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Abstract—We calibrate Markov regime-switching (MRS) mod-
els to spot (log-)prices from two major power markets. We show
that while the price-capped (or truncated) spike distributions do
not give any advantage over the standard specification in case of
moderately spiky markets (such as NEPOOL), they improve the
fit and yield significantly different results in case of extremely
spiky markets (such as the Australian NSW market).
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I. INTRODUCTION

The aim of this paper is to test whether the common practice

of ignoring market-imposed price caps in electricity spot price

models is a harmless approximation or a dangerous procedure

leading to under- or overestimation of price spike severity. To

this end, we use the popular in the energy economics literature

Markov regime-switching (MRS) models and evaluate the fit

of models with standard, as well as truncated (or price-capped)

spike regime distributions. Motivated by recent findings [11]

we focus on MRS models with heteroskedastic base regime

dynamics and shifted spike regime distributions. The ratio-

nale for the former comes from the observation that price

volatility generally increases with price level, since positive

price shocks increase volatility more than negative shocks (this

is the so-called ‘inverse leverage effect’ [15]). Shifted spike

distributions, on the other hand, are required for the calibration

procedure to separate spikes from the ‘normal’ price behavior.

The analysis of spike size distributions in typical MRS

models shows that, in some cases the fitted distributions are

so heavy-tailed that the variance does not exist [10]. Yet,

market prices are generally capped, yielding finite moments.

Although model generated prices should comply with the

market specifications, in the studies performed so far this

issue was not taken into account. Therefore in this paper

we introduce truncated spike distributions, which ensure that

observations do not exceed a specified level and, hence, are

well suited for modeling capped power market prices.

The paper is structured as follows. In Section II we intro-

duce MRS models for electricity log-prices. Next, in Section

III we present the datasets and explain the deseasonalization

procedure. In Section IV we compare calibration results for

the analyzed models. Finally, in Section V we conclude.

II. MARKOV REGIME-SWITCHING MODELS

The idea underlying the Markov regime-switching (MRS)

scheme is to model the electricity price (or any other observed

stochastic process) by separate phases or regimes with differ-

ent dynamics. The switching mechanism between the states is

Markovian and is assumed to be governed by a latent random

variable. The processes driving the individual regimes do not

have to be Markovian, but in energy economics applications

are often assumed to be independent from each other.

In this study, we let the average daily spot electricity price

follow a 2-regime MRS model, which displays either normal

(base regime Rt = 1) or high (spike regime Rt = 2) prices

each day. The transition matrix P contains the probabilities

pij of switching from regime i at time t to regime j at time

t+ 1, for i, j = {1, 2}:

P = (pij) =

(

p11 p12
p21 p22

)

=

(

p11 1− p11
1− p22 p22

)

. (1)

The current state Rt at time t depends on the past only through

the most recent value Rt−1 and the probability of being in

state j at time t + m starting from state i at time t is given

by P (Rt+m = j | Rt = i) = (P′)m · ei, where P
′ is the

transpose of P and ei is the ith column of the identity matrix.

To our best knowledge, the MRS models were first applied

to electricity prices in [6]. A two state specification was pro-

posed, in which in both regimes the log-prices were governed

by autoregressive processes of order one, i.e. AR(1), with the

same error term. Huisman and de Jong [9] proposed a model

for deseasonalized log-prices with two independent regimes

– a stable, mean-reverting AR(1) regime and a spike regime

modeled by a normal distributed random variable whose mean

and variance were higher than those of the base regime

process. This simple yet versatile model was further extended

by admitting lognormal, Pareto [2] and exponential [1] spike

regime distributions, as well as, autoregressive Poisson driven

spike regime dynamics [4] or shifted spike distributions and

heteroskedastic CIR-type base regime dynamics [10].

Some of the more recent second generation models (as

classified in [11]) used fundamental information (system con-

straints, weather variables) to better model regime-switching.

Mount et al. [16] proposed a 2-regime model with two AR(1)



regimes for log-prices and transition probabilities dependent

on the reserve margin. They concluded that the estimated

switching probability from the base (low) to the spike (high)

regime predicts price spikes well if the reserve margin is

measured accurately. In a complementary study Huisman [8]

used temperature as a proxy and showed that the probability

of spike occurrence increases when temperature deviates sub-

stantially from mean temperature levels. However, in general,

temperature does not provide as much information as the

reserve margin.

Finally, in a recent review paper Janczura and Weron

[11] tested a range of MRS models and concluded that the

best structure was that of an independent spike 3-regime

model with time-varying transition probabilities, heteroscedas-

tic diffusion-type base regime dynamics and shifted spike and

price drop regime distributions. Not only did it allow for a

seasonal spike intensity throughout the year and consecutive

spikes or price drops, which is consistent with market observa-

tions, but also exhibited the ‘inverse leverage effect’ reported

in the literature for spot electricity prices.

The above mentioned models have a common feature.

Namely, they ignore the fact that in organized markets, like

power exchanges or power pools, electricity prices are gener-

ally capped. To address this issue we introduce truncated spike

distributions. Motivated by [11] we use shifted spike regime

distributions which assign zero probability to prices below

a certain quantile (here: the third quartile m = F−1(0.75),
where F is the cumulative distribution function) of the dataset.

We consider the lognormal (LogN) distribution:

log(Xt −m) ∼ N(α2, σ
2
2), Xt > m, (2)

and the truncated lognormal (TLogN) distribution:

f(x) =
C exp

(

− (log(x−m)−α2)
2

2σ2

2

)

(x−m)σ2

√
2π

, x > m, (3)

where C = Φ((log(L)−α2)/σ2) is a normalizing constant, Φ
is the standard Gaussian cumulative distribution function (cdf)

and L is the truncation level.

For the base regime dynamics we use a mean-reverting

heteroskedastic process of the form:

dXt = (α1 − βXt)dt+ σ1X
γ
t dWt. (4)

Note, that in this model the volatility is dependent on the

current price level Xt, i.e for a positive γ the higher the price

level the larger are the price changes. Consequently, compared

to the commonly used AR(1) dynamics, in this model the less

extreme price changes will be generally classified as ‘normal’

and not spiky.

Calibration of MRS models is not straightforward since

the regime is only latent and hence not directly observable.

Hamilton [7] introduced an application of the Expectation-

Maximization (EM) algorithm [5] where the whole set of

parameters θ is estimated by an iterative two-step procedure.

The algorithm was later refined by Kim [14]. In the first

step the conditional probabilities P (Rt = j|X1, ..., XT ; θ) for

the process being in regime j at time t, so-called ‘smoothed

inferences’, are calculated based on starting values θ̂(0) for

the parameter vector θ of the underlying stochastic processes.

Then, in the second step, new and more exact maximum

likelihood (ML) estimates θ̂ for all model parameters are

calculated. Compared to standard ML estimation, where for

a given probability density function f the log-likelihood func-

tion
∑n

t=1 log f(Xt, θ) is maximized, here each component of

this sum has to be weighted with the corresponding smoothed

inference, since each observation Xt belongs to the jth regime

exactly with probability P (Rt = j|X1, ..., XT ; θ).
The parameters of the ‘shifted lognormal’ regime are ob-

tained as the ML estimates of the standard lognormal distri-

bution fitted to log-prices shifted by m and weighted by the

smoothed inferences. In the truncated lognormal case the ML

estimation requires numerical maximization of the likelihood

function. Finally, the base regime parameters are estimated

via ML with each price being weighted by the smoothed

inferences. Following [12] we replace the latent values from

the base regime with their expectations. In every iteration

the EM algorithm generates new estimates θ̂(n+1) as well

as new estimates for the smoothed inferences. Each iteration

cycle increases the log-likelihood function and the limit of

this sequence of estimates reaches a (local) maximum of the

log-likelihood function.

III. DATA PREPROCESSING

In this paper we concentrate on the New South Wales power

market (NSW; Australia) and the New England Power Pool

(NEPOOL; U.S.). We use mean daily spot log-prices from the

period January 1, 2006 – December 26, 2009. The sample

consists of 1456 daily observations (208 weeks). The bid caps

are equal to 10000 AUD in the NSW market and 1000 USD

in the NEPOOL market.

It is well known that electricity prices exhibit seasonality

on the annual, weekly and daily level [3], [18]. Hence, we

follow the ‘industry standard’ and represent the spot price Pt

by a sum of two independent parts: a predictable (seasonal)

component ft and a stochastic component Xt, i.e. Pt = ft +
Xt. Further, we let ft be composed of a weekly periodic part

st and a long-term seasonal trend Tt, which represents both

the changing climate/consumption conditions throughout the

year and the long-term non-periodic structural changes. As in

[11] the deseasonalization is conducted in three steps.

First, Tt is estimated from daily spot prices Pt using a

wavelet filtering-smoothing technique (for details see [17],

[18]) with the 8th level (or S8) approximation, which roughly

corresponds to annual (28 = 256 days) smoothing. The price

series without the long-term seasonal trend is obtained by

subtracting the S8 approximation from Pt. Next, the weekly

periodicity st is removed by subtracting the average week

calculated as the median of prices corresponding to each day

of the week. The median is used instead of the commonly used

mean as it is more robust to outliers (extreme prices); this is

especially important for the extremely spiky Australian prices.

Finally, the deseasonalized prices, i.e. Pt−Tt−st, are shifted
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Fig. 1. Calibration results for the MRS models with truncated lognormal
spikes and mean-reverting heteroskedastic base regime dynamics fitted to
NSW (top) and NEPOOL (bottom) log-prices. The corresponding lower panels
display the probability P (Rt = 2|x1, x2, ..., xT ) of being in the spike
regime. The prices classified as spikes, i.e. with P (Rt = 2|x1, x2, ..., xT ) >
0.5, are additionally denoted by dots.

so that the minimum of the new process is the same as the

minimum of Pt (the latter alignment is required if log-prices

are to be analyzed). The resulting deseasonalized time series

Xt can be seen in Figure 1.

IV. EMPIRICAL RESULTS

The log-prices Xt and the conditional probabilities of being

in the spike regime P (Rt = 2|x1, x2, ..., xT ) for the analyzed

datasets are displayed in Figure 1. The prices classified as

spikes, i.e. with P (Rt = 2|x1, x2, ..., xT ) > 0.5, are addition-

ally denoted by dots. The estimation results are summarized

in Table I. Additionally in this table we provide probabilities

of staying in each regime pii, unconditional probabilities

P (R = i) of being in regime i, moments and values of the

log-likelihood function (LogL). Moreover, in order to evaluate
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Fig. 2. Comparison of lognormal (red dashed line) and truncated lognormal
(black solid line) spike regime probability distribution functions (pdf) fitted to
NSW log-prices. The logarithmic scale is used on the y axis to better illustrate
the differences in the tails.

the goodness-of-fit, we report the K-S test p-values. For details

on the testing procedure see [13].

The results of the K-S tests indicate that acceptable fits are

obtained for all considered models, since all p-values are larger

than 0.01. Recall, that p-values larger than 0.01 indicate that

we cannot reject the hypothesis about the chosen price model

at the 1% significance level.

Considering spike occurrences we see a similar picture for

both datasets. In each case there are about 8% of log-prices

classified as coming from the spike regime. As expected, the

probability of remaining in the base regime is very high: from

0.9670 for the NSW log-prices up to 0.9844 for the NEPOOL

log-prices. The probability of remaining in the spike regime

is lower, but still relatively high.

Regarding the base regime parameters we observe that

positive γ was obtained in all cases. This is consistent with

the ’inverse leverage effect’ reported for electricity prices,

reflecting the observation that positive electricity price shocks

increase volatility more than negative shocks [11], [15]. The

speed of mean reversion, represented by the parameter β, is

similar for both datasets and equals 0.23 and 0.24 for the NSW

and NEPOOL log-prices, respectively.

Comparing results obtained for the models with lognormal

and truncated lognormal spike distributions calibrated to the

NSW log-prices, we observe that the base regime parameters

and all probabilities are pretty much the same for both

models. This suggests that the classification to the base and

spike regimes was the same in both cases. The spike regime

parameters, however, differ significantly between the truncated

and the non-truncated specification. The truncated distribution

yields slightly higher α2 and evidently higher σ2. This leads

to a higher mean and variance in the truncated specification.

Especially apparent is the difference of variances: 2.48 in the

lognormal model and 8.30 in the truncated lognormal one.



TABLE I
CALIBRATION RESULTS, MOMENTS, K-S TEST p-VALUES AND LOG-LIKELIHOOD (LOGL) FOR THE NSW AND NEPOOL LOG-PRICES

Parameters Probabilities Moments K-S test p-values

Regime Distribution β αi σ2

i
γ pii P (Rt = i) E(Xt,i) V ar(Xt,i) Regime Model LogL

NSW

Base 0.24 0.52 0.0003 1.8 0.9675 0.9235 3.61 0.01 0.04 499

Spike LogN -0.60 1.2263 0.6074 0.0765 4.87 2.48 0.17

Base 0.24 0.52 0.0003 1.8 0.9670 0.9231 3.61 0.01 0.04 502

Spike TLogN -0.52 1.6409 0.6044 0.0769 5.23 8.30 0.27

NEPOOL

Base 0.23 0.47 0.0004 1.2 0.9844 0.9249 3.51 0.22 0.23 1565

Spike LogN -1.39 0.3443 0.8079 0.0751 3.93 0.04 0.18

Base 0.23 0.47 0.0004 1.2 0.9844 0.9249 3.51 0.22 0.23 1565

Spike TLogN -1.39 0.3446 0.8079 0.0751 3.93 0.04 0.18

The estimated spike probability density function (pdf) for the

truncated, as well as, the non-truncated model is given in

Figure 2. Looking at the goodness-of-fit measures we see

a similar picture. While the p-values obtained for the base

regime are the same, the truncated specification yields a better

fit of the spike distribution (0.27 for the truncated specification

versus 0.17 for the non-truncated one). Moreover, the whole

model log-likelihood is higher for the specification with trun-

cated spikes. This clearly shows, that the introduction of a

truncated distribution might be beneficial when considering

spike distributions. It is not only consistent with the market

specifications but also provides a better statistical fit.

The calibration results for the less spiky NEPOOL log-

prices lead, however, to significantly different conclusions.

The various statistics are identical for the truncated and non-

truncated specifications. Only σ2’s differ ... but by less than

0.1%. Clearly, even the highest log-prices are still far from

the market cap of log(1000 USD) = 6.91. As a consequence,

the estimated probability of exceeding the market cap is close

to zero, implying pretty much the same spike distribution in

both cases.

V. CONCLUSIONS

Our empirical study provides evidence that the introduction

of a truncated (or price-capped) spike distribution not only

is consistent with market regulations, but also can be useful

for modeling extremely spiky electricity spot prices. The

calibration results for the Australian NSW power market show

that there are significant differences between the estimated

spike distributions in the truncated and non-truncated cases

and that the statistical fit is better for the former. This indicates

that the truncation should not be neglected when modeling the

NSW market or alike. On the other hand, results obtained for

the NEPOOL market show that in case of less spiky electricity

prices the truncated and non-truncated specifications lead to

similar model estimates and goodness-of-fit.
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