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ABSTRACT

Simulation estimators, such as indirect inference or simulated maximum likelihood, are
successfully employed for estimating stochastic diflerential equations. They adjust [or the
bias (inconsistency) caused by discretization of the underlying stochastic process, which
is in continuous time. The price to be paid is an increased variance of the estimated
parameters. There is, in fact, an additional component of the variance, which depends
on the stochastic simulation involved in the estimation procedure. To reduce this un-
desirable effect, one should properly increase the number of simulations (or the length
of each simulation) and thus the computation cost. Alternatively, this paper shows how
variance reduction can be achieved, at virtually no additional computation cost, by use of
control variates. The Ornstein- Ublenbeck equation, used by Vasicek to model the short
term interest rate in continuous time, and the so called square root equation, used by
Cox, Ingersoll and Ross, are explicitly considered and experimented with. Monte Carlo
experiments show that, for some parameters of interest, a global efficiency gain about

35%-45% over the simplest indirect estimator is obtained at about Lhe same computation
cost.
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1 Introduction

Simulation estimators, such as indirect inference (Gourieroux, Monfort and Renault,

1993), simulated maximum likelihood (Smith, 1993) or efficient method of moments (Gal-

lant and Tauchen, 1992) are successfully employed for estimating stochastic differential
equations. They adjust for the bias (inconsistency) caused by the discretizalion of the
underlying stochastic process, which is in continuous time.

The price to be paid is an increased variance of the estimated parameters. On the one
hand, in fact, the variance is due to the intrinsic stochastic nature of the data and to the
models adopted; on the other hand, it also depends on the stochastic simulation involved
in the estimation procedure. This latter component is, in some sense, an undesirable ad-
ditional experimental variance, which can be made arbitrarily small by properly enlarging
the number of simulations at the cost of a bigger computation effort. Therefore a trade-off
arises between variance reduction and computation cost.

Efficient Monte Carlo techniques may be helpful in reducing experimental variance, thus
providing a reduction of the global variance of the estimator and, therefore, an overall
improvement of the efficiency, without increasing the computation cost. There is a wide
literature on efficient Monte Carlo techniques, such as stratified sampling, importance
sampling, antithetic variates, control variates, etc., that started many years ago (e.g.
Kahn, 1956, Moy, 1971, Simon, 1976), or Hendry (1984), and, more recently, Newton
(1994), Geweke (1994) and Richard (1996).

For instance, a simple method like antithetic variates proved to be effective in evaluating
the small sample bias of estimators for simultaneous equations {e.g. Hendry and [larrison,
1974, or Mikhail, 1975), or the simulation bias in nonlinear macroeconometric models (e.g.
Calzolari, 1979).

With slightly more complex implementation requirements, the method of control variales
proved to be even more effective (Sterbenz and Calzolari, 1990). This mecthod also is
snitable for evaluating variances, where antithetic variates fail (Calzolari and Sterbenz,
1986).

This paper shows how control variates can be profitably used to reduce the variance of indi-
rect estimators when applied to stochastic differential equations. The Ornstein-Uhlenbeck
process, used in Vasicek (1977) to model the short term interest rate in continuons time,
and the so called square root process, used in Cox, Ingersoll and Ross (1985), are explicitly
considered and experimented with.

Resulis of the Monte Carlo experiments show that, for some parameters of interest, the
variance component due to simulation can be reduced 4-5 times at about the same com-
putation cost. This implics a global elliciency gain of 35%-45% over the siinplest indirect
estimator (reduction of the global variance).

2 Intuitive introduction to control variates for indi-

rect estimators in the just-identified case

For the models considered in this paper, introducing control variates turns out to be
particularly simple. We consider, in fact, the Vasicek (1977) and the Cox, Ingersoll and
Ross (1983) models for short term interest rates in continuous time, cach of which is based
on a particular stochastic differential equation (the econometric model). The lormer is
based on the Ornstein-Uhlenbeck process, the latter is based on the so called squarc root
process. Each model is usually approximated by a discretized equation whose parameters
maintain a close one-to-one correspondence with the parameters of the continuous time
cconometric model. Examples can be found in Bianchi and Cleur (1996), Broze, Scaillet
and Zakoian (1994, 1995), Cleur (1995), Di lorio (1996), Pastorello, Renault and Touzi
(1994).

For simplicity, we omit from our notation exogenous variables (which are not included in
the particular models considered), initial values (which are supposed to be asymptotically
not influent), and the distribution of the error terms (which is supposed to be known, for
example i.i.d. standard normal).

Let the econometric model (or model of interest) be represented as

y= f(9,€) (2.1)
and assume that this model can be simulated; that is we can produce values of y con-
ditional on the parameters § by entering random values of e. However, this model may
not be estimated, or estimation can be so complex and discouraging that econometricians
replace it with an approximation, like

y=9(8,¢) (2.

[
SV

which can be casily estimnated (for example, by maximum likelihood).

We assume that, for any 0¢©, and a given probability distribution for e, values ol y can
be generated from (2.1) and that the estimation of (2.2) with these values of y leads o an
estimator of 3, say 8(0,e) (that is a function of  and of the random errors). We assnime
that some fairly standard regularity conditions ensure that this estimator converges, for
1" — 0, to a well defined and regular binding function 6(0), for any 8¢, as in Gourieroux.
Monflort and Renault (1993). In finite samples, obviously the estimator will differ fronuits
limit value, the difference being the finite sample estimation error of parameters. Thus. in
the finite sample case, for any 0¢© an estimator of the parameters in (2.2) will be equal to
the binding function b(7) plus the parameter estimation error (PEER), which is a random

vector due to the particular finite sample of error terms e. These ervor terms are assuimed



to have a known distribution, i.i.d. standard normal in our experiments, variance being
already included in the parameter vector 0

B(0,e) = b(0) + PEER(0,¢) (2.3)

The parameter estimation error PEER(0,¢) is a random vector asymptotically vanishing
and we may assume that regularity conditions ensure for /T PEER(f, ¢) an asymptotic
zero mean normal distribution with variance-covariance matrix that will be denoted' T

VT PEER(0,¢) — N(0,5) (2.4)

Since the covariance matrix is obtained from the misspecified model in (2.2), it is well
known from White (1982) that an expression for £ (as well as its estimate) would involve
both the Hessian and the matrix of outer products of the first derivatives of the likelihoods.

By entering the historically observed values of y, we estimate from equation (2.2) a vector
of parameters, say f. If the model of interest (2.1) really is the data generating process,
the historically observed v are a function of the true vector of parameters, say 0q, as well
as of the unobservable error terms, say e. Therefore, [3 turns out to be a function of such
parameters 0y and of the unobservable error terms e

8 = Blbo,e) = b(0o) + PEER(Up, e) (2.5)

By entering a tentative vector of parameters 8 and pseudo-random error terms & into {2.1),
we generate by simulation pseudo-random values 4 that are introduced into (2.2). Model
(2.2) is estimated and a vector of parameters, say [;', is produced. The sample period
can be, ¢f course, of any length, being data produced by simulation, but we keep for the
moment the same sample length as for the historically observed data, say T. Notice that
¢ are gencrated from “the same” distribution as the unobservable historical error terms
e. Thus, B is a lunction (the same function as before) of the tentative parameters 0 and
ol the pseudo-random crror terms, say

"An example where indirect inference is completely unnecessary might be helpful to fix ideas. Let
us suppose one is dealing with a linear regression model with nonrandom exogenous regressors, under
standard textbook conditions

y=X0+e

with the additional condition that the variance of the Li.d. e’s is known = 1 (not helpful for estimation
ol 0, as well known).

The ecanometric and anxiliary models arc coincident, so using OLS we get
B0, )= (X' X)X y=0+(X'X) X

thus H(8) = 0 (the binding function is the identity function), PEER(S,e) = (X' X)™'.X'¢ (not a function
of 0, and asymptotically vanishing), and asymptotically V7' PEER(D, €) — N[O, (X' X/T)).

t

B = p(0,&) = b(0) + PEER(0,¢) (2.6)

In this case of exact identification, indirect inference procedures can take advantage of the
one-to-one correspondence between 0 and § parameters. We calibrate the 0 parameters
(keeping & fixed) till we find § = B. In other words we look for the values of § that solve
the system of equations

6(0,6)=5 (27)

The calibration procedure thus aims at solving the system of equations (2.7). These
equations are only implicitly defined, and cannot be expressed in closed form.

The solution vector will be called 0; this is the indirect estimator of the economelric
model’s parameter vector fp. Conditions that ensure consistency and asymptotic normal-
ity of this estimator can be found in Gourieroux, Monfort and Renault (1993) in a more
general context. In our context, if estimation of the auxiliary model (2.2) is performed by
quasi-maximum-likelihood, the estimator turns out to be identical to the simulated QML

(Smith, 1993).

We can write

B = b(00) + PEER(fo,e) (2.8)

B =b(0) + pEER(D, ) (2.9)

The left hand sides will be equal upon convergence of the indirect estimalion procedure.
thus equating the right hand sides and multiplying by VT

VTb(0) + VT PEER(O, ) = VTb(0) + VT PEER(0, ¢) (2.10)
and therefore
VT [6(0) = b(05)] = VT PEER(0,€) = VT PEER(D, ) (2.11)

As 0 converges to 0 (for T — o0), regularity conditions ensure that, asymptotically. the
random vector T PEER(0,é) is the same as VT PEER(0p, ). Thus, asymptotically

T [0(0) = b(00)] ~ VT PEER(O, €) = VT PEER (00, ¢) (2.12)

The random error terms ¢ and ¢ are obviously independent, as the former are the un-

obscrvable errors in the historical process, while the latter are generated by simualation.
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Thus variances must be summed. As the distribution of e and ¢ is the same by assumption
(i.i.d. N(0,1), in our experiments), the variance turns out to be simply double. Thus the
right hand side of (2.12) will be N(0,2Z), asymptotically.

Applying the “6-method” (e.g. Rao, 1973, p.388) the left hand side of (2.11) has asymp-
totically the same distribution as

VT [6(0) = b(05)] = RoVT(d = 05)

o

We take advantage of the one-to-one correspondence between the § and 3 parameters;
thus, the Jacobian Ry is a square matrix. Assuming that it is nonsingular in some neigh-
bourhood of §y, we invert the Jacobian obtaining, asymptotically

VT ~00) ~ Ry™"VT PEER(6s,€) — Ro™'VT PEER(0p, &) (2.14)

Thus, the indirect estimator has the asymptotic variance-covariance matrix R ' 28R,

The fact that £ is doubled is clearly due to the independence between e and ¢ in equation
(2.14).2

2.1 Reducing variance by means of replicated simulations, with
larger computation cost

It is well known that this variance can be reduced, with a larger computation cost.

In fact, let us replace the single simulation-calibration of 0 with the average of /1 replicated
simulations-calibrations, say 0, A = 1,..., {. Each 0, is the value of 0 that solves the
system

B(0,é) = 4§ (2.15)

with ¢, independently drawn across different replications. Repeating the procedure above,

we have

B = b(0g) + PEER(0g,¢) (2.16)

2In the sinple example given in the previous footnote, the Jacobian is the unit matrix. Thus, asymp-
tolically

VI —00) ~ VT(X'X) ' X'e = VT(X'X) ' X'e

The two components are independent random vectors, each of which has variance-covariance matrix
(X'X/T)~". So the asymptotic variance-covariance matrix of the indirect estimator will simply be the
double of that of the OLS estimator, that is 2lim(X'X/T)~\.

Ro = [ab(o)h (2.13)

Br = b(0n) + I’EER(()/L,E;,) i=1,2,.., 11 (2.17)

where each 0y, is calibrated till B, = 8, and finally all 8, are averaged to produce

- 1 .
0= —[Z (2.

[N
—
o

Instead of equation {2.14), we have in this case, asymptotically

VT(0 - 00) ~ Re™'|VT PEER(fy,e) Z\/_PEER (0o, &) (2.19)

where the asymptotic variance-covariance matrix of the term in square brackets is now
{1 4+ )%, being the &, independent of each other and of e.

The variance reduction corresponding to a multiplying factor (1 + ;) instead of 2
obtained at the cost of H calibration procedures instead of just one.> Notice that the
same result would be obtained, at the same computational cost, if the A procedures with
T data were replaced by one procedure with HT simulated data (Gourieroux, Monfort
and Renault, 1993, section 2.3).

Equations like (2.14) or (2.19) quite clearly evidence the two components that contribute
to the variance of the indirect estimator. The first component on the right hand side ol
both equations depends on e and Rg. Thus, it is irreducible, given the data, the estimation
method, and the models used. The sccond component on the right hand sides of (2.140)
and (2.19) depends entirely on simulation, and can be made arbitrarily simall, at the cost
of a large simulation eflort.

2.2 Reducing variance by means of control variates, without
additional computation cost

We now push further ahcad the strict onc-to-one correspondence between the ¢ and the
B parameters, by considering that, for the inodels at hand, they are the same parameters.
plugged into two different models.

Suppose that we generate values of the 3’s from simulation of the approximated model
(2.2) instead of the econometric model of interest (2.1). Then model (2.2) will no longer
be misspecified for these new simulated values of y. If we estimate model (2.2) using these

new simulated values of y, the estimator will be consistent and asymptotically normal.

3S1il using the example found in the previous [ootnotes, the asymptotic v1ri1nu covariance m\lrlx
of the indirect estimator will be (14 77) times that of the OLS estimator. (1 + )in( X/ X/7)~



without need of further assumptions. There is no need here of introducing a binding
[unction, as it is simply the identity function.

We may also use different auxiliary models, instead of just the approximated model (2.2},
all sharing the feature of being at the same time simulable and estimable, as well as being
approximations to the economelric model of interest (2.1). We shall call them the control
variate models. To avoid introduction of new symbols, we write one of these control
variate models directly using the 0 parameters

y =p(0,¢) (2.20)

This mode! will be simulated as well as estimated with simulated data (if the control
variate model is the model (2.2), the function p will be the function g in (2.2), but re-
written with 0 instead of J).

The necessary features of any control variate model (2.20) are the following.
1) The parameters must be the same as those of the econometric model, 0.

2} It must be possible to plug into the model the same pseudo-random errors é already
introduced into model (2.1).

3) It must be possible to simulate and estimate the model.

For any 0e© and any error terms é generated from the usual distribution, if we simulate
model (2.20) and re-estimate its parameters, the estimated parameters will differ from 0
bv a new estimation error

0=0+ NPEER(0, ) (2.21)

Under suitable regularity conditions, the new parameter estimation error NPEER will be
asymptotically vanishing and /T NPEER(0, &) will be asymptotically zero mean normal.
Of course it will not be equal to the parameter estimation error PEER(0,¢) of equation

(2.6), as simulations of the y’s are made in different ways. However, suppose that the -

control variate model (2.20) is a close approximation of the economelric model, and that
the ¢ pseudo-random errors are the same used in the calibration procedure; it is quite
reasonable to expect that VT PEER(0,E) and T NPEER(0, &) are random vectors with
variance-covariance matrices sufliciently close to cach other and with a strong positive
correlation for any 0e®.

This additional simulation-cstimation is performed just once, at the end of the calibration
procedure that has produced the indirect estimator 0: no further parameter calibration
is required. Therefore, the additional cost of the computation is quite small and almost,
negligible, when compared with the cost of computing the indirect estimator. As a value
for 0, we adopt the converged value f; as pseudo-random errors &, we use the same already

used in the calibration procedure.

The estimated vector will be called . It is used to compute, by difference

NPEER(D,E) = 0 — 0 (2:

2
[N
N

and we use this to compute the control variate indirect estimator as

0o = 0+ Ry NPEER(D, ) (2.23)

As 0 converges to fy (for T — o), regularity conditions may ensure that the random
vector VT NPEER(0, &) is asymptotically the same as v/T NPEER(0p, €). Thus, from (2.14)
and (2.23) we get, asymptotically

VT(0e, = 00) = VT [(0, — 0) + (0 = 05)] (2.24)
~  Ro™'WT PEER(0y,¢) + Ry~ [\/T NPEER(0o, &) — VT PEER(0, ¢))] (2.25)

Given the independence between e and ¢, the asymptotic variance-covariance matrix of
the control variate estimator will be the sum of the covariance matrices of the two com-
ponents. The first component is exactly the same as the irreducible part in the simple
indirect estimator, as in equation (2.14). The second component, in square brackets. is
the difference between two random vectors quite close to each other (similar variance-
covariance matrix and strong positive correlation). Therefore, it is quite reasonable to
expect a strong variance reduction in this second component, when compared with the
second term on the right hand side of (2.14).7

*In the footnote example, we have

D=0+ (X'X)'X'E

NPEER(, E) = (X' X)) X'¢E
This is exactly equal to P!—:)-:R(ﬁ, Z).

ey =0+ NPEER(0,7) =0+ (X'X)"'X'E
VT(Goy - 00) = VT {(tiw 6+ (6~ oo)}
= VT )T e+ [VI(X'X) ' X' - \/T(,\"X)-‘,\"c]

The term in square brackets is zero. Therefore, the control variates indirect estimator turns ont 1o
have the same variance as the OLS estimator; that is, half the variance of the simple indireet estimator.



2.3 Remark

It is difficult to predict the efficiency gain produced by the control variates. Intuitively, if
the econometric model (2.1) and the two approximations (2.2) and (2.20) are quite close
to cach other, the last component in square brackets on the right hand side of equation
(2.25) should give very little contribution to the variance of the estimator. In the extreme
case of the three models being coincident, such a component disappears and the variance
of the estimator would be exactly the same as the variance of the direct estimator; for the
simple indirect estimator the variance would be double. Of course, this extreme case is an

example where indirect inference is completely useless, like the example in the footnotes.

For cases of practical interest, the efficiency gain can be evaluated by means of Monte
Carlo experiments. This will be undertaken later in this paper.

3 'The econometrics of continuous time interest rate
models

Generally, the behaviour of short-term interest rates 1s assumed to be explained by a
stochastic differential equation defined by

dry = plry, 0)dt + ¢(r,, 0)dW, (3.26)

where 7, is the spot interest rate, W, is a Wiener process, and 0 is a vector of parameters.
The functions p(-) and q(-) are denominated “drift” and “diffusion” respectively, and
satisfy the uniqueness and existence conditions of the solution. These conditions are of
the Lipschitz type and are given, for example, in Arnold (1975} and Tkeda and Watanabe
(1989).

Recently, the interest of financial analysts and researchers in the empirical analysis of
continuous time interest rate models has increased considerably. The main problems with
the analysis of an equation of the type defined above are that the Markov process, solu-
tion of the equation, is known exactly orly for some particular cases, and that interest
rates are actually observed at discrete time intervals. In general, it is possible to obtain
a (computationally tractable) approximate solution based on some discretization scheme.
Particularly simple is the so-called Euler scheme. Other types ol approximations are those
proposed by Mihlstein and by Talay (sce Kloeden and Platen, 1992). However, il estima-
tion is conducted through a discrete time econometric model, these approximations induce
a (discretization) bias (or inconsistency) in the resulting estimators of the parameters of

interest. Indirect inference adjusts for the discretization bias (inconsistency).

I an attempt to compare different models, Chan, Karolyi, Longstafl and Schwartz (1992)

first, recognize that, regardless of the approach (arbitrage or equilibrinm), most term

structure models imply dynamics for the short-term riskless rate that can be embedded
in the following expression

dr¢ = k(a — 7,)dt + or]dW, (3.27)

This process bears several important economic features. The specification for the drift
implies a mean reverting effect toward the long-run equilibrium level a; the value of &
gives the importance of this effect (the speed of adjustment). The diffusion allows the
volatility of interest rate changes to be sensitive to the level of the short-term rate. The
variance elasticity parameter v gives a measure of this sensitivity. Finally, o is a scale
parameter.

When v = 0, we obtain the Ornstein-Uhlenbeck omoskedastic process employed by Va-
sicek (1977)

dr, = k(a — r)dt + odW, (3.28)

For v = 1/2, we obtain the square root process of the Cox, Ingersoll and Ross (19
model

85)

dr = k(a — ry)dt + o/rdW, (3.29)
When v = 1, we obtain the Brennan and Schwartz (1979) model {that, however, will not
be considered in our experiments).
With the notation of the previous section, the vector of parameters ol interest is § =
(a, k,o?).
Empirical estimation is usually performed on a discretized version of the model. Dis-
cretization in most available applications is based on the following Luler scheme

ry—r_y = ka—kri_y +¢ (3.30)

where £y_1(e,) = 0 and E1(¢f) = o (Ornstein-Uhlenbeck) or By (<) = (o /r0 )
(square root process). The parameters of the discretized model are the same as for the
continuous time model: 8 = (a,k,o?) (strict correspondence between the ¢ and the 3
parameters).

A naive estimator of the discretized model (3.30) is immediately available, since maximum

likelihood = least squares for this model. For the square root process, data must be first
divided by /r;.

The main drawback of this cconometric approach is that the discrele time approximation
can have a non negligible cost in terms of statistical propertics of the estimators. The



so-called convexity eflect leads, in fact, to a biased (inconsistent) estimation of some
parameters of interest.

To apply indirect estimation, the econometric model(s) must be simulable. Lquations
(3.28) and (3.29) are not immediately suitable for this purpose, so also for simulation they
are replaced by a discretized version. This, however, does not raise the same problems as
discretization for the estimable model. Simulation in fact can be made with arbitrarily
small time intervals §,, and regularity conditions can ensure that the discretized model,
with a conveniently small &, exhibits negligible differences from the corresponding con-
tinuous time model. For our purposes, a value §, < 0.1 proved to be sufliciently accurate.
Of course, the approximation can be made even more accurate with the implementation
of higher order discretization schemes. An example is the explicit order 2 weak scheme of
Gallant and Tauchen (1995). However, our experiments and findings from previous stud-
ics (see Bianchi, Cesari and Panattoni, 1995, Broze, Scaillet and Zakoian, 1993, and Cleur,
1995) suggest that, for the models considered here, the first order scheme is acceptable,
provided that §, is at most equal to 1/10 (we have assumed §, = 0.05).

The discretized models used for simulation instead of (3.28) and (3.29) are, respectively

ry— 15 = kaby — kri_s,6, + /6,07 ¢, (3.31)

Ty —Ti_§ = kaé, — k"f‘[_gr(st + /75 \/ 6,02 ¢, (332)

A time unit corresponds to the frequency of historical data. Thus il data are daily, ¢
and ¢ — | reler to consecutive days, and & = 0.05 (or 1/, = 20) means that 20 data
are generated to produce one daily simulated value. So t and t — §, refer to consecutive
gencrated data, while consecutive days will be ¢ and ¢ — 206,.

4 The indirect inference procedure

The indirect inference procedure for the stochastic differential equations considered here
takes advantage of the one-to-one correspondence between the 8 and the § parameters.
As already stated, it is a case of exact identification, where the results are unaffected by
the choice of the matrix of weights usually involved in this type of estimator. Morcover,
it is identical to the simulated QML (Smith, 1993).

We have implemented our procedure in the [ollowing steps.

1) The available series of observations for the dependent variable vy £ = 1,2,...,7 is
assumed to have been generated as in equation (3.31) (or 3.32). In applicd work, this
is the series of historical data. In Monte Carlo studies, this will be one replication of

pseudo-historical data.

2) Naive estimation of the parameters 8= (a, Il-,rﬁ)’ is obtained, for the auxiliary model

(3.30).

3) A tentative value for the true model parameters 0 = (a, k,0%) is chosen. 1L is used as
a starting point for the iterative calibration procedure.

4) A sample of pseudo-random error terms &, i.i.d. N(0,1) is generated. In all our
experiments we have adopted a sample length T, equal to the length of the observable
time series. Since we use § = 0.05, T/é, = 20T values must be generated to produce a
simulated series of T" values. Possible lengths multiple of T (that is HT') can be adopted.

5) The value of 8 = (a, k,0?) is plugged into equation (3.31) (or 3.32). The equation is
solved recursively, then one value of 7 out of 20 (= 1/6,) values is chosen. This produces
the pseudo-random series 7,.

6) Naive estimation of equation (3.30) is performed on the series of pseudo-random 7,
obtaining a vector of parameters 3.

7) The two vectors of parameters [3 and B are compared. If they are equal (or very close to
each other) the estimation procedure has come to its end, otherwise the tentative values
of the parameters 0 = (a,k,0?) are modified (calibrated) and a new itcration of the
procedure starts again from step 5. Notice that the pseudo-random errors ¢, generated at
step 4 must not be re-generated, they must remain fixed in all iterations until convergence
of the procedure. The values of the series 7, change across iterations only as an effect of
changing 0.

8) When convergence is achieved, the last value of the tentative parameters is the simple

indirect estimale of the parameters of interest. This vector will be called § = (a, f\;fr"')"

4.1 The control variates

Various control variates could be introduced, with different choices of the control variate
model (2.20). In this paper we use only one control variate model for the Ornstein-
Uhlenbeck process (model 3.31), and only one control variate model for the square root
process (model 3.32).

Both models obviously share all the features required for control variate models, as they
were listed just after equation (2.20).

After the simple indirect estimator 0 has been computed (step & of the previous section).

the last simulated series produced by equation (3.31) (or 3.32} is used to re-estimate the

same equation (thus using the entire simulated scries whose length is 7°/6, = 207). 11
0 is the estimate, then § — 0 is the new parameter estimation crror, NPEER(0. ). that
produces the control variates. T'hus, the indirect estimator with control variates will be

ey =0+ By NPEER(D, ) = 0 + Ry (6 = 0) (4.33)



4.2 Some computational aspects

Concerning the solution of the implicit system of equations {which are not written in
closed form) that yields the indirect estimator, little is reported in the literature. Since
an analytic solution does not exist, the problem must be solved numerically. We have
adopted the following updating equation

Oiyy = D-ny + AAGL ) (B-1) — B)

where 5’(]») is the value of the calibrated parameters after j iterations, A¢;_y) is a matrix
that determines the direction of the jth step, and )\ is a real number (scalar) which
determines the stepsize in the given direction. In our applications we first perform a few
“simple” iterations (typically four to five) taking A equal to the identity matrix, and
then we switch to one “complicated” iteration taking A equal to the Jacobian matrix
of derivatives of the auxiliary parameters with respect to the parameters of interest (an
approximation of matrix Ry of equation (2.13)). Thus we alternate iterations of a Jacobi
solution method with iterations of a Newton solution method of the system (2.7).

This heuristic switching rule is maintained until convergence is reached. A reasonable
starting point for the procedure can be 0y = g.

5 The Monte Carlo experiment

The design of the Monte Carlo is as follows. The econometric structural models and their
true parameters are kept fixed in all experiments. Specifically, they are, respectively

dro = 0.53(0.1 —r, )dt + 0.1 dW, (5.34)
dr, = 05 (0.1 —r )dt + 0.1 /7, dW, (5.35)

These model specifications imply a moderate mean reversion effect (the mean-lag and
the half-life are both equal to 1) toward an average level of 10% for the annualized spot
terest rate.

While a more complete and detailed set of experiments is still in progress, the results
presented in this paper are related to a sample period length 7 = 4000. This also is the
length of the simulated series (1 = 1, /T = T); this allows us to appreciate the benelits
due to Lthe use of the control variates. The simulation step is kept {ixed (6, = 0.05, thus
T/6, = 80000).

Table 115 related to the Ornstein-Uhlenbeck process (O-U), used in Vasicek (1977) to
model the short term interest rate. Table 2 is related to the square root. process, adopted

in the Cox, Ingersoll and Ross (1985) model.

Table 1:  O-U - mean estim. param. and (var.), [Monte-Carlo var.]

Least.Sqr. Ind. Inf Ind. Inf
Par. True H=1 Cnt. Var.
a 1 1001 .1001 .1001
(10%107%) [11*1077]  (:20%1077) [20%10-%)  [11*1079]
k %) 3978 5012 5019
(.16*1073) [.14*1073)  (.81*107%) [84*10-3]  [53*1077]
o 01 0064 .0100 .0100
(.19¥1077) [.20*1077)  (.15*107°) [.15%10-6]  [.14*107F)
T==4000 Replications= 10000

Each row contains the following values:

1) The true value of a parameter (used in all Monte Carlo replications to generate the

pseudo-historical data).

2) The Monte Carlo mean of the naive estimates of the parameter in the discretized model,

computed across 10000 replications.

3) The Monte Carlo mean of the simple indirect estimates of the parameter.

4) The Monte Carlo mean of the control variate indirect estimates.

Under each mean, in square brackets, we display the Monte Carlo variance of the param-
eter, computed across the 10000 replications. In parentheses, we display the mean of the
estimated variance of the parameter, computed across the same replications.

The variance of the naive estimator is computed in a straightforward way.

The estimated variance of the simple indirect estimator is computed as in Gourieroux,
Monfort and Renault (1993, section 3).

For the indirect estimator with control variates, only the Monte Carlo variance is displayed
in square brackets, as an estimator of the variance is not available.

Table 2: Sq.Rt.- mean estim. param. and {var.), [Monte-Carlo var.|

Least.Sqr. Ind. Inf Ind. Inf
Par. True =1 Cnt. Var.
a A 1000 1000 1000
(.10%107%) [[10*107°)  (.19*107%) [20%107%)  [11*1077)
k 5 3979 5015 5021
(15%107%) [17*1073]  (.84*107%) [.89*1073]  [57*107¥]
o 01 .0066 .0100 .0100 |
(:24*1077) [24%4077)  (.16%107°) [16*107°]  [15*1077] |

T=4000

Replications= 100@




For the simple indirect estimator, the mean of the estimated variances is remarkably close
to the Monte Carlo variance.

For the naive estimator, the bias (inconsistency) is quite evident for the parameters & and

ol

[ndirect inference (with or without control variates) adjusts for the bias (inconsistency):
the mean estimated parameter is practically equal to the true value.

Control variates produce a remarkable reduction of the variance of some parameter es-
timates, with respect to simple indirect estimates. For the parameter a, the variance is
nearly the same as for the naive estimator, while for the simple indirect estimator it is
much larger. This, however, i1s of no interest given that this naive direct estimator is
practically unbiased (consistent) for parameter a.

For the parameter o?, the reduction of variance over the simple indirect estimator is
negligible. Use of these control variates is therefore not interesting for the estimation
of parameter 0. Other control variates should be searched for, but this will not be

attempted in this paper.

The great benefit produced by the use of control variates is evident for the parameter
k. We see in fact for the Ornstein-Uhlenbeck process (Table 1) that the Monte Carlo
variance of the simple indirect estimate of this parameter is 0.84 x 1073; that reduces to
0.33 x 10~ if control variates are used. Thus, there is a reduction of almost 40% in the
global variance of the estimator; that means an efliciency gain of 40% over the simple
indirect estimator, at about the same computation cost.

We mnay think of the variance 0.84 x 107% as being composed of two eqnal parts (as it
comes from equation 2.14): 0.42 x 1072 (the irreducible component of the variance) and
0.42 x 1072 (the component of the variance due to simulation). The variance with control
variates is 0.53 x 107%; that we may attribute to the irreducible component (the same as
belore, therefore, 0.42 x 107%) and to the component due to simulation (thus 0.11 x 107%),
Therefore, the component of the variance due to simulation is about 4 times smaller than
for the simple indircct estimator. The same variance would be obtained by the simple
indircct estimator using // = 4, thus at a considerably higher computational cost.

The results for the square root models (Table 2) are quite similar, and the same comments
apply.

6 Conclusion

We have shown in this paper why and how control variates can help in improving the
efficiency of indirect estimators. The paper has shown in some detail how the control
variates can act on that part of the variance that depends ou the simulation. At about

the same computation cost (that is, computation time), an indirect estimator with control

variates can be as efficient as a simple indirect estimator which is based on much longer
simulated series and, therefore, involves a much higher cost.

Different control variates could be introduced and adopted. Some simple control variates
have been applied to a couple of well known models of the short term interest rate in
continuous time, and proved to be effective {or some parameters of interest. We will need
study other types of control variates, and a more complete and detailed set of experimental
results should be available in the near future.
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