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Abstract

A new method of forecasting the pricing kernel, i.e., stochastic claim inflation or link ratio func-

tion, of incurred but not reported (IBNR) claims (in property-casualty insurance) from residuals

in a dynamic claims forecast model is presented. We employ a pseudo Kalman filter approach by

using claims risk exposure estimates to reconstruct innovations in stochastic claims development.

Whereupon we find that the pricing kernel forecast is a product measure of the innovations. We

show how these results impact performance measurement including but not limited to risk-adjusted

return on capital by and through insurance accounting relationships for adjusted underwriting re-

sults; and loss ratio or pure premium calculations. Additionally, we show how, in the context of

Wold decomposition, diagnostics from our model can be used to compute signal to noise ratio for,

and cross check, unobservable pricing kernels used to forecast claims. Furthermore, we prove that

a single risk exposure factor connects seemingly unrelated specifications for loss link ratio, and

claims volatility.

Keywords: IBNR claims ladder; claims reserve forecast; stochastic claim inflation; claims risk

exposure; link ratio function; property-casualty insurance; insurance accounting
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1 Introduction

Claims reserve pricing is one of the most important elements of an insurance com-

pany’s balance sheet. See (Küppelberg and Severin, 2001, pg. 1). In fact, ac-

cording to (Ward and Lee, 2002, pg. 81) “Insurers bear a responsibility both to

shareholders and policyholders to maintain solvency throughout a variety of po-

tential adverse events.” Consequently, risk management including but not limited

to forecasts of claims development is part of that responsibility1. This paper‘s

contribution to the literature on claims development and or claims reserve pricing

theory stems from its provision of a MLE estimator for stochastic claims inflation

with risk factors derived from claims risk exposure. Because stochastic claims in-

flation provides an unobservable nexus between incurred but not reported (IBNR)

claims our result(s) should be of interest to practitioners as well2.

An important arsenal in risk management weaponry is stochastic claims

volatility forecast, and of necessity, claims volatility modeling. For instance, Prof.

Erhard Kremer presented a paper on stochastic claim inflation at the ”1998 Gen-

eral Insurance Convention and ASTIN Colloquium” in Glasgow, Scotland during

which he “. . . basically assumed that the discounted claims increase follows an au-

toregressive model of ARCH-type and that the stochastic yearly interest follows

a classical autoregressive model,” (emphasis added) (Kremer, 1999, pg. 602).

1Calandro and O‘Brein (2004) described it thus:

Estimating the value of future claims is challenging for a number of reasons. First, future accident rates

are unknowable, so attempts to predict them are inherently prone to error. Second, bodily injury and

property damage claim values are extremely subjective, and many diverse factors ultimately determine

claim values. Fault apportionment, the nature and extent of medical treatment and a persons respon-

siveness to that treatment, property repair or replacement considerations, attorney skill levels and skill

sets, venue volatility, judicial objectivity, and quantification of an individuals pain and suffering, for

example, all have a part to play in the claim valuation process.

* * * * * * * * *

Claim reserves represent a critical performance variable . . . that must be implemented successfully for

the intended strategy of the business to succeed. For example, under-reserving means equity is over-

stated, allowing an insurer to write more business than it can actually support. Worse, claim reserves

are a large part of estimated historical losses, and are thus used in future rate making so under-reserving

causes rate inadequacy, compounding the effect, and thus exacerbating the probability of insolvency.

Over-reserving, on the other hand, may get an insurer a higher credit rating, but at the expense of

offering high-priced insurance policies and at the risk of overpaying claims.

2For instance, some empirical research found that management discretion over claims loss accrual and reporting

has been used to avoid reporting losses. Nelson (2000); Beaver et al. (2003). See (Shapland, 2007, pg. 120) for

brief description of Statement of Statutory Accounting Practice (SSAP), and Generally Accepted Accounting Practice

(GAAP) as it pertains to this issue.
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See also, (Wilkie, 1995, pg. 799). In fact, (Engle, 2001, pg. 158) plainly states

that the goal of ARCH/GARCH models “. . . is to provide a volatility measure–

like a standard deviation–that can be used in financial decisions concerning risk

analysis, portfolio selection, and derivatives pricing” (emphasis added). En route

to constructing our stochastic claims inflation estimator, we provide theoretical

justification for Kremer and Wilkie’s assumptions for stochastic claims growth,

and ARCH-type modeling, by establishing a nexus between seemingly unrelated

methodologies by Mack (1994) and De Jong (2006).

The rest of the paper proceeds as follows. In section 2 we provide a brief

review of the canonical claim ladder or run off triangle model for IBNR claims

reserving used to motivate results. In section 3 we introduce a stochastic claim

development model based on detrended cumulative claims. Moreover, section 4

introduces an econometric specification for stochastic claims risk. The main result

of the paper is reported in Theorem 4.6, and some heuristics on Wold decompo-

sition of the pricing kernel is provided. In section 5 we provide a brief description

of the impact of claims reserve pricing on insurance accounting and risk adjusted

return on capital. In section 6 we conclude with perspectives.

2 IBNR Claim Ladder Model

In this section we briefly describe the salient charateristics of the so called

Claim Ladder model for incurred but not reported claims. This section draws

heavily on (Behncke, 2000, Ch. 11.4). See also, Taylor (1977).

Let Si, j be the incremental claim incurred in period i, developed in period

j− 13. Suppose that all developed claims are exhausted in period n− 1. So that

for each year i the cumulative claim developed in period j−1 is

Ci, j = Si,1 +S1,2 + . . .+Si, j, 1 ≤ j ≤ n (2.1)

The actuary’s objective is to provide forecasts for Ci, j in the face of claims trend.

Thus, [s]he want to have a reserve Ri, j on hand to satisfy claims as they develop in

the future. Hence

Ri, j = Ĉi, j (2.2)

where Ĉi, j is claims forecast. Claims are developed according to the triangular

3The “time” j occurs at the end of the period j−1.

3



C1,1 C1,2 C1,3 . . . . . . . . . . . . . . . . C1,n
C2,1 C2,2 . . . . . . . . . . . . . C2,n−1
C3,1 . . . . . . . . . . C3,n−2
. . . . . . . . . . . . . . . .

Cn,1

Figure 1: IBNR Cumulative Claims Ladder

pattern in Figure 1. Let f j be a stochastic inflation factor for claims developed

in period j− 1. In the asset pricing literature f j is defined as a pricing kernel or

stochastic discount factor4. So that claims are linked as follows

Ci, j+1 = f jCi, j (2.3)

We make the following assumptions.

Assumption 2.1. There are no catastrophic claims in the model.

Assumption 2.2. Claims C1, j,C2, j, . . . ,Cn, j are year wise independent.

Assumption 2.3. The pricing kernel f j is independent of the period i when claims

incurred.

Assumption 2.4. All claims are for the same line of business and are developed

under the same regime.

Assumption 2.5. limk→∞ fk = 1

Let Ω be a sample corresponding to the laws of nature (according as they apply

over the duration of claims development), P be a probability measure on Ω, and

F be a σ -field of Borel subsets of Ω. We designate the filtration of σ -fields F j ⊆
Fk, 0 ≤ s ≤ t by F. The σ -field F0 contains the P-null sets of F. Thus, our

model is developed on the filtered probability space (Ω,F ,F,P). In the interest

of notational economy we suppress the “ω” notation unless otherwise indicated.

Based on the foregoing assumptions, we rewrite Equation 2.3 as

E[Ci, j+1| F j] = f jCi, j (2.4)

The recursive nature of Equation 2.3 and Equation 2.4 together with the claims

4See (Campbell et al., 1997, pp. 294-296) for definition and discussion of this concept.
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triangle shows that if all claims are developed by period n−1, then

E[Ci,n| Fn−1] =Ci,n+1−i fn+1−i fn−i . . . fn−1 (2.5)

So that the year n reserve needed for claims incurred in i is

Ri = E[Ci,n| Fn−1]−Ci,n+1−i (2.6)

This is rewritten as

Ri =Ci,n+1−i( fn+1−i fn−i . . . fn−1 −1) (2.7)

Hence if we can forecast the pricing kernel f(·) then we can forecast reserves

because

R̂i =Ci,n+1−i( f̂n+1−i f̂n−i . . . f̂n−1 −1) (2.8)

3 Stochastic Claim Development

3.1 Detrended cumulative claims

First, we start with a nonparametric model introduced by Mack (1994) which

focused on the first two moments of an unknown distribution. In particular, Mack

proposed the variance of claims reserves as a measure of their risk. We extend that

model to detrended claims and show how it justifies stochastic claims modeling.

A succinct description of that procedure follows.

Assumption 3.1. Detrended claims are stochastic.

If we believe that claims have a linear trend then we run the regression

Ci, j = a0 +a1 j+C̃i, j, j = 1,2, . . . ,n (3.1)

where a0 and a1 are constants, and use the residuals C̃i, j as our detrended claims.

This is the sui generis of the Wold decomposition Theorem 4.1, infra. By defi-

nition, detrended claims are fluctuations around a trend. So they are “difference

stationary”. These fluctuations may be due to systematic factors like accounting

and or “seasonal” deadlines for reporting. Mean reversion implies that the uncon-

ditional expected value E[C̃i, j] = 0. However, at some point in time, developed
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claims are exhausted so a final payment is made, and they cease to grow so the

series is flattened and “killed”. Therefore, the trend must reflect that scenario of

diminishing growth. See e.g., (Box et al., 1994, pg. 359). Among other things,

(De Jong, 2006, pg. 29) used a log link ratio parametrization to address claims

growth issues. Thus, an admissible parametrization for our model is

Ci, j = (1− exp−( j−i))Ci,∞ +C̃i, j (3.2)

P− lim
j→∞

C̃i, j = 0 (3.3)

(Wright, 1990, pg. 682) also presented a Box-Cox type transformation for parametriz-

ing trends in cumulative claims. In which case we could run the regression

Ci, j = k( j− i)λCi,∞ +C̃i, j (3.4)

where j − i is the delay5 in claims payment, k is a constant, and λ is a shape

parameter.

In the context of Equation 2.3 a detrended claims model imples

logCi, j+1 = log f j + logCi, j (3.5)

This implies that

log f j = logCi, j+1 − logCi, j = r j (3.6)

where r j is the growth rate for claims developed in period j and we can write

f j = exp(r j) (3.7)

This is the basis for De Jong (2006) parametrization. Perhaps, most important

for the purpose of this paper, it implies that the pricing kernel f j has exponential

growth.

3.2 Unobservable pricing kernel or link ratio function

Let F j be the information set available to the actuary at time j. Further,

let f j be an unobservable ”link ratio function” that ”links” claims across time.

5(Wright, 1990, pg. 681) modeled delay as a continuous random variable. For practical purposes that variable

is discrete. See e.g., shot noise process reported in (Küppelberg and Severin, 2001, pg. 1) when claims arrival is an

inhomogenous Poisson process,
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The behavior of this ratio is critical to our understanding of claims behavior. See

e.g.,(Bardis et al., 2008, pg. 2); (Behncke, 2000, pg. 245); (De Jong, 2006, pg.

29); (Mack, 1994, pg. 111). According to (Mack, 1994, pg. 109) given period

j−1 claims, the conditional expected value for claims developed in period j is

E[Ci, j+1|F j] = f jCi, j (3.8)

Under that set up, the pricing kernel f j is an unobservable period j link ratio func-

tion that needs to be forecast at time i ≤ j. In fact, as shown below, the proposed

claims ladder model proceeds under conditions of risk (“known” probability dis-

tribution) and uncertainty (unknown probability distribution) for several variables.

It can be shown, see e.g., Mack (1994b, pp. 105) that

Ci,J =Ci,J+1−i fJ+1−i . . . fJ−1, 2 ≤ i ≤ J (3.9)

f j =
Σ

I− j
i=1Ci, j+1

(Σ
I− j
i=1Ci, j

, 1 ≤ j ≤ I −1 (3.10)

4 Econometric specification of stochastic claims risk

(Mack, 1994, pg. 111) rewrites the link ratio above as

f j =
Σ

I− j
i=1Ci, j

Σ
I− j
i=1Ci, j

Ci, j+1

Ci, j
(4.1)

= Σ
I− j
i=1wi, j

Ci, j+1

Ci, j
(4.2)

Furthermore, he let

Var(
Ci, j+1

Ci, j
| F j) = E[{

Ci, j+1 −E[Ci, j+1]

Ci, j
}2| F j] =

α2
i

Ci, j
(4.3)

which can be rewritten as

Var{Ci, j+1| F j}=Ci, jα
2
i (4.4)

By definition, this is functionally equivalent to Engle’s (1982) ARCH specifica-

tion, for fluctuations C̃i, j around a trend, as follows. Let ξ j be the unobservable
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innovation in detrended claims, such that Var{ξi}= α2
i , and write

C̃i, j+1 =
√

|C̃i, j|ξ j (4.5)

So that unconditionally

E[C̃i, j+1] =
√

|C̃i, j|E[ξ j] = 0 (4.6)

Since E[C̃i, j+1] = 0 by construction, this implies that

E[ξ j] = 0 (4.7)

Undeniably, the conditional claims process is stochastic by virtue of being a func-

tion of ξ -innovations. That is

E[C̃i, j+1| F j] =
√

|C̃i, j|ξ j (4.8)

An earlier paper by Taylor and Ashe (1983) used a tangentially related parametriza-

tion as follows

C̃i, j+1 = µ j +σ jεi, j (4.9)

with mean (µ j) and variance (σ2
j ) related only to development year. Thus, if

E[µ j] = 0 unconditionally, that model is related. For what follows, we need to

introduce

Theorem 4.1 (Wold Decomposition Theorem). Let ξ (t,ω) be a stationary se-

quence for t = 0,±1,±2, . . . , and let Hξ be the closed linear hull, in L2(Ω,F ,F, P),
generated by ξ . Furthermore, let Hξ (t) be the closed linear hull generated by

ξ for n ≤ t. Let HS
ξ
(t) = ∩tHξ (t) ⊂ F. Then an arbitrary sequence ξ (t,ω) ∈

L2(Ω,F ,F, P) has a unique decomposition of the form

ξ (t,ω) = ξS(t)+η(t,ω) (4.10)

where ξ and η are uncorrelated sequences that are subordinate to ξ (t,ω), ξS(t)

is deterministic, and η(t,ω) is a MA(∞) process.

Proof. See (Brockwell and Davis, 1987, pg. 180) and (Gikhman and Skorokhod,

1969, pg. 243).
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Because lim j→∞ f j = 1 we can write f j = 1+u j where P-lim j u j = 0. Therefore,

f j has a Wold decomposition. See section subsubsection 4.1.1, infra. That is, it

can be represented as a MA(∞) process. Specifically, since the link function f j is

unobservable, let it be measured with error given by η j. So the actuary observes

f̃ j = f j +η j (4.11)

and the unconditional claim developed in period j+1 is now

C̃i, j+1 = f jC̃i, j +η jC̃i, j (4.12)

In which case the conditional variance is

Var{C̃i, j+1| F j}= E[{C̃i, j+1 −E[C̃i, j+1| F j]}
2] (4.13)

= C̃2
i, jVar(η j) = C̃2

i, jσ
2
η j

(4.14)

Let

εi, j =
√

|C̃i, j|η j (4.15)

So that

Var(εi, j) = |C̃i, j|σ
2
η j

(4.16)

This implies that we can write

C̃i, j+1 =
√

|C̃i, j|εi, j = C̃i, jη j (4.17)

It is precisely at this point that (Engle, 1982, pg. 988) realized that that autore-

gressive specification could lead to a variance of zero or infinity, and he suggested

the autoregressive conditional heteroskedasticity (ARCH) correction

C̃i, j+1 = η j

√

σ2
C̃i, j+1

(4.18)

σ2
C̃i, j+1

= θ0 +θ1C̃2
i, j (4.19)

with the proviso that, unconditionally, E[η j] = 0 and Var(η j) = 1. It should

be noted that the foregoing specification handles negative values for incremen-

tal claims through the sign of η j. Thereby, correcting a defect in Mack (1994).
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See (Verrall, 2000, pg. 97). Thus, we have just proven the following

Theorem 4.2 (ARCH in Detrended Stochastic Claims). . Let C̃i, j be a detrended

claim incurred at time i and developed during period j. Let F j be the information

set available to the actuary at time j, and f j be an unobservable function that links

claims in periods i and j such that C̃i, j+1 = f jC̃i, j. Let the conditional variance of

claims developed in period j+1 be

Var(C̃i, j+1| F j) = C̃i, jα
2
j

Suppose that the actuary observes a link function f̃ j = f j +η j with unobservable

measurement η j and link f j. Let E[η j] = 0 and Var(η j) = 1. Then detrended

claims follows an ARCH process

C̃i, j+1 = η j

√

σ2
C̃i, j

σ2
C̃i, j+1

= θ0 +θ1C̃2
i, j

Remark 4.1. This Theorem was derived by extending the Mack (1994) model to

detrended claims, and using a fairly standard signal-noise parametrization for the

link ratio function. Thus, detrended stochastic claims modeled according to Mack

(1994), follows an ARCH process with innovations that depend on claims in the

development year. However, Mack did not derive an ARCH specification as we

do here.

At Engle’s suggestion, Bollerslev proposed a more parsimonious model to mit-

igate the long lag structure encountered in ARCH models in practice. See (Boller-

slev, 1986, pp. 307, 308). Instead of the ARCH process, Bollerslev introduced a

Generalized ARCH process which, in the context of our detrended claims process,

implies the following

Corollary 4.3 (GARCH(1,1) Detrended Claims Process). . Let η j+1, the measure-

ment error in observed link function for claims developed during period j, be dis-

tributed with mean zero and variance Var(C̃ j+1|F j) = σ2
C̃i, j

. Then a GARCH(1,1)

process is admissible for evolution of the dynamics of detrended claims. In partic-

ular,

σ2
C̃i, j+1

= α1ε2
i, j +β1σ2

C̃i, j
(4.20)
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Where

α1 +β1 < 1 (4.21)

Remark 4.2. By definition in Equation 4.15, εi, j is a convex function of C̃i, j. Fur-

thermore, the quantity ε2
i, j = |C̃i, j|η

2
j reflects the impact of innovations for claims

developed in period j.

Definition 4.1 (Risk factor exposure). Let εi, j be innovations in stochastic claims,

and σ2
C̃i, j

be a measure of stochastic risk. So that in Equation 4.20 stochastic risk

at time j+1 is a function those two risk factors. Then

A. α1 is exposure to innovations in developed claims; and

B. β1 is exposure to adaptive claims risk.

In what follows we need the following theorem.

Theorem 4.4 (Convergence of Types). Let △ connote MLE for a given parameter

and derived residual. So that
△

α1,
△

β 1 are MLE for α1 and β1 in the GARCH(1,1)

process

σ2
C̃i, j+1

= α1ε2
i, j +β1σ2

C̃i, j

Furthermore, let

P− lim
j→∞

△

σ
2

C̃i, j+1
=

σ2
C̃i

1−α1 −β1

Then for any continuous function g ∈C2(R) we have

P− lim g(
△

α1,

△

β 1) = g(α1,β1)

Proof. See (Bollerslev, 1986, Thm. 1 and 2 pp. 310-311) and “convergence of

types theorem” in (Durrett, 2005, pg. 156).

It is clear from Equation 4.20 that we can write innovations in stochastic claims

as a function of the risk factor exposures defined in 4.1. In particular

△

ε i, j =

△

σ
2

i, j+1 −
△

β 1

△

σ
2

i, j

△

α1

(4.22)
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On average, MLE estimates of α1 and β1 are consistent and efficient. However, an

empirical regularity for GARCH(1,1) is that
△

β 1 ≫
△

α1. That is, stochastic claims

risk exposure portends persistent claims risk, while exposure to innovations in

developed claims is suggests that innovations are comparatively transient. See

e.g., (Davidson and MacKinnon, 2004, pg. 579); (Shephard, 1996, pg. 13). Thus,

we have the following

Proposition 4.5. Let εi, j be the innovation in claims incurred at time i and de-

veloped in period j− 1, and σi, j be the corresponding claims risk. Suppose that

claims risk dynamics follows a GARCH(1,1) process so that

△

ε i, j =

△

σ
2

i, j+1 −
△

β 1

△

σ
2

i, j

△

α1

Then claims risk exposure α1 portends persistent claims risk, and β1–the exposure

to innovations, portends transient shocks to claims risk.

Proof. See Theorem 4.4.

4.1 Pricing kernel estimator

The foregoing analysis shows that ARCH and GARCH are admissible models for

claim fluctuation around trend. However, these fluctuations must decay to reflect

long run convergence to developed claims. See e.g., Appendix A, Fig. 1: Average

Cumulative Percentage of Claims Paid By Development Year in Nelson (2000).

Specifically, we claim that C̃i, j is well defined by proving that

C̃i, j+1 =
√

|C̃i, j|εi, j

is an admissible decay model for claim fluctuations. See e.g., (Wilkie, 1995,

pg 928). See also, (Engle, 2004, pg. 407). Let

C̃i,1 =
√

|C̃i,0|εi,0 (4.23)

Then, by recursion, we get

C̃i,k = εi,k−1|εi,k−2|
−2−1

. . . |εi,0|
−2−k+1

|C̃i,0|
−2−k

(4.24)
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In which case,

lim
k→∞

C̃i,k = lim
k→∞

εi,k−1|εi,k−2|
−2−1

. . . |εi,0|
−2−k+1

|C̃i,0|
−2−k

= 0 (4.25)

assuming that the ε-fluctuations are such that they dampen to zero. This is a

pseudo Kalman filter result because past error is used for forecasting. See (Box

et al., 1994, pg. 165). Because |ε| < 1, the index suggests that these are the

“stochastic claims inflation” factor in (Kremer, 1999, pg. 106). So the derived

fluctuations C̃i,k decay and

P− lim
k→∞

C̃i,k = 0 (4.26)

Thus we have just proved the following

Theorem 4.6 (Pricing Kernel Estimator). . Let C̃i, j be the detrended stochastic

claim incurred at time I but not developed until period j. Let f j be the unobserv-

able link ratio function for claims developed in period j, and η j be concommittant

measurement error. So that the actuary observes f̃ j = f j +η j. Then the stochastic

claims inflation factor, i.e. pricing kernel, for claims claims incurred in period i

and developed at time j is given by

ε−1
i, j =

1
√

|C̃i, j|η j

Because εi, j and η j are estimable from ARCH and or GARCH diagnostics we

get cross validation for f j by extrapolating
△

f j = f̃ j−
△

η j by virtue of Theorem 4.4.

It is enough to claim that estimation of pricing kernel noise is given by

△

η j =

△

ε i, j

|C̃i, j|
(4.27)

So that the signal to noise ratio for the link ratio function or pricing kernel is

SNRClaimIn f l =

△

σ
2

f̃ j

△

σ
2

η j

(4.28)

If SNRClaimIn f l > 1, then our model is picking up the “signal” from the true link

13



ratio function. In the actuarial literature the coefficient of variation

(SNRcv
ClaimIn f l)

−1 =

(

△

µ f j

△

σ f j

)−1

(4.29)

is used as an alternative to Equation 4.28. See (Shapland, 2007, pp. 130-131).

4.1.1 Wold decomposition of pricing kernel

According to Wold Dcomposition Theorem 4.1 if SNR < 1, then f j has a

long MA representation for trend. If SNR > 1, then the deterministic component

dominates and the MA representation for trend in short. See (Mills and Markellos,

2008, pg. 118).

Consider the following argument. Let

f j = 1+u j (4.30)

u j = θu j−1 + v j, |θ |< 1 (4.31)

Suppose that η j is white noise, so that

η j = η j−1 + e j (4.32)

Then

∆ f̃ j = ∆ f j +∆η j (4.33)

= (1−θL)−1(1−L)v j + e j (4.34)

where ∆ is a difference operator, and L is a lag operator. Under Wold decomposi-

tion ∆ f̃ j is difference stationary. Thus we have the signal

z j = (1−θL)−1(1−L)v j (4.35)

and noise e j. Undeniably, z j has a moving average (MA) representation. Thus, the

“new” SNR is

SNR =
σ2

z

σ2
e

= (1+
2θ 2

1−θ
)
σ2

v

σ2
e

(4.36)

The behavior of θ determines the magnitude of SNR. As long as θ is in the
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unit circle SNR will be inflated, i.e greater than 1. In particular, if 0 < θ < 1

then the signal should be strong. In any case, the decay hypothesis is suppported

by Wold decomposition. For instance, Equation 4.36 satisfies (Shapland, 2007,

Concept 1. pg. 130) which reads, in pertinent part:

For each (accident, policy, or report) year, the coefficient of variation

(standard error as a percentage of estimated liabilities) should be the

largest for the oldest (earliest) year and will, generally, get smaller when

compared to more and more recent years.

Evidently, the coefficient of variation (CV) is large when the SNR is small since

SNR = (CV )−1. Which implies that the moving average term is relatively domi-

nant, i.e., the series is getting longer.

5 Insurance accounting and performance measurement

According to (Nelson, 2000, pg. 8) “The primary input used by insurers in

developing rates, and by regulators in evaluating those rates, is the loss reserve

estimate”. Furthermore

Statutory accounting practices require insurers to charge claim losses to

operations in the period in which they are incurred, even though many

years may elapse before the claims are actually paid. As a result, in-

surers must estimate the amount required to settle the incurred but un-

paid claims, including direct expenses associated with the claims set-

tlement process (e.g., litigation costs). This liability, known as the loss

reserve, should be reported at nominal value in the insurers statutory

annual statement filed with state insurance regulators.2 The loss reserve

is revised as new information becomes available, until all claims are

settled and total incurred losses are known with certainty.

(Nelson, 2000, pg. 4). For instance, the rate making process provides for a (1) loss

ratio method (LRM) or (2) a pure premium method (PPM) defined as follows

LRMi, j =
Paid Lossesi, j +Ci, j

Earned Premiumi, j
(5.1)

PPMi, j =
E[Ci, j]

Exposure Unitsi, j
(5.2)
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Additionally, according to (Ward and Lee, 2002, pp. 120-121) the Risk-adjusted

Return on Capital (RAROC) for a non-life insurance company is

RAROCi, j =
UWi, j + ICi, j +CBi, j

ECi, j

where

UW = underwriting result

IC = investment credit

CB = capital bene f it

EC = economic capital

Of interest to us in that formula is the underwriting result which is adjusted to

account for changes in company experience

AdjUW =UW −∆Ci, j +Overhead −OneTimeCharges (5.3)

where ∆Ci, j is change in reserves. To avoid overloading the paper, we will not

go into details about the ramifications of the foregoing formulae since the cited

references covers them thoroughly. Nonetheless, it is clear that the variable Ci, j

plays a prominent role in both statutory accounting requirements and computation

of risk adjusted return on capital6. Therefore, those performace measures of the

company are affected by claims forecast which, in our model, are determined by

risk exposure factors.

6 Conclusion

This paper provided a theoretical model of claims reserve forecast based on the

Wold decomposition, and workhorse GARCH(1,1) model in financial economet-

rics. Diagnostics from that model was used to provide forecasts of the pricing

kernel for IBNR claim development, cross validate, and compute signal to noise

ratio for unobservable link ratio functions–cross validated by Wold decomposi-

tion In practice, that model may be difficult to implement because there may not

be enough data points. However, (Nelson, 2000, pg. 8) reported that the average

6 A survey by Graham and Harvey (2001) showed that large companies used the CAPM to compute return on

capital (ROC) but small firms did not. So our results may be more applicable to lareg companies.
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range for claims development exhaustion is 7-years for Homeowners/Farmowners

Multiple Peril (HM) and 20-years for Medical Malpractice (MM). Therefore, the

methodology proposed here may be better suited to a monthly or quarterly series

of long tail claims. Additionally, we prove that seemingly unrelated specifica-

tions for loss link ratio, and claims volatility, are linked by a single risk expo-

sure factor. Because our results were driven by Wold decomposition–of which

the GARCH(1,1) model is a special case–further research in this area includes

extension to the panoply of ARCH models, and other time series decomposition

models.
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Küppelberg, C. and M. Severin (2001). Prediction of Outstanding Claims. In-

stitute of Statistics, Ludwig-Maximilians University in Munich, Paper No. 258,

available at http://epub.ub.uni-muenchen.de/.

Mack, T. (1994). Measuring The Variability of Chain Ladder Reserve Estimates.

Casualty Actuarial Society Forum 1(1), 101–83.

Mills, T. C. and T. N. Markellos (2008). The Econometric Modeling of Financial

Time Series (3rd ed.). New York: Cambridge University Press.

Nelson, K. K. (2000, Jan.). Rate Regulation, Competition, and Loss Reserve Dis-

counting by Property-Casualty Insurers. Accounting Review 75(1), 115–138.

Shapland, M. R. (2007). Loss Reserve Estimation: A Statistical Approach for

Determining Reasonableness. Variance:Advancing The Science of Risk 1(1),

120–148.

Shephard, N. (1996). Time Series Models in Econometrics, Finance and Other

Fields, Chapter Statistical Aspects of ARCH and Stochastic Volatility, pp. 1–

67. London: Chapman & Hall.

19



Taylor, G. (1977). Separation of Inflation and Other Effects From the Distribution

of Non-life Insurance Claim Delays. Astin Bulletin 9, 219–230.

Taylor, G. C. and F. R. Ashe (1983). Second Moments of Estimates of Outstanding

Claims. Journal of Econometrics 23(1), 37 – 61.

Verrall, R. J. (2000). An Investigation Into Stochastic Claims Reserving Models

and The Claims Ladder Technique. Insurance, Mathematics and Economics 26,

91–98.

Ward, L. S. and D. H. Lee (2002). Practical Application of the Risk-Adjusted

Return on Capital Framework. CAS Forum Summer 2002, Dynamic Financial

Analysis, available at http://www.casact.org/pubs/forum/02sforum/02sf079.pdf.

Wilkie, A. D. (1995). More On A Stochastic Asset Model For Actuarial Use.

British Actuarial Journal 1(5), 777–964.

Wright, T. S. (1990). A Stochastic Method for Claims Reserving in General In-

surance. Journal of Institute of Actuaries 117, 677–731.

20


	Introduction
	IBNR Claim Ladder Model
	Stochastic Claim Development
	Detrended cumulative claims
	Unobservable pricing kernel or link ratio function

	Econometric specification of stochastic claims risk
	Pricing kernel estimator
	Wold decomposition of pricing kernel


	Insurance accounting and performance measurement
	Conclusion
	References

