n) the k-th order term

of the unconditional loss distribution. It is important to notice that φk(t; n), as a countable

sum in Eq.(39), is a significant simplification of its original form Eq.(37) which is a sum of

multi-dimensional integrals. This simplification is the crux leading to an efficient algorithm

for the unconditional loss distribution.

d. Unconditional Loss Distribution for Stochastic Intensities

For stochastic intensities λl, the loss distribution contributed by exactly k stress events

altogether by t can be computed by taking the expectation of Eq.(39) over all possible
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intensities λl, then

φk(t; n) =
∑

∑

ml=k

(

E

[

P(D(t) = n|~mL)
L

∏

l=1

e−Λl(t)

ml!

(

Λl(t)
)ml

∣

∣

∣

∣

∣

λ1(0), ..., λL(0)

])

(40)

=
∑

∑

ml=k

(

P(D(t) = n|~mL)
L

∏

l=1

1

m!
E

[

e−Λl(t)
(

Λl(t)
)ml

∣

∣

∣
λl(0)

]

)

. (41)

The conditional loss distribution P(D(t) = n|~mL) is independent of the intensities λl and

can be constructed by the conditional survival probabilities Eq.(14). The expectation

E
[

e−Λl(t)
(

Λl(t)
)ml

∣

∣

∣λl(0)
]

(42)

admits a closed form expression for a wide class of stochastic processes. We provide an

explicitly expression of Eq.(42) when λl is an affine-jump diffusion process in Appendix

A. Consequently, introducing stochastic intensities λl in the stress event model does not

undermine the tractability of the model and Eq.(41) can be computed as easily as Eq.(39).

It is easy to see that the full loss distribution is then

P(D(t) = n) =
∞

∑

k=0

φk(t; n). (43)

Furthermore, define

|φk(t)| : = P(total number of stress events occurs by t = k) (44)

=
N

∑

n=0

φk(t; n) (45)

=
∑

∑

ml=k

(

L
∏

l=1

1

ml!
E

[

e−Λl(t)
(

Λl(t)
)ml

∣

∣

∣
λl(0)

]

)

, (46)

which measures the ’size’ of the k-th order term of the loss distribution φk(t; n). Since

the intensity λl of each sector is generally quite small, |φk(t)| decreases for increasing k

and is negligible for large k. Consequently, only the first few terms of the loss distribution
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φk(t; n) are necessary to construct the full loss distribution and this leads to an efficient

approximation for it. Furthermore, define

ǫK(t) = P(total number of stress events by t > K) (47)

= 1 −

K
∑

k=0

|φk(t)|, (48)

which is a measure of the error of the K-th order approximation for the loss distribution.

ǫK(t) is the probability of scenarios that are not considered in the K-th order approximation.

The closer the value ǫK is to zero, the more accurate the approximation. Finally, it is easy

to verify that

∞
∑

k=0

|φk(t)| = 1. (49)

e. Approximation of the Loss Distribution

In order to prevent the leak of probability over time due to the finite order approximation

to the loss distribution, we can also include the unaccounted probability to the highest order

term in the calculation such that the updated unconditional loss distribution of the K-th

order term is

φ̃K(t; n) =

(

1 −
∑K−1

k=0 |φk(t)|

|φK(t)|

)

φK(t; n), (50)

and approximate the full loss distribution as

P(D(t) = n) ≈
K−1
∑

k=0

φk(t; n) + φ̃K(t; n). (51)

Hence, the total probability of the loss distribution is one for all t.
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On the other hand, under each scenario ~mL the conditional loss distribution is a multi-

nomial distribution with individual default probability qi(~mL, t) := 1 − P(τi > t|~mL), where

the conditional survival probability is given by Eq.(14). It is important to notice that

∑N

i=1 qi(~mL, t)/N is usually not close to 0 or 1. Hence the conditional loss distributions can

be approximated by a normal distribution as suggested by Shelton (2004) in which the first

two moments of the conditional loss distribution are fitted. To fit the exact distribution,

choose the mean and variance of the normal distribution as follows:

µ(~mL, t) =
N

∑

i=1

qi(~mL, t), (52)

σ2(~mL, t) =
N

∑

i=1

qi(~mL, t) (1 − qi(~mL, t)) . (53)

In fact, except for the scenario that there is no stress event at all (since qi(~mL, 0) = 0)

or all pl
i are close to 1, each conditional loss distribution can be well approximated by a

normal distribution. The Gaussian approximation for the conditional loss distribution not

only provides an efficient scheme to compute the loss distribution, but also delineates the

evolution of the loss distribution in terms of Gaussian packets. Basically, the loss distribution

is a weighted sum of Gaussian packets with locations and spreads given by Eq.(52) and

Eq.(53) respectively. Since each qi(~mL, t) increases with t, the Gaussian packets move to the

tail of the loss distribution over time. Furthermore, the probability of each scenario specified

by ~mL is

P

(

L
⋂

l=1

{ml crises in the l-th sector}

)

= E

[

L
∏

l=1

e−Λl(t)(Λl(t))ml

ml!

∣

∣

∣
λ1(0), ..., λL(0)

]

(54)

=
L

∏

l=1

1

ml!
E

[

e−Λl(t)(Λl(t))ml|λl(0)
]

(55)

which quantifies the size of each Gaussian packet.
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f. Efficiency Analysis

The bottleneck of the computation of the loss distribution for bottom-up approaches

is usually the calculation of the conditional loss distribution. In the recursive algorithm

proposed by Andersen et al. (2003), the number of calculations needed to compute the

conditional loss distribution, P(D(t) = n|ω) where n = 0, 1, ..., N , for a portfolio with

N names is roughly N2/2 . The typical number of firms N is quite large (usually over

100), this makes the computation of the conditional loss distribution relatively expensive.

Although the Gaussian approximation discussed in the previous subsection can reduce the

computational time, the computation of the conditional loss distributions still contributes a

significant amount to the overall run time.

In the stress event model, the number of unconditional loss distributions, P(D(t) =

n|~mL), needed to compute the loss distribution in the K-th order approximation with L

sectors is equivalent to the number of solutions to the following Diophantine inequality

m1 + m2 + · · · + mL ≤ K, (56)

or equivalently the total number of solutions to the following K + 1 Diophantine equalities

m1 + m2 + · · · + mL = k, k = 0, 1, ..., K, (57)

which is L+KCK (see Appendix B for the proof). Table 1 shows the number of unconditional

loss distribution needed for different L and K. In most situations, fifth order approximation

is very accurate in approximating the loss distribution. In the two calibrations that we will

discuss later, we approximate the loss distributions using up to fifth order term in both the

two-sector and three-sector models which has 21 and 56 independence conditions respectively.
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For the one-factor Gaussian copula, the typical number of independence conditions is 50, so

our approach has a computational speed similar to that of the Gaussian copula and is very

efficient.

On the other hand, Table 1 shows that the number of unconditional loss distribu-

tion needed increases mildly with L, so the additional computational cost for more non-

idiosyncratic factors is low. This is not the case for other bottom-up approach models in

general where the number of unconditional loss distribution needed to compute the loss dis-

tribution increases rapidly with the number of non-idiosyncratic factors. The low cost for

additional non-idiosyncratic factors gives our model more flexibility to match the market

data. In addition, it opens up the possibility to study the multi-factor default dependence

of a portfolio via a bottom-up approach.

5. Calibration

a. Calibration to CDX.NA.IG series 13 and the Underlying CDS Spreads Simultaneously

We first calibrate the three-sector stress event model to market data using the fifth order

approximation, i.e. L = 3 and K = 5. The data set contains the first five index tranche

prices of CDX.NA.IG series 13 and the 125 underlying CDS spreads on April 15 2010 which

are obtained from Bloomberg terminal. The maturities of the tranches and the CDS are all

5-year. The quotes of the index tranches and the statistics of the CDS spreads are shown

in Table 2 and Table 3 respectively. We assume a constant recovery rate R = 0.35 which is

consistent with empirical evidence for senior unsecured bonds reported by Hamilton et al.
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(2004). Furthermore, we assume a constant interest rate r = 0.94%, which is the 12-month

Libor rate, for cash flow discounting. For the model parameters, we assume the simplest

time-independent intensities for all the Poisson processes. Consequently, the default intensity

for each firm i can be computed by the so-called credit triangle (O’Kane 2008), i.e.

λi =
Si

(1 − R)
, i = 1, ..., N, (58)

where Si is the 5-year CDS spread of firm i. Hence, Si/(1 − R) imposes a constraint for

other parameters in the default intensity of firm i as follows:

Si

(1 − R)
= λi = λ̄i + p1

i λ
1 + p2

i λ
2 + p3

i λ
3. (59)

This model specification has 4N +3 parameters and N constraints. We favor a parsimonious

model which is flexible to match tranche spreads. Therefore, we choose a parameter set of

six members

Θ = {λ1, p1, λ2, p2, λ3, p3}, (60)

for the calibration, where λl are the stress event intensities and pl are representative impact

factors. The detailed specifications of pl
i and λ̄i in terms of the parameters in Θ are provided

in Appendix C. We use the root-mean-square error

RMSE =

√

√

√

√

1

5

5
∑

j=1

(

S̃tr,j − Str,j

SBid
tr,j − SAsk

tr,j

)2

(61)

as the objective function in this calibration, where Str,j, SBid
tr,j and SAsk

tr,j are the market mid,

bid and ask of the j-th tranche respectively, and S̃tr,j are the model implied tranche prices.

The parameter set Θ which minimizes Eq.(61) is presented in Table 4. In Table 5, the model

implied tranche prices S̃tr,j are shown and each of them is within the bid-ask spread. We
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implement the calibration using MATLAB and it takes about 0.2 second for each pricing

(compute five tranche prices for each set of parameters) on a personal laptop computer1. It is

interesting to note that even in this toy-model specification (all intensities are constant) for

the stress event model, it is able to match both the index tranche prices and the underlying

CDS spreads very well.

b. Calibration to the Term Structure of iTraxx Europe Tranches on Multiple days

One of the main merits of our approach is that introducing stochastic intensities to the

model does not undermine the tractability and efficiency. We will apply the stress event

model as a top-down model in this subsection, i.e. the model is calibrated to index tranches

only. The data that we are using for the calibration are obtained from the Monthly iTraxx

Tranche Fixings (see www.creditfixings.com). They consists of four days of market data of

the iTraxx Europe series 7 observed on March 30, April 30, May 31 and June 29 in 2007.

On each day, there are five standard tranches with maturities 5, 7 and 10 years. There

are altogether 60 data point and they are shown in Table 6. We employ the two-sector

stress event model using fifth order approximation in the current calibration, i.e. L = 2 and

K = 5. Since a parsimonious parameter set is favored, we assume that each firm in the

portfolio follows the same stochastic idiosyncratic default intensity and the probabilities of

default given a stress event are the same for all firms, i.e. p1
i = p1 and p2

i = p2 for all i. There

are altogether three intensities processes in this specification, one for the idiosyncratic factor

and two for the non-idiosyncratic factors. We further assume that each of these intensities

1Intel(R) CPU T2050 1.60 GHz, 1.49 GB RAM.
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follows the affine jump-diffusion process (Duffie et al. 2000)

dλt = κ(θ − λt)dt + σ
√

λtdBt + dJt, λt = λ0, (62)

with the mean reverting level θ = 0. A brief discussion on the affine-jump diffusion process

is presented in Appendix A. Recall that Λ(t) =
∫ t

0
λsds and

E

[

e−Λ(t) (Λ
k(t))k

k!

∣

∣

∣λ0

]

, (63)

which is the probability that there are k stress events in a sector, admits a closed form

expression for an affine jump-diffusion process λs. We report the closed form expression of

Eq.(63) for k = 0 and derive expressions for positive integer k in Appendix A.

There are four parameters in each intensity process and two constant impact factors p1

and p2, thus the current model specification has 14 fixed parameters:

Θfix = {κ̄, σ̄, l̄, µ̄, κ1, σ1, l1, µ1, p1, κ2, σ2, l2, µ2, p2}. (64)

Besides, there are three initial intensities for the affine-jump diffusion processes on each of the

four days. Consequently, we are calibrating 26 model parameters to the 60 data. Similar to

the previous calibration example, a constant recovery rate R = 0.35 and a constant interest

rate r = 5.35% are used in the calibration.

The model parameters are calibrated by minimizing the root-mean-square of the relative

error

RMSE =

√

√

√

√

1

60

4
∑

l=1

3
∑

k=1

5
∑

j=1

(

S̃Tk,tl
tr,j − STk,tl

tr,j

STk,tl
tr,j

)2

, (65)

where T1 = 5, T2 = 7 and T3 = 10 are the maturities of the tranches, tl is the index for the

observing date and j is the index for the tranche. Thus, STk,tl
tr,j is the price of the j-th tranche

with maturity Tk observed on tl and S̃Tk,tl
tr,j is the corresponding model implied tranche price.
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We perform a fifth order calculation and the calibrated parameters and model implied

tranche prices are presented in Table 7 and Table 8 respectively. The model implied tranche

prices match quite well with the market mid prices in general with the root-mean-square

relative error RMSE = 4.25% and the maximum relative error 10.82%. It is worth noting

that we use the same Θfix for all days while changing three initial intensities λ̄0, λ1
0 and λ2

0 to

obtain a reasonably good fit to the 15 data on each day. We also implement the calibration

using MATLAB and the same computer as indicated in the first calibration example. It takes

about 0.4 second for each pricing (compute 60 tranche prices for each set of parameters).

We see that all the default intensities are explosive, i.e. the risk-neutral mean reverting rates

κ̄, κ1 and κ2 are negative. It appears that the negative mean reverting rates are necessary

to give enough upward sloping of the default intensities when we are trying to match the

term structure of tranche spreads. In the calibrations of the correlated intensity model,

Eckner (2009) also finds negative mean reverting rates of the default intensities. Besides,

the calibrations of the Generalized-Poisson loss model performed by Brigo et al. (2007) also

indicate upward sloping of the default intensities. The upward sloping of default intensities

may suggest that investors take a more pessimistic view about the future default intensities

and expect an increase of default intensities over time. The volatility of the idiosyncratic

intensity σ̄ is about double that of the non-idiosyncratic intensities. Jump rates of the

intensities ranges from two to ten per hundred years. Jump sizes of the intensities are

moderate, ranging from 33 bps to 398 bps. These are significantly lower than the jump size

found by Eckner (2009) which is around 3000 bps. The jump size in the correlated intensity

model needs to be high in order to give enough default correlation among firms, while jumps

of intensities in the stress event model have only minor effect on the correlation among firms.
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6. Conclusion

In this note, we provide an efficient methodology to compute the loss distribution of a

large portfolio in the stress event model. A new approach to independence conditions is

proposed. This leads to significant simplifications in computing the loss distribution. We

perform calibrations to market data and the results are very promising. In addition, the

computational cost for additional common factors, unlike other bottom-up approaches, is

mild.
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APPENDIX A

7. Basic Affine Jump Diffusions

A stochastic process λt on a filtered probability space (Ω,F , (F)t, P) is called a basic

Affine Jump Diffusions (AJD) if it satisfies the following SDE:

dλt = κ(θ − λt)dt + σ
√

λtdBt + dJt, (A1)

where B is a standard Brownian motion, and J is an independent compound Poisson process

with jump intensity l and exponentially distributed jump sized with mean µ. Duffie et al.

(2000) show that the moment generating function of the cumulative intensity Λ(t) =
∫ t

0
λsds

admits a closed form solution

E
[

eqΛ(t)|λ0

]

= eα(t)+β(t)λ0 , (A2)

where

α(t) = −
2κθ

σ2
log

(

c1 + d1e
−γt

c1 + d1

)

+
κθt

c1

(A3)

+ l

(

d1/c1 − d2/c2

−γd2

)

log

(

c2 + d2e
−γt

c2 + d2

)

+
l(1 − c2)t

c2

(A4)

β(t) =
1 − e−γt

c1 + d1e−γt
, (A5)
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and

γ =
√

κ2 − 2σ2q (A6)

c1 = (κ + γ)/(2q) (A7)

c2 = 1 − µ/c1 (A8)

d1 = (−κ + γ)/(2q) (A9)

d2 = (d1 + µ)/c1. (A10)

With the help of the closed form expression of the moment generating function, we can

compute the expectation

E
[

e−Λ(t)|λ0

]

, (A11)

which is the form of the probability that there is no stress event by time t, by plugging

q = −1 in Eq.(A2)-Eq.(A10). Longstaff and Rajan (2008) derive a recursive system of

ordinary differential equation to compute

E
[

e−Λ(t)(Λ(t))k|λ0

]

. (A12)

Their approach, though it works, is not very appealing since it is quite time consuming in

solving the system of ODE numerically. Besides, it is hard to control the error propagation

in the recursive ODE.

In fact, Eq.(A12) can be computed easily by differentiating Eq.(A2) k times with respect

to q, then

dk

dqk

(

eα(t)+β(t)λ0
)

= E
[

eqΛ(t)(Λ(t))k|λ0

]

. (A13)
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Plugging q = −1 and dividing by k! yields the probability that there are k stress events in

the sector, i.e.

P(k stress events by time t) =
1

k!

dk

dqk

(

eα(t)+β(t)λ0
)

∣

∣

∣

q=−1
. (A14)

The validity of exchanging the order of differentiation and expectation in Eq.(A13) can be

verified if Λ(t) ≥ 0 for all t, which is true in our consideration here since Λ(t), as a cumulative

intensity, is always non-negative. As a result, in order to compute the scenario probability,

P(k stress events by time t), we just need to find the k-th derivative of the moment gener-

ating function Eq.(A2) at q = −1. Although Eq.(A14) admits a closed form expression, its

complexity grows tremendously with k. For example, the closed form expression of Eq.(A14)

for k = 4, obtained by the symbolic toolbox of MATLAB, needs 285 letter-size pages (with

font size 12) to print the result. Therefore, evaluating Eq.(A14) can be quite time consuming

even for moderate k and we need a more efficient way to calculate the derivatives. To this

end, we adopt the exact numerical differentiation algorithm developed by Tsui (2010), which

is very efficient in evaluating high order derivatives.

APPENDIX B

8. The Number of Ways of Allocation

We first prove that the number of different ways of allocating k stress events in L sectors

is L+k−1Ck. Denote ”◦” as a stress event and ”|” as a wall dividing two sectors. Therefore,

there are L− 1 walls and k stress events for each scenario. For example, naming the sectors
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from right to left starting from the first sector,

◦ | ◦ ◦ || ◦ ◦ ◦ | ◦ || (B1)

represents a scenario for which there are no stress event in the first, second and fifth sectors,

one stress event in both the third and seventh sectors, two stress events in the sixth sector

and three stress events in the fourth sector. Note that there are altogether L+ k− 1 objects

in each representation. With these notations, the number of ways of having k stress events

in L sectors is equivalent to the number of ways of choosing k objects (the stress events)

from L+ k− 1 objects which is L+k−1Ck. Thus, the total number of scenario such that there

are K stress event or less in L sectors is

K
∑

k=0

L+k−1Ck = L+KCK , (B2)

which can be proved by the recursive formula for binomial coefficients.

APPENDIX C

9. Determination of λ̄i and pl
i from CDS spreads

We will fix λ̄i and pl
i for each name of the portfolio by using the 5-year CDS spreads with

the constraints

λ̄i ≥ 0 i = 1, ..., N, (C1)

0 ≤ pl
i ≤, 1 l = 1, 2, 3, i = 1, ..., N. (C2)
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We start by defining a relative credit quality in terms of the 5-year CDS spreads as follows:

ci =
Si

1

N

N
∑

j=1

Sj

, (C3)

Then, for l = 1, 2, define an auxiliary impact parameter

p̃l
i = min{cip

l, 1}, i = 1, ..., N (C4)

where pl is a representative impact parameter of the l-sector which is to be calibrated to the

tranche quotes. For l = 3, choose

0 ≤ p̃3
i = p3 ≤ 1 (C5)

for all i. For most of the situations, we can choose pl
i = p̃l

i. Recall that λi = Si/(1 − R)

and λl ≥ 0 are parameters to be calibrated from the tranches, so the idiosyncratic default

intensity is

λ̄i = λi − p̃1
i λ

1 − p̃2
i λ

2 − p̃3
i λ

3. (C6)

However, λ̄i computed as above could be negative for some cases. For those cases, we lower

the values of pl
i proportionally, so

pl
i =















p̃l
i, if λi − p̃1

i λ
1 − p̃2

i λ
2 − p̃3

i λ
3 ≥ 0;

λip̃
l
i

p̃1
i λ

1 + p̃2
i λ

2 + p̃3
i λ

3
, otherwise,

(C7)

for all l and i, and

λ̄i = λi − p1
i λ

1 − p2
i λ

2 − p3
i λ

3. (C8)

With a fixed set of parameters

Θ = {λ1, p1, λ2, p2, λ3, p3}, (C9)
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the CDS spreads Si can be matched exactly by choosing pl
i and λ̄i by Eq.(C7) and Eq.(C8)

respectively. For l = 1, 2, the specification of pl
i basically follows the idea of Eckner (2009)

where the dependence on a factor is proportional to the relative credit quality ci. For l = 3,

we choose p3
i to be the same if possible to include the possibility of some catastrophic events

that have a high probability to kill many firms.
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Table 1. Number of unconditional loss distributions required for K-th order approximation
with L sectors.

K \ L 1 2 3 4 5
1 2 3 4 5 6
2 3 6 10 15 21
3 4 10 20 35 56
4 5 15 35 70 126
5 6 21 56 126 252

34



Table 2. Tranche spreads of CDX.NA.IG series 13 on April 15 2010. All quotes are upfronts
in percentage with fixed 100bps running spread.

CDX 0-3% 3 − 7% 7 − 10% 10 − 15% 15 − 30%
Bid 51.530 16.000 4.888 -1.210 -3.100
Mid 52.185 16.605 5.345 -0.855 -2.880
Ask 52.840 17.210 5.810 -0.500 -2.660
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Table 3. Summary of the closing data of the mid 5-year CDS spreads of the 125 names in
CDX.NA.IG series 13 on April 15 2010.

Statistics bps
Min 25.39
Max 349.62
Median 74.36
Mean 87.76
Standard Deviation 47.04
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Table 4. Model parameters calibrated from tranche spreads of CDX.NA.IG series 13 and
the underlying CDS spreads.

λ1 p1 λ2 p2 λ3 p3

CDX 0.0427828 0.0883129 0.0122258 0.122791 0.00391431 1.000000
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Table 5. Model implied tranche spreads of CDX.NA.IG series 13 on April 15 2010 using
fifth order calculation. Bid-ask spreads are included for comparison.

CDX 0-3% 3 − 7% 7 − 10% 10 − 15% 15 − 30%
Bid 51.530 16.000 4.888 -1.210 -3.100
Model 52.274 16.703 5.386 -0.836 -2.669
Ask 52.840 17.210 5.810 -0.500 -2.660
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Table 6. Market mid prices of iTraxx Europe series 7 version 1. 0-3% tranche is quoted in
percentage as an upfront with a fixed 500bps and all the other tranches are spreads in bps
without upfront.

Maturity Tranche Mar 30, 07 Apr 30, 07 May 31, 07 Jun 29, 07
5-year 0-3% 11.23% 9.94% 6.33% 11.75%

3-6% 57.75 49.82 39.90 62.05
6-9% 14.28 12.45 10.33 16.29

9-12% 6.24 5.53 4.39 7.48
12-22% 2.58 2.54 1.93 3.10

7-year 0-3% 25.77% 24.84% 20.61% 26.38%
3-6% 133.79 121.2 105.08 137.13
6-9% 37.25 31.99 27.04 37.39

9-12% 17.33 15.75 13.05 17.00
12-22% 5.85 5.67 5.20 7.50

10-year 0-3% 40.51% 38.95% 35.00% 40.53%
3-6% 338.96 322.20 294.21 368.60
6-9% 98.59 93.48 85.17 108.55

9-12% 46.91 43.59 38.98 50.33
12-22% 14.38 14.50 12.20 15.95
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Table 7. Model parameters calibrated from tranche spreads of iTraxx Europe series 7
version 1.

κ σ l µ
-0.20401 0.22716 0.07650 0.01170

κ1 σ1 l1 µ1 p1

-0.13713 0.11516 0.10890 0.03977 0.04287

κ2 σ2 l2 µ2 p2

-0.55844 0.13363 0.01813 0.00326 0.24261

Mar 30, 07 Apr 30, 07 May 31, 07 Jun 29, 07

λ0 0.00021853 0.00021325 0.00000000 0.00035351
λ1

0 0.00226915 0.00085552 0.00000000 0.00388838
λ2

0 0.00001968 0.00001919 0.00000000 0.00006339
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Table 8. Model implied tranche prices of iTraxx Europe series 7 version 1.

Maturity Tranche Mar 30, 07 Apr 30, 07 May 31, 07 Jun 29, 07
5-year 0-3% 11.03% 9.82% 6.22% 11.49%

3-6% 59.32 50.90 42.47 63.78
6-9% 13.85 12.40 10.33 14.81

9-12% 6.20 5.82 4.73 7.27
12-22% 2.58 2.45 1.90 3.24

7-year 0-3% 26.55% 25.29% 21.16% 27.24%
3-6% 131.53 117.32 98.65 138.88
6-9% 36.93 33.17 28.47 39.03

9-12% 15.72 14.58 12.48 17.19
12-22% 6.11 5.85 4.83 7.35

10-year 0-3% 42.46% 41.75% 38.79% 43.62%
3-6% 332.12 312.68 275.68 344.06
6-9% 102.41 93.42 82.76 108.14

9-12% 47.27 43.50 38.80 49.85
12-22% 14.77 14.09 12.58 16.22

ǫ5(10) 0.0090 0.0081 0.0070 0.0092
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