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1 Introduction

In finite mixture models it is assumed that data are obtained from a finite
collection of populations and that the data within each population follow a
standard distribution, typically normal, Poisson, or binomial. Such models
are particularly useful when the data come from multiple sources, and they
find application in such varied fields as criminology, engineering, demography,
economics, psychology, marketing, sociology, plant pathology, and epidemi-
ology.

The normal (Gaussian) model has received most attention. Here we con-
sider an m-dimensional random vector x whose distribution is a mixture
(weighted average) of g normal densities, so that

f(x) =

g∑

i=1

πifi(x), (1)

where

fi(x) = (2π)−m/2|Vi|
−1/2 exp{−

1

2
(x − µi)

′V −1
i (x − µi)} (2)

and the πi are weights satisfying πi > 0 and
∑

i πi = 1. This is the so-
called ‘multivariate normal mixture model’. The parameters of the model
are (πi, µi, Vi) for i = 1, . . . , g subject to two constraints, namely that the πi

sum to one and that the Vi are symmetric (in fact, positive definite).
The origin of mixture models is usually attributed to Newcomb (1886)

and Pearson (1894), although some fifty years earlier Poisson already used
mixtures to analyze conviction rates; see Stigler (1986). But it was only
after the introduction of the EM algorithm by Dempster et al. (1977) that
mixture models have gained wide popularity in applied statistics. Since then
an extensive literature has developed. Important reviews are given in Tit-
terington et al. (1985), McLachlan and Basford (1988), and McLachlan and
Peel (2000).

There are two theoretical problems with mixtures. First, as noted by Day
(1969) and Hathaway (1985), the likelihood may be unbounded in which case
the maximum likelihood (ML) estimator does not exist. However, we can still
determine a sequence of roots of the likelihood equation that is consistent
and asymptotically efficient; see McLachlan and Basford (1988, Sec. 1.8).
Hence, this is not necessarily a problem in practice. Second, the parameters
are not identified unless we impose an additional restriction, such as

π1 ≥ π2 ≥ · · · ≥ πg,
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see Titterington et al. (1985, Sec. 3.1). This is not a problem in practice
either, and we follow Aitken and Rubin (1985) by imposing the restriction
but carrying out the ML estimation without it.

The task of estimating the parameters and their precisions, and formu-
lating confidence intervals and test statistics, is difficult and tedious. This
is simply because in standard situations with independent and identically
distributed observations, the likelihood contains products and therefore the
loglikelihood contains sums. But here the likelihood itself is a sum, and
therefore the derivatives of the loglikelihood will contain ratios. Taking ex-
pectations is therefore typically not feasible. Even the task of obtaining the
derivatives of the loglikelihood (score and Hessian matrix) is not trivial.

Currently there are several methods to estimate the variance matrix of
the ML estimator in (multivariate) mixture models in terms of the inverse
of the observed information matrix, and they differ by the way this inverse
is approximated. One method involves using the ‘complete-data’ loglikeli-
hood, that is, the loglikelihood of an augmented data problem, where the
assignment of each observation to a mixture component is an unobserved
variable coming from a prespecified multinomial distribution. The advan-
tage of using the complete-data loglikelihood instead of the incomplete-data
(the original data) loglikelihood lies in its form as a sum of logarithms rather
than a logarithm of a sum. The information matrix for the incomplete data
can be shown to depend only on the conditional moments of the gradient and
curvature of the complete-data loglikelihood function and so can be readily
computed; see Louis (1982). Another method, in the context of the original
loglikelihood, was proposed by Dietz and Böhning (1996), exploiting the fact
that in large samples from regular models, twice the change in loglikelihood
on omitting that variable is equal to the square of the t-statistic of that
variable; see McLachlan and Peel (2000, p. 68). This method was extended
by Liu (1998) to multivariate models. There is also a conditional bootstrap
approach described in McLachlan and Peel (2000, p. 67).

In addition, the standard errors of the ML estimator can be computed by
at least three bootstrap methods: the parametric bootstrap (Basford et al.
1997; McLachlan and Peel 2000), the non-parametric bootstrap (McLachlan
and Peel 2000) which is an extension of Efron (1979), and the weighted
bootstrap (Newton and Raftery 1994) which is a version of the nonparametric
bootstrap based on scaling the data with weights that are proportional to the
number of times an original point occurs in the bootstrap sample. Basford
et al. (1997) compare the parametric bootstrap with a method based on the
outer product of the scores as a proxy for the observed information matrix,
and find simulation evidence that the bootstrap-based standard errors are
more reliable in small samples.
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In this paper we explicitly derive the score and Hessian matrix for the
multivariate normal mixture model, and use the results to estimate the infor-
mation matrix. This provides a twofold extension of Behboodian (1972) and
Ali and Nadarajah (2007), who study the information matrix for the case of
a mixture of two (rather then g) univariate (rather than multivariate) normal
distributions. Since we work with the original (‘incomplete’) loglikelihood,
we compare our information-based standard errors to the bootstrap-based
standard errors which are the natural small-sample counterpart.

We find that in correctly specified models the method based on the ob-
served Hessian-based information matrix is the best in terms of root mean
squared error. In misspecified models the method based on the observed
‘sandwich’ matrix is the best.

This paper is organized as follows. In Section 2 we discuss how to take
account of the two constraints: symmetry of the variance matrices and the
fact that the weights sum to one. Our general result (Theorem 1) is formu-
lated in Section 3, where we also discuss the estimation of the variance of
the ML estimator and introduce the misspecification-robust ‘sandwich’ ma-
trix. These results allow us to formally test for misspecification using the
Information Matrix test (Theorem 2), discussed in Section 4. In Section 5
we present the important special case (Theorem 3) where all variance matri-
ces are equal. In Section 6 we study two well-known examples based on the
hemophilia data set and the Iris data set. These examples demonstrate that
our formulae can be implemented without any problems and that the results
are credible. But these examples do not yet prove that the information-based
estimates of the standard errors are more accurate than the ones currently
in use. Therefore we provide Monte Carlo evidence in Section 7. Section 8
concludes. An Appendix contains proofs of the three theorems.

2 Symmetry and weight constraints

Before we derive the score vector and the Hessian matrix, we need to discuss
two constraints that play a role in mixture models: symmetry of the variance
matrices and the fact that the weights sum to one. To deal with the symmetry
constraint we introduce the half-vec operator vech(·) and the duplication
matrix D; see Magnus and Neudecker (1988) and Magnus (1988). Let V be a
symmetric m×m matrix, and let vech V denote the 1

2
m(m+1)×1 vector that

is obtained from vec V by eliminating all supradiagonal elements of V . Then
the elements of vec V are those of vech V with some repetitions. Hence, there
exists a unique m2× 1

2
m(m+1) matrix D, such that D vech V = vec V . Since

the elements of V are constrained by the symmetry, we must differentiate
with respect to vech V and not with respect to vec V .
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The weights πi must all be positive and they must sum to one. We
maximize with respect to π = (π1, π2, . . . , πg−1)

′ and set πg = 1− π1 − · · · −
πg−1. We have

d log πi = a′

idπ, d2 log πi = −(dπ)′aia
′

i(dπ), (3)

where
ai = (1/πi)ei (i = 1, . . . , p − 1), ag = −(1/πg)ı, (4)

ei denotes the i-th column of the identity matrix Ig−1, and ı is the (g − 1)-
dimensional vector of ones. The model parameters are then π and, for i =
1, . . . , g, µi and vech Vi. Writing

θi =

(
µi

vech Vi

)
,

the complete parameter vector can be expressed as θ = (π′, θ′

1, . . . , θ
′

g)
′.

3 Score vector, Hessian and variance matrix

Given a sample x1, . . . , xn of independent and identically distributed random
variables from the distribution (1), we write the loglikelihood as

L(θ) =
n∑

t=1

log f(xt).

The score vector is defined by q(θ) =
∑

t qt(θ), where

qt(θ) =
∂ log f(xt)

∂θ
= vec(qπ

t , q1
t , . . . , q

g
t ),

and the Hessian matrix by Q(θ) =
∑

t Qt(θ), where

Qt(θ) =
∂2 log f(xt)

∂θ ∂θ′
=




Qππ
t Qπ1

t . . . Q
πg
t

Q1π
t Q11

t . . . Q
1g
t

...
...

...

Q
gπ
t Q

g1
t . . . Q

gg
t


 .

Before we can state our main result we need some more notation. We define

φit = πifi(xt), αit =
φit∑
j φjt

, (5)

bit = V −1
i (xt − µi), Bit = V −1

i − bitb
′

it, (6)
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cit =

(
bit

−1
2
D′ vec Bit

)
, (7)

and

Cit =

(
V −1

i (b′

it ⊗ V −1
i )D

D′(bit ⊗ V −1
i ) 1

2
D′((V −1

i − 2Bit) ⊗ V −1
i )D

)
. (8)

We also recall that ai is defined in (4) and we let āt =
∑

i αitai. We can now
state Theorem 1, which allows direct calculation of the score and Hessian
matrix.

Theorem 1: The contribution of the t-th observation to the score vector
with respect to the parameters π and θi (i = 1, . . . , g) is given by

qπ
t = āt, qi

t = αitcit,

and the contribution of the t-th observation to the Hessian matrix is

Qππ
t = −ātā

′

t, Qπi
t = αit(ai − āt)c

′

it,

and

Qii
t = − (αitCit − αit(1 − αit)citc

′

it) , Q
ij
t = −αitαjtcitc

′

jt (i 6= j).

We note that the expressions for the score in Theorem 1 are the same as in
Basford et al. (1997). The expressions for the Hessian are new.

We next discuss the estimation of the variance of θ̂. In maximum like-
lihood theory the variance is usually obtained from the information matrix.
If the model is correctly specified, then the information matrix is defined by

I = −E(Q) = E(qq′),

where the equality holds because of second-order regularity. In our case we
can not obtain these expectations analytically. Moreover, we can not be
certain that the model is correctly specified. We estimate the information
matrix by

I1 =

n∑

t=1

qt(θ̂) qt(θ̂)′,

based on first-order derivatives, or by

I2 = −Q(θ̂) = −
n∑

t=1

Qt(θ̂),
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based on second-order derivatives. The inverses I
−1
1 and I

−1
2 are consistent

estimators of the asymptotic variance of θ̂ if the model is correctly specified.
In general, the ‘sandwich’ (or ‘robust’) variance matrix

I
−1
3 = v̂ar(θ̂) = I

−1
2 I1I

−1
2 (9)

provides a consistent estimator of the variance matrix, whether or not the
model is not correctly specified. This was noted by Huber (1967), White
(1982), and others, and is based on the realization that the asymptotic nor-

mality of θ̂ rests on the facts that the expected value of (1/n)q(θ)q(θ)′

has a finite positive semidefinite (possibly singular) limit, say I
∞

1 , and that
−(1/n)Q(θ) converges in probability to a positive definite matrix, say I

∞

2 ,
and that these two limiting matrices need not be equal; see also Davidson
and MacKinnon (2004, pp. 416–417).

We note in passing an important and somewhat counterintuitive property
of the sandwich estimator, which is seldom mentioned. If I1 = I2, then
I1 = I2 = I3. If I1 6= I2, then one would perhaps expect that I

−1
3 lies

‘in-between’ I
−1
1 and I

−1
2 , but this is typically not the case, as is easily

demonstrated. Let Ψ = I
−1
1 − I

−1
2 . Then,

I
−1
3 = I

−1
2 I1I

−1
2 = I

−1
2 (I−1

2 + Ψ )−1
I

−1
2 = (I2 + I2ΨI2)

−1 .

If Ψ is positive definite (I−1
2 < I

−1
1 ) then I

−1
3 < I

−1
2 < I

−1
1 ; if Ψ is

negative definite (I−1
2 > I

−1
1 ) then I

−1
3 > I

−1
2 > I

−1
1 . In practice there

is no reason why Ψ should be either positive definite or negative definite.
Nevertheless, we should expect an individual variance based on the Hessian
to lie in-between the variance based on the score and the variance based on
the robust estimator, and this expectation is confirmed by the simulation
results in Section 7.

4 Information matrix test

The information matrix (IM) test, introduced by White (1982), is well known
as a general test for misspecification of a parametric likelihood function.
Despite the fact that the asymptotic distribution is a poor approximation to
the finite-sample distribution of the test statistic, the IM test has established
itself in the econometrics profession. Below we obtain the IM test for mixture
models. Let us define

Wt(θ) = Qt(θ) + qt(θ)qt(θ)′.
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From Theorem 1 we see that

Wt(θ) =




0 a1(q
1
t )

′ a2(q
2
t )

′ . . . ag(q
g
t )

′

q1
t a

′

1 W 1
t 0 . . . 0

q2
t a

′

2 0 W 2
t . . . 0

...
...

... . . .
...

q
g
t a

′

g 0 0 . . . W
g
t




,

where ai and qi
t have been defined before, and

W i
t = −αit(Cit − citc

′

it) = −αit

(
Bit Γ ′

itD

D′Γit D′∆itD

)

with
Γit = bit ⊗ V −1

i + (1/2)(vec Bit)b
′

it

representing skewness, and

∆it = (1/2)(V −1
i ⊗ V −1

i ) − Bit ⊗ V −1
i − (1/4)(vec Bit)(vec Bit)

′

representing kurtosis. The purpose of the information matrix procedure is
to test for the joint significance of the non-redundant elements of the matrix
W (θ̂) =

∑
t Wt(θ̂). Now, since q(θ̂) =

∑
t qt(θ̂) = 0, the IM procedure

in our case tests for the joint significance of the non-redundant elements of∑
t W

i
t (θ̂) for i = 1, . . . , g.

Following Chesher (1983) and Lancaster (1984) we formulate the White’s
(1982) IM test as follows.

Theorem 2 (Information Matrix test): Define the variance matrix

Σ(θ) =
1

n

n∑

t=1

wtw
′

t −

(
1

n

n∑

t=1

wtq
′

t

)(
1

n

n∑

t=1

qtq
′

t

)
−1(

1

n

n∑

t=1

qtw
′

t

)

where qt denotes the t-th increment to the score, and

wt = vec
(
vech W 1

t , vech W 2
t , . . . , vech W

g
t

)
.

Then, evaluated at θ̂ and under the null hypothesis of correct specification,

IM = n

(
1

n

n∑

t=1

wt

)
′

Σ−1

(
1

n

n∑

t=1

wt

)

asymptotically follows a χ2-distribution with gm(m+3)/2 degrees of freedom.
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The above form of the IM test is a variant of the outer-product-of-the-
gradient (OPG) regression, often used to calculate Lagrange multiplier tests.
Such tests are known to reject true null hypotheses far too often in finite
samples, and this is also true for the OPG form of the IM test. We illustrate
this fact through some simulations at the end of Section 7. To use the
asymptotic critical values is not a good idea. Instead, these values can be
bootstrapped; see Horowitz (1994) and Davidson and MacKinnon (2004, Sec.
16.9) for details and references.

5 Special case: equal variance matrices

There are many important special cases of Theorem 1. We may encounter
cases where the weights πi are known or where the means µi are equal across
different mixtures. The most important special case, however, is the one
where the variances Vi are equal: Vi = V . This is the case presented in
Theorem 3. Further specialization is of course possible: V could be diagonal
or even proportional to the identity matrix, but we do not exploit these cases
here.

When Vi = V , we write the parameter vector as θ = (π′, µ′

1, . . . , µ
′

g, v
′)′,

where v = vech V . The score is q(θ) =
∑

t qt(θ) with

qt(θ) = vec(qπ
t , q1

t , . . . , q
g
t , q

v
t ),

and the Hessian matrix is Q(θ) =
∑

t Qt(θ) with

Qt(θ) =




Qππ
t Qπ1

t . . . Q
πg
t Qπv

t

Q1π
t Q11

t . . . Q
1g
t Q1v

t
...

...
...

...

Q
gπ
t Q

g1
t . . . Q

gg
t Q

gv
t

Qvπ
t Qv1

t . . . Q
vg
t Qvv

t




.

Theorem 3 (Vi = V ): The contribution of the t-th observation to the score
vector with respect to the parameters π, µi (i = 1, . . . , g), and v is given by

qπ
t = āt, qi

t = αitbit, qv
t = −

1

2
D′ vec B̄t,

where

B̄t = V −1 −

g∑

i=1

αitbitb
′

it,

and the contribution of the t-th observation to the Hessian matrix is

Qππ
t = −ātā

′

t, Qπi
t = αit(ai − āt)b

′

it,
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Qπv
t = −

1

2

g∑

i=1

αit(ai − āt)(vec Bit)
′D,

Qii
t = −αitV

−1 + αit(1 − αit)bitb
′

it, Q
ij
t = −αitαjtbitb

′

jt (i 6= j),

Qiv
t = −αit

(
b′

it ⊗ V −1 +
1

2
bit(vec(Bit − B̄t))

′

)
D,

and

Qvv
t = −D′

(
(

g∑

i=1

αitbitb
′

it) ⊗ V −1 −
1

2
V −1 ⊗ V −1

−
1

4

g∑

i=1

αit(vec Bit)(vec Bit)
′ +

1

4
(vec B̄t)(vec B̄t)

′

)
D.

As in Theorem 1 we can use these results to compute I
−1
1 , I

−1
2 , and I

−1
3 .

6 Two examples

To illustrate our theoretical results we present two examples. The maximum
likelihood estimates themselves are usually computed via the EM algorithm,
which is a derivative-free method, but they can also be computed directly
from the likelihood or by setting the score equal to zero or in some other
manner. In many cases knowledge of the score (and Hessian) allows an
option which will speed up the computations; see Xu and Jordan (1996) for
a discussion of gradient-based approaches. The resulting estimates, however,
are the same for each method. The purpose of the two examples is to look
at the behavior of the information-based standard error estimates in practice
and to compare them to other available methods.

Since no explicit formula for the information matrix has been available,
researchers typically compute standard errors in multivariate mixture models
by means of the bootstrap. The well-known EMMIX software package de-
veloped by McLachlan et al. (1999) reports standard errors of the estimates
based on four different methods. Methods (A1) and (A2) are parametric and
nonparametric bootstrap methods, respectively, tailored to the initial sam-
ple. They perform repeated draws from either a multivariate normal mixture
with parameters fixed at their estimated values or from the nonparametric
estimate of the sampling distribution of the data, then estimate the model
for each sample and compute the in-sample bootstrap standard errors of
the corresponding parameter estimates. Method (A3) follows Newton and
Raftery (1994) and performs the bootstrap on a weighted version of the data.
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The fourth method computes standard errors from the outer product of the
score, and is based on Basford et al. (1997, Sec. 3). This should be the same
as our formula for I

−1
1 , but verification of this fact is not possible because

EMMIX does not always provide credible results in this case. This leaves us
with three bootstrap methods to consider. Note however that, since we have
coded I1, we can provide comparisons of the Hessian and sandwich estimates
of standard errors with both bootstrap-based and outer product-based stan-
dard error estimates. Further details about the four methods can be found
in McLachlan and Peel (2000, Sec. 2.16).

We compare these three ‘EM bootstrap’ standard errors with the three
standard errors computed from our formulae. Method (B1) employs I

−1
1

based on the outer product of the score, (B2) uses I
−1
2 based on the Hessian

matrix, while (B3) uses the robust sandwich matrix var θ̂ as given in (9).
We consider two popular and much-studied data sets: the hemophilia

data set and the Iris data set.

The hemophilia data set

Human genes are carried on chromosomes and two of these, labeled X and
Y , determine our sex. Females have two X chromosomes, males have an X
and a Y chromosome. Hemophilia is a hereditary recessive X-linked blood
clotting disorder where an essential clotting factor is either partly or com-
pletely missing. While only males have hemophilia, females can carry the
affected gene and pass it on to their children. If the mother carries the
hemophilia gene and the father does not have hemophilia, then a male child
will have a 50:50 chance of having hemophilia (because he will inherit one
of his mother’s two X chromosomes, one of which is faulty) and a female
child will have a 50:50 chance of carrying the gene (for the same reason). If
the mother is not a carrier, but the father has hemophilia, then a male child
will not be affected (because he inherits his father’s normal Y chromosome)
but a female child will always be a carrier (because she inherits her father’s
faulty X chromosome).

The hemophilia data were collected by Habbema et al. (1974), and were
extensively analyzed in a number of papers; see inter alia McLachlan and
Peel (2000, pp. 103–104). The question is how to discriminate between ‘nor-
mal’ women and hemophilia A carriers on the basis of measurements on two
variables: antihemophilic factor (AHF) activity and AHF-like antigen. We
have 30 observations on women who do not carry the hemophilia gene and
45 observations on women who do carry the gene. We thus have n = 75
observations on m = 2 features from g = 2 groups of women.

Our findings are recorded in Table 1, where all estimates and standard

11



Table 1: Estimation results—Hemophilia data

Variable Estimate Standard Error
EM Bootstrap Our method

(A1) (A2) (A3) (B1) (B2) (B3)
Weight

π1 0.51 0.13 0.12 0.14 0.13 0.05 0.03
Woman does not carry hemophilia

µ1 −11.48 3.90 4.16 4.19 3.76 2.36 1.95
µ2 −2.45 3.22 3.42 2.91 2.30 2.18 2.11
v11 111.48 63.74 71.24 68.43 43.95 37.72 41.25
v12 65.35 45.06 46.90 47.62 29.44 28.98 32.39
v22 123.44 39.89 34.41 34.84 41.78 30.85 24.56

Woman carries hemophilia

µ1 −36.53 4.53 3.99 4.66 4.12 2.75 2.43
µ2 −4.52 4.73 5.71 7.11 3.23 3.21 3.27
v11 159.56 58.93 53.90 63.85 52.07 44.85 42.25
v12 150.10 67.00 55.41 70.00 57.83 47.94 41.34
v22 322.00 109.11 81.22 204.45 104.51 77.87 63.70

errors (except for π1) have been multiplied by 100 to facilitate presentation.
The EM bootstrap results are obtained from 100 samples for each method
and the standard errors correspond closely to those reported in the literature.
The three EM bootstraps standard errors are roughly of the same order of
magnitude. We shall compare our information-based standard errors with
the parametric bootstrap (A1), which is the most relevant here given our
focus on multivariate normal mixtures.

The standard errors obtained by the explicit score and Hessian formulae
are somewhat smaller than the bootstrap standard errors, which confirms
the finding in Basford et al. (1997) concerning I

−1
1 (outer score). In eight

of the eleven cases, the standard errors computed from I
−1
2 (Hessian) lie in-

between the standard error based on the score and the standard error based
on the robust estimator, as predicted in Section 3. When this happens, the
misspecification-robust standard error (B3) is the smallest of the three. For
both groups of women the robust standard error is about 63% of the stan-
dard error based on parametric bootstrap (A1).

The Iris data set

The Iris flower data were collected by Anderson (1935) with the purpose
to quantify the geographic variation of Iris flowers in the Gaspé Peninsula,
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located on the eastern tip of the province of Québec in Canada. The data set
consists of fifty samples from each of three species of Iris flowers: Iris setosa
(Arctic iris), Iris versicolor (Southern blue flag), and Iris virginica (Northern
blue flag). Four features were measured from each flower: sepal length, sepal
width, petal length, and petal width. Based on the combination of the four
features, Sir Ronald Fisher (1936) developed a linear discriminant model to
determine which species they are.

The data set thus consists of n = 150 measurements on m = 4 features
from g = 3 Iris species. Table 2 contains parameter estimates and standard
errors of the means µi and variances vii (the covariance estimates vij for
i 6= j have been omitted), where all estimates and standard errors (except
π1 and π2) have again been multiplied by 100. As before, the EM bootstrap
results are obtained from 100 samples for each method and the standard
errors correspond closely to those reported in the literature.

In contrast to the first example, the standard errors obtained by I
−1
1

(outer score) are somewhat larger than the parametric bootstrap standard
errors, again in accordance to the finding in Basford et al. (1997). In 18 of
the 26 cases, the standard errors computed from I

−1
2 (Hessian) lie in-between

the standard error based on the score and the standard error based on the
robust estimator, as predicted in Section 3. And again, remarkably, when
this happens the misspecification-robust standard error (B3) is the smallest
of the three. In this example, contrary to the previous example, the robust
standard error is only slightly smaller on average than the standard error
based on parametric bootstrap.

Our two examples demonstrate that the implementation of second-order
derivative formulae is a practical alternative to the currently used bootstrap.
Our program for computing the standard errors of I

−1
1 (outer product), I

−1
2

(Hessian), and I
−1
3 (sandwich) is extremely fast. The resulting standard

errors are comparable in size to the bootstrap standard errors, but they are
sufficiently different to justify the question which standard errors are the
most accurate. This question can not be answered in estimation exercises.
We need a small Monte Carlo experiment where the precision of the estimates
is known.

7 Simulations

We wish to assess the small sample behavior of the information-based es-
timates and compare it to the behavior of the traditional bootstrap-based
methods. We shall assume that the data are generated by an m-variate nor-
mal mixture model, determined by the parameters (πi, µi, Vi) for i = 1, . . . , g,
so that we have g− 1 + gm(m +3)/2 parameters in total. It is convenient to
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Table 2: Estimation results—Iris data
Variable Estimate Standard Error

EM Bootstrap Our method
(A1) (A2) (A3) (B1) (B2) (B3)

Weights

π1 0.333 0.037 0.038 0.037 0.039 0.022 0.013
π2 0.367 0.043 0.044 0.047 0.041 0.023 0.013

Iris setosa

µ1 500.60 5.05 4.90 4.93 5.67 4.93 4.93
µ2 342.80 5.66 5.10 5.29 5.89 5.31 5.31
µ3 146.20 2.49 2.90 2.43 2.96 2.43 2.43
µ4 24.60 1.54 1.70 1.46 2.04 1.48 1.48
v11 12.18 2.31 2.46 1.94 3.04 2.44 2.21
v22 14.08 2.58 3.25 3.03 2.84 2.82 3.30
v33 2.96 0.58 0.74 0.60 0.63 0.59 0.70
v44 1.09 0.20 0.30 0.28 0.25 0.22 0.29

Iris versicolor

µ1 591.50 8.43 7.83 9.20 10.31 7.99 7.97
µ2 277.78 4.76 5.90 5.89 5.63 4.61 4.67
µ3 420.16 8.08 8.27 8.51 9.74 6.99 6.80
µ4 129.70 3.21 3.36 3.35 3.33 2.80 2.78
v11 27.53 6.01 5.36 7.37 8.31 5.88 4.88
v22 9.11 1.96 2.03 2.10 2.56 1.98 1.86
v33 20.06 5.36 4.99 6.60 5.88 4.46 4.39
v44 3.20 0.83 0.78 0.72 1.04 0.72 0.55

Iris virginica

µ1 654.45 9.12 8.85 10.58 10.82 8.57 8.49
µ2 294.87 4.46 5.49 5.21 4.90 4.53 4.59
µ3 547.96 8.84 10.08 12.78 10.35 8.10 8.14
µ4 198.46 4.72 6.07 6.64 4.33 4.23 4.29
v11 38.70 7.76 8.46 6.28 10.32 7.48 7.38
v22 11.03 2.15 2.86 2.37 2.34 2.13 2.37
v33 32.78 6.64 8.82 8.44 11.20 6.53 6.17
v44 8.58 1.91 2.49 2.66 2.83 1.78 1.38
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construct matrices Ai such that AiA
′

i = Vi. We then obtain R samples, each
of size n, from this distribution where each sample is generated as follows.

• Draw a sample of size n from the categorical distribution defined by
Pr(z = i) = πi. This gives n integer numbers, say z1, . . . , zn, such that
1 ≤ zj ≤ g for all j.

• Define ni as the number of times that zj = i. Notice that
∑

i ni = n.

• For i = 1, . . . , g draw mni standard-normal random numbers and as-
semble these in m × 1 vectors ǫi,1, . . . , ǫi,ni

. Now define

xi,ν = µi + Aiǫi,ν ∼ N(µi, Vi) (ν = 1, . . . , ni).

The set {xi,ν} then consists of n m-dimensional vectors from the required
mixture. Given this sample of size n we estimate the parameters and standard
errors, assuming that we know the distribution is a mixture of g normals.

We perform R replications of this procedure. For each r = 1, . . . , R
we obtain an estimate of each of the parameters. The R estimates together
define a distribution for each parameter estimate, and if R is sufficiently large
the variance of this distribution is the ‘true’ variance of the estimator. Our
question now is how well the information-based standard error approximate
this ‘true’ standard error. We perform four experiments. In each case we
take m = g = 2, π1 = π2 = 0.5, and we let n = 100 and n = 500 respectively.

(a) Correct specification. The mixture distributions are both normal.
There is no misspecification, so the model is the same as the data-
generating process. We let

µ1 =

(
0
0

)
, µ2 =

(
5
5

)
, V1 =

(
1 0
0 1

)
, V2 =

(
2 1
1 2

)
.

(b) Overspecification. Same as (a), except that

V1 = V2 =

(
1 0
0 1

)
.

However, we do not know that the variance matrices are the same and
hence we estimate them separately.

(c) Constrained estimation. Same as (b), except that we now know
that the variance matrices are equal and therefore take this constraint
into account, using Theorem 3 rather than Theorem 1.
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(d) Misspecification in distribution. The two mixture distributions are
not normal. The true underlying distributions are F (k1, k2), but we are
ignorant about this and take them to be normal. Instead of sampling
from a multivariate F -distribution we draw a sample {η∗

h} from the
univariate F (k1, k2)-distribution. We then define

ηh =

√
k1(k2 − 4)

2(k1 + k2 − 2)

(
k2 − 2

k2

η∗

h − 1

)
,

so that the {ηh} are independent and identically distributed with mean
zero and variance one, but of course there will be skewness and kurtosis.
For i = 1, . . . , g draw mni random numbers ηh in this way, assemble
these in m × 1 vectors ǫi,1, . . . , ǫi,ni

, and obtain xi,ν as before. We let
k1 = 5 and k2 = 10, so that the first four moments exist but the fifth
and higher moments do not.

Each estimation method provides an algorithm for obtaining estimates and
standard errors of the parameters θj , which we denote as θ̂j and sj =

v̂ar1/2(θ̂j) respectively. Based on R replications we approximate the distribu-

tions of θ̂j and sj from which we can compute moments of interest. Letting

θ̂
(r)
j and s

(r)
j denote the estimates in the r-th replication, we find the standard

error (SE) of θ̂j as

SE(θ̂j) =

√√√√ 1

R

R∑

r=1

(θ̂
(r)
j − θ̄j)2, θ̄j =

1

R

R∑

r=1

θ̂
(r)
j .

We wish to know whether the reported standard errors are close to the actual
standard errors of the estimators, and we evaluate this ‘closeness’ in terms of
the root mean squared error (RMSE) of the standard errors of the parameter
estimates. We first compute

S1j =
1

R

R∑

r=1

s
(r)
j , S2j =

1

R

R∑

r=1

(s
(r)
j )2,

from which we obtain

SE(sj) =
√

S2j − S2
1j.

In order to find the bias and mean squared error of sj we need to know the

‘true’ value of sj . For sufficiently large R, this value is given by SE(θ̂j). We
find

BIAS(sj) = S1j − SE(θ̂j), RMSE(sj) =
√

SE2(sj) + BIAS2(sj),
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and thus we obtain the RMSE, BIAS, and SE of sj for each j.
In our experiments we use R = 50, 000 replications for computing the

‘true’ standard errors (10,000 in case (d)) and R = 10, 000 replications for
computing the estimated standard errors (1000 in case (d)). The reason we
use less replications in case (d) is that we want to avoid draws with badly sep-
arated means that could induce label switching. To compute bootstrap-based
standard errors, we rely on 100 bootstrap samples (Efron and Tibshirani
1993). We use the EMMIX Fortran code converted to run in R to generate
mixture samples, and obtain parameter estimates and bootstrap-based stan-
dard errors. We then import the parameter estimates into MATLAB and
use them to obtain the information-based standard error estimates.

Notice that in all four cases the means are well separated. This is use-
ful for three reasons: first, label switching problems across simulations are
less likely to occur; second, the ML estimates for well-separated means are
accurate enough to allow us to focus on standard error analysis rather than in-
accuracies in parameter estimates; and third, we expect the bootstrap-based
standard errors to work particularly well when accurate parameter estimates
are used for bootstrap samples. Thus, to bring out possible advantages of
the information-based method, we consider cases where the bootstrap-based
methods should work particularly well.

Table 3: Simulation results, case (a), n = 500

Variable Value Root mean square error of SE
EM Bootstrap Our method

(A1) (A2) (A3) (B1) (B2) (B3)
Weight

π1 0.5 0.0008 0.0016 0.0016 0.0001 0.0067 0.0114
Group 1

µ1 0 0.0061 0.0059 0.0059 0.0036 0.0034 0.0036
µ2 0 0.0050 0.0059 0.0059 0.0036 0.0035 0.0036
v11 1 0.0115 0.0139 0.0138 0.0114 0.0092 0.0120
v12 0 0.0060 0.0085 0.0083 0.0066 0.0052 0.0069
v22 1 0.0107 0.0138 0.0138 0.0114 0.0093 0.0121

Group 2

µ1 5 0.0066 0.0088 0.0088 0.0056 0.0055 0.0057
µ2 5 0.0069 0.0089 0.0088 0.0056 0.0056 0.0058
v11 2 0.0262 0.0305 0.0305 0.0258 0.0217 0.0265
v12 1 0.0193 0.0243 0.0243 0.0206 0.0178 0.0210
v22 2 0.0237 0.0305 0.0309 0.0254 0.0221 0.0269
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Let us now discuss the simulation results, where we confine our discus-
sion to the standard errors of the ML estimates, because the ML estimates
themselves are the same for each method. In Table 3 we report the RMSE of
the estimated standard errors for n = 500 in the correctly specified case (a).
We see that method (B2) based on I

−1
2 (the Hessian) outperforms the EM

parametric bootstrap method (A1), which in turn is slightly better than
methods (B3) (sandwich) and (B1) (outer score). The observed information
matrix I

−1
1 based on the outer product of the scores typically performs worst

of the three information-based estimates and is therefore not recommended.
The poor performance of the outer score matrix confirms results in previous
studies, see for example Basford et al. (1997). In correctly specified cases
we would expect that the parametric bootstrap and the Hessian-based ob-
served information matrix perform well relative to other methods, and this
is indeed the case. Our general conclusion for correctly specified cases is
that method (B2) based on I

−1
2 performs best, followed by the parametric

bootstrap method (A1). In contrast to the claim of Day (1969) and McLach-
lan and Peel (2000, p. 68) that one needs very large sample sizes before the
observed information matrix gives accurate results, we find that very good
accuracy can be obtained for n = 500 and even for n = 100.

The mean squared error of the standard error is the sum of the variance
and the square of the bias. The contribution of the bias is small. In the case
reported in Table 3, the ratio of the absolute bias to the RMSE is 9% for
method (B2) when we average over all 11 parameters. The bias is typically
negative for all methods. As McLachlan and Peel (2000, p. 67) point out,
delta methods such as the ‘supplemented’ EM method or the conditional
bootstrap often underestimate the standard errors, and the same occurs here.
Since the bias is small in all correctly specified models, this is not a serious
problem.

We notice that the RMSE of the standard error of the mixing proportion
π̂1 is relatively high for methods (B2) and (B3), both of which employ the
Hessian matrix. The situation is somewhat different here than for the other
parameters, because the standard error of π̂1 is estimated very precisely but
with a relatively large negative bias. Of course, the bias decreases when n
increases, but in small samples the standard error of π̂1 is systematically
underestimated. This seems to be a general phenomenon when estimating
mixing proportions with information-based methods, and it can possibly be
repaired through a bias-correction factor. We do not, however, pursue this
problem here. Even with the relatively large RMSE of the mixing proportion,
method (B2) performs best, and this underlines the fact that this method
estimates the standard errors of the means µi and the variance components
vij very precisely.
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Table 4: Overview of the four simulation experiments

Experiment Root mean square error of SE
EM Bootstrap Our method

(A1) (A2) (A3) (B1) (B2) (B3)
Correctly specified

100 0.0674 0.0920 0.0869 0.0793 0.0647 0.0827
500 0.0137 0.0169 0.0169 0.0139 0.0121 0.0149

Overspecified

100 0.0307 0.0373 0.0378 0.0430 0.0295 0.0372
500 0.0072 0.0089 0.0090 0.0075 0.0061 0.0081

Constrained

100 0.0155 0.0201 0.0206 0.0207 0.0150 0.0204
500 0.0052 0.0055 0.0055 0.0037 0.0036 0.0054

Misspecified, F (5, 10)
100 1.5500 1.4433 1.5085 — 1.5143 1.3605
500 0.9799 0.9767 1.1627 1.1524 1.0960 0.9241

In Table 4 we provide a general overview of the RMSE results of all four
cases considered, for n = 100 and n = 500. In cases (b) and (c) we illustrate
the special case where V1 = V2. In case (b) we are ignorant of this fact and
hence the model is overspecified but not misspecified. In case (c) we take
the constraint into account and this leads to more precision of the standard
errors. The RMSE is reduced by about 50% when n = 100 and by about
35% when n = 500. Again, the Hessian-based estimate I

−1
2 is the most

accurate of the six variance matrix estimates considered. In case (d) we
consider misspecified models where both skewness and kurtosis are present
in the underlying distributions, but ignored in the estimation. One would
expect that the nonparametric bootstrap estimates (A2) and (A3) and our
proposed sandwich estimate (B3) would perform well in misspecified models,
and this is usually, but not always, the case. Our sandwich estimate I

−1
3 has

the lowest RMSE in all cases. The outer score estimate (B1) fails to produce
credible outcomes when n = 100. If we repeat the experiment based on other
F -distributions we obtain similar results.

Finally we consider the information matrix test presented in Section 4.
The IM test has limitations in practice because the asymptotic χ2-distribution
is typically a poor approximation to the finite sample distribution of the test
statistic. We briefly investigate the finite sample properties of our version
of the IM test via simulations to give some idea of just how useful it can
be. Let us consider the correctly specified model (a) with m = g = 2 so
that the IM test of Theorem 2 should be asymptotically χ2-distributed with
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gm(m + 3)/2 = 10 degrees of freedom. In Table 5 we compute the sizes for

Table 5: Size of IM test, simulation results

Critical values
n 9.34 12.55 15.99 18.31 23.21

100 1.0000 0.9999 0.9999 0.9996 0.9984
500 0.9975 0.9843 0.9500 0.9180 0.8186

1000 0.9898 0.9564 0.8868 0.8228 0.6571
∞ 0.5000 0.2500 0.1000 0.0500 0.0100

n = 100, 500, and 1000, based on 10,000 replications and using the criti-
cal values that are valid in the asymptotic distribution. As expected, the
results are not encouraging, thus confirming findings by many authors; see
Davidson and MacKinnon (2004, Sec. 16.9). There is, however, a viable al-
ternative based on the same IM statistic, proposed by Horowitz (1994) (see
also Davidson and MacKinnon 2004, pp. 663–665), namely to bootstrap the
critical values of the IM test for each particular application. This is what we
recommend.

8 Conclusions

Despite McLachlan and Krishnan’s (1997, p. 111) claim that analytical deriva-
tion of the Hessian matrix of the loglikelihood for multivariate mixtures seems
to be difficult or at least tedious, we show that it pays to have these formu-
lae available for normal mixtures. In correctly specified models the method
based on the observed Hessian-based information matrix I

−1
2 is the best in

terms of RMSE. In misspecified models the method based on the sandwich
matrix I

−1
3 is the best, even if the standard errors of the observed information

matrix based on the outer product of the scores are large, as is sometimes
the case. In general, the bias of the two methods is either the smallest in
their category (correctly specified or misspecified) or if not, it becomes the
smallest as the sample size increases to n = 500. Our MATLAB code for
computing the standard errors runs in virtually no time unless both m and
g are very large, and it is even faster than the bootstrap.

There are at least two additional advantages in using information-based
methods. First, the Hessian we computed can be useful to detect instances
where the EM algorithm has not converged to the ML solution. Second, if the
sample size is not too large relative to the number of parameters to estimate,
the methods based on I

−1
2 and I

−1
3 can be readily used to compute asymp-

totically valid confidence intervals, while nonparametric bootstrap confidence
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intervals are often difficult to compute.

Appendix: Proofs

Proof of Theorem 1. Let φit and αit be defined as in (5). Then, since
f(xt) =

∑
i φit, we obtain

d log f(xt) =
df(xt)

f(xt)
=

g∑

i=1

dφit∑
j φjt

=

g∑

i=1

αit d log φit (10)

and

d2 log f(xt) =

(
d2f(xt)

f(xt)
−

(
df(xt)

f(xt)

)2
)

=




∑

i d
2φit∑

j φjt

−

(∑
i dφit∑
j φjt

)2




=

(
g∑

i=1

αit(d
2 log φit + (d logφit)

2) − (

g∑

i=1

αit d log φit)
2

)
. (11)

To evaluate these expressions, we need the first- and second-order derivatives
of log φit. Since, using (2),

log fi(x) = −
m

2
log(2π) −

1

2
log |Vi| −

1

2
(x − µi)

′V −1
i (x − µi),

we find

d logfi(x) = −
1

2
d log |Vi| + (x − µi)

′V −1
i dµi −

1

2
(x − µi)

′d(V −1
i )(x − µi)

= −
1

2
tr(V −1

i dVi) + (x − µi)
′V −1

i dµi +
1

2
(x − µi)

′V −1
i (dVi)V

−1
i (x − µi)

and

d2 log fi(x) = −
1

2
tr
(
(dV −1

i )dVi

)
− (dµi)

′V −1
i (dµi)

+ (x − µi)
′(dV −1

i )dµi − (x − µi)
′V −1

i (dVi)V
−1

i dµi

− (x − µi)
′V −1

i (dVi)V
−1

i (dVi)V
−1

i (x − µi)

=
1

2
trV −1

i (dVi)V
−1

i dVi − (dµi)
′V −1

i (dµi)

− 2(x − µi)
′V −1

i (dVi)V
−1

i dµi

− (x − µi)
′V −1

i (dVi)V
−1

i (dVi)V
−1

i (x − µi),
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and hence, using (3) and the definitions (6)–(8),

d log φit = d log πi + (xt − µi)
′V −1

i dµi −
1

2
trV −1

i dVi

+
1

2
(xt − µi)

′V −1
i (dVi)V

−1
i (xt − µi)

= a′

i dπ + b′

it dµi −
1

2
tr (Bit dVi)

= a′

i dπ + b′

it dµi −
1

2
(vec Bit)

′D d vech Vi

= a′

i dπ + c′

it dθi (12)

and

d2 log φit = d2 log πi − (dµi)
′V −1

i (dµi) − 2(xt − µi)
′V −1

i (dVi)V
−1

i (dµi)

− (xt − µi)
′V −1

i (dVi)V
−1

i (dVi)V
−1

i (xt − µi)

+
1

2
tr V −1

i (dVi)V
−1

i (dVi)

= −(dπ)′aia
′

i(dπ) − (dµi)
′V −1

i (dµi) − 2b′

it(dVi)V
−1

i (dµi)

−
1

2
tr(V −1

i − 2Bit)(dVi)V
−1

i (dVi)

= −(dπ)′aia
′

i(dπ) − (dµi)
′V −1

i (dµi) − 2(d vec Vi)
′(bit ⊗ V −1

i )(dµi)

−
1

2
(d vec Vi)

′((V −1
i − 2Bit) ⊗ V −1

i )(d vec Vi)

= −(dπ)′aia
′

i(dπ) − (dµi)
′V −1

i (dµi) − 2(d vech Vi)
′D′(bit ⊗ V −1

i )(dµi)

−
1

2
(d vech Vi)

′D′((V −1
i − 2Bit) ⊗ V −1

i )D(d vech Vi)

= −

(
dπ

dθi

)
′
(

aia
′

i 0
0 Cit

)(
dπ

dθi

)
. (13)

Inserting (12) in (10), and (12) and (13) in (11) completes the proof. �

Proof of Theorem 2. This follows from the expression of Wt(θ) and the
development in Lancaster (1984). �

Proof of Theorem 3. From (12) we see that

d log φit = a′

i dπ + c′

it dθi = a′

i dπ + b′

it dµi −
1

2
(vec Bit)

′D dv,
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and from (13) that

d2 log φit = −(dπ)′aia
′

i(dπ) − (dθi)
′Cit(dθi)

= −(dπ)′aia
′

i(dπ) − (dµi)
′V −1(dµi) − 2(dµi)

′(b′

it ⊗ V −1)D(dv)

−
1

2
(dv)′D′((2bitb

′

it − V −1) ⊗ V −1)D(dv).

The results then follow—after some tedious but straightforward algebra—
from (10) and (11). �
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