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Abstract: This paper is set to investigate the existence of spillover effects for the trading
process of correlated financial instruments. While the main literature in price impact models
has focused mainly on multivariate processes for a unique asset, we argue that transitory
spillover effects in such class of models should exist as a simple biproduct of explicit
relationships among prices of different (but correlated) financial instruments. Firstly we
assess the theoretical implications of a transitory spillover effect in an extended
microstructure model and then we investigate our different hypothesis in the European bond
market with a formal econometric model. The results showed that the estimated parameters of
the econometric models do conform to what we expect in the theoretical derivations, where
the trades of one instrument would be correlated to the trades in others. But, even though the
results are positive, they could also be explained by traders splitting orders across different
instruments or joint periods of intensive trading. Further analysis also showed that the trading
intensity in other instruments does affect the trading process of the particular bonds. We
found that a buy (sell) order is less likely to be followed by a buy (sell) order if the market is
trading intensively. We explain such effect as an inventory problem, where volatility of
prices forces market makers to improve trades in the opposite direction from the current order
flow. The main conclusion of this study is that we find inconclusive results towards the
particular microstructure model set in the theoretical part of the paper, but positive results for
a general spillover effect in the trading process of European fixed income instruments.

Keywords: market microstructure, spillover effect, commonalities, liquidity, price impact of a
trade.
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Introduction

The study of trading processes in the high frequency dimension has attracted a lot of attention
of the academic community for the past few years. One can settle this attention on the
advance of computational power and on the new availability of high frequency data for
different instruments. While the advent of tick by tick trades and quotes data has forced an
adaptation from the usual modelling tools used in discrete time models, the intuition is the
same, explain the factors that move prices.

Microstructure models of trading draw explicit relationships between efficient prices and
tradable (quoted) prices given particular stylized effects observed in the market. These effects
are labelled as transitory effects (or microstructure frictions) and include the inventory
problem and the asymmetric information issue. Summarizing, the first is given by the need of
the market maker (dealer) to avoid excessive risk in his trading operations and the second is
simply the result of (better) informed economic agents impacting prices with their trades.

In general, these theoretical models are represented by a set of recursive equations describing
the evolution process for efficient prices, mid-quotes, trades and possibly market maker’s
inventory. The deviations of the tradable prices from the true (or efficient) price are the result
frictions in the trading process. Mathematically, it is possible to show that these structural
models retain an autoregressive structure in the reduced form equations, which then
motivates the econometric analysis in empirical data. See (Hasbrouck, 1995) for further
details on microstructure models of price discovery.

The present paper is related to a general microstructure model. Our main argument is towards
the introduction of spillover effects in such a representation. More precisely, we are
interested in gaining a better understanding how the trades and quotes of other instruments
affect the trading process of a particular financial asset. We can draw motivations on this idea
by realizing that traders are not restrained to trade only a single asset class. Standard finance
textbooks make significant points on describing arbitrage and hedging strategies which
involve operations on different asset classes. On the market maker side, the behaviour of
other assets classes can also provide information regarding the true value of a particular
instrument. For instance, futures contracts and underlying spot prices are intrinsically related
so it’s not hard to imagine the actions of a futures dealer being conditional on the behaviour
of the underlying asset.

The idea of correlated trading processes over different instruments is not novel. Empirical
examinations of co movements in aggregated measures of liquidity can be found in
(Hasbrouck, et al., 2001), (Chordia, et al., 2000) and (Chordia, et al., 2001). Also, closer to
our idea of a explicit microstructure representation, a simple model of multiple prices for two
assets in which there was zero correlation across assets in the random walk error term but
trades were correlated is described in (Hasbrouck, 2007) p. 94 . One can imagine such an
event for instance if a trader is to proxy a particular stock index by buying all (or some of) the
underlying shares. We use the same intuition as in (Hasbrouck, 2007) multiple assets model
but we further detail the structural model by defining asset (and non asset) specific drivers of
trading. The novelty in the theoretical microstructure model defined in the paper is that trades
in asset i are correlated to the mispricing in asset j and not directly to trades in j itself. This is
what we call a spillover effect and we argue that this effect should be classified as transitory
and trade related.

Our reason for testing such a hypothesis in the European fixed income market is that while
this market is composed of instruments for different maturities and countries, they have



similar risk factors. Therefore, it can be argued that microstructure effects will be spilled over
across similar bonds. Another effect which we are particularly interested is the spillover of
trading intensity in the market upon the trading process if a particular bond. More precisely,
we want to know whether the amount of trades (or quotes changes) in similar instruments is
affecting the price impact of trades of a respective bond. The intuition is similar to (Dufour,
et al., 2000), that is, to test whether trading intensity in other instruments also conveys
information. These are the main arguments behind this paper and represent sufficient
arguments to demand a scientific investigation.

The paper is organized as follows. First we briefly look at previous papers in the topic,
second we build our theoretical microstructure model and derive the econometric
implications of the spillover effect. This is followed by description of the data, methodology
and results. We finish the paper with the usual concluding remarks.

Literature Review

The main background of this study is in the price discovery of financial assets, more precisely
how economic agents’ behaviour drives the process behind trades and quotes. The main
reference in this area of market microstructure goes back to (Kyle, 1985), which was one of
the first to formalize the economic situation where a group of risk neutral market makers face
insiders (informed traders) and liquidity traders in the observed order flow. In this setup, the
market maker is aware of the insider trader strategy but not its identity. He will therefore,
based on the observed order flow, update his beliefs about the true value of the asset. This
model was then further extended to an order book structure in the (Glosten, et al., 1985)
paper. In this study the authors showed that the existence of asymmetric information among
traders motivates an increase in the quoted spread from the market maker’s side. This larger
spread is then the premium for the market maker for the uncertainty of trading with informed
traders. The (Glosten, et al., 1985) setup was then further extended for variable trading sizes
in the work of (Easley, et al., 1987).

For the case of empirical models of price discovery, in which the interest is in estimating
parameters of the underlying microstructure model, the seminal paper in the area is
(Hasbrouck, 1991). In this work, it was shown that in a theoretical framework trades and
quotes affect each other in an autoregressive fashion. In the paper, the author showed that the
incoming of a buy/sell order in the market will move the mid quote price in the same
direction as the trade (e.g. buy trades moving prices up). This is related to the informational
content of trades, that is, trades convey information regarding the true price of an asset. Also,
there was significant evidence that volume of trades and the spread also contribute to the
price impact of a trade. This model made a significant contribution to the field and the
extension of this basic model soon drew the attention of the academic community. The
subsequent paper on this topic is (Brennan, et al., 1996), which made an analysis comparing
the measures of illiquidity and expected returns for NYSE stocks. The authors find that the
most illiquid stocks, measured by a high frequency econometric model, also present higher
expected returns. This result is intuitive as the lack of liquidity of a stock creates costs for
uninformed investors, and therefore, on average, they should be compensated by higher
returns.

In the paper of (Dufour, et al., 2000), Hasbrouck’s model was extended to allow for the effect
of time on the price impact of a trade. This research was based on theoretical foundations®

* See (Hasbrouck, 1995) and (Easley, et al., 1995).



which stated that the time between events should indirectly indicate the present of news in the
market. This study was conducted for 18 stocks in the TORQ database and the main result is
that the time (measured in durations) does affect the price impact of a trade in a negative way.
Higher (lower) the duration between trades, lower (higher) the price impact of a trade. Such
result is intuitive as long time intervals with no trade are usually associated with the lack of
news in the market. Therefore, if the trading frequency is high (and durations are small), there
is a higher likelihood of informed traders which will result in the market maker moving
quotes more sensibly with respect to the observed order flow.

More recently, in the work of (Furfine, et al., 2005), the interest was in analyzing how price
discovery in the US treasury market would change for stressful time periods. Using different
concepts of stressful times, the authors find that the impact of trades in quote changes is
bigger and spreads are wider across different maturities when the market is experiencing
stress. This is an intuitive result as the cost to carry inventory is higher for stressful times and
therefore, for these time periods, the market makers would have the right motivation for
increasing implicit trading costs such as impact of trades and quoted spread.

In the common ground of microstructure of fixed income markets, we have the work of
(Brandt, et al., 2003) and (Cheung, et al., 2005). In the first of these, authors looked at the
empirical relationship between orderflow, liquidity and yield curve for a high number of
instruments. The main conclusion of this study was the evidence of price discovery, where
the order flow impacts the yield curve. In the second paper, (Cheung, et al., 2005), the idea
was to understand how the different trading platforms for European bonds differ in terms of
microstructure issues. More precisely how different are the implicit trading costs from one
platform to another. The authors find that there were differences in the trading aspects of both
platforms in terms of observed spread and price impact of trades. But, these were small.
Therefore the authors argue that both platforms (local and European) are integrated.

Switching the literature review to the case of the investigation of common factors on high
frequency data, we have the work of (Hasbrouck, et al., 2001). Using principal component
and canonical correlation analysis, the authors studied the co-movements between order flow
and returns for thirty stocks in the Dow Jones Index for the period of 1994. The authors find
that a significant proportion (21%) of the variation in returns can be explained by an
underlying common factor. But, the results for the existence of common factor in order flow
dynamics were weaker.

(Chordia, et al., 2001) studied the aggregated measures of liquidity for a wide range of NYSE
stocks. The authors find that the measures of liquidity are negatively autocorrelated with
strong day-of-week effects and there are also clear patterns for increase in trading activity just
prior to major economic announcements. Further results on liquidity co movements are given
in (Chordia, et al., 2000) where the focus in on the dependency of individual asset’s liquidity
with respect to the market and industry wide liquidity. Using different measures of liquidity
and controlling for stylized effects (such as volatility), the study shows that a great part of the
variation in the liquidity proxies for individual stocks is due to variations in the liquidity of
the market as a whole.

The motivations behind the last batch of studies are very similar to the motivations for the
research in this paper. In general we are trying to better understand how the trading process in
the market as whole can relate to the trading process of the assets individually. While the
previous literature has studied the impact of different explanatory variables such as dummies
for stressful periods and heterogeneous trading platforms of the instrument in question, so far
there is no formal empirical study on possible spillover effects (or co-movements) across



different instruments in the joint process of trades and quotes (and not liquidity measures).
Next we describe the theoretical foundations behind the study.

Theoretical Foundations

A Simple Microstructure Model

As a starting point to derive the ideas behind our microstructure model, we present the
simplest (benchmark) case, also found in (Hasbrouck, 1991). This model incorporates
information asymmetry and inventory control. We start with the process for efficient prices.

m,=m,_ +zv; +v/ (1)

For Equation (1), m, is the efficient price of the instrument conditional on all available
information. The variable v, is the unexpected amount of trades for this particular

instrument, z is the response to unexpected trades and v;" is the idiosyncratic random
behaviour for the price of the asset (e.g. changes in public available information). This

disturbance is usually assumed to have zero expectation, constant variance o’ and zero
autocorrelation in all lags (see (Hasbrouck, 2007)). From (1) it is easy to see that the expected

changes in the efficient price £ (Am,) are not predictable. The process for the mid quote

prices will be given by:
q, =m, +a(qt—1 _mz—1)+bxt (2)

For (2), o is the degree of adjustment of the mid quote price with respect to the lagged
difference from the efficient price. This parameter is inventory control related. For example,
if g, ,—m,_, is positive then quotes will be raised to motivate a sell and de-motivate a buy

order. The coefficient b in (2) is the adjustment of quotes to incoming trades or the fixed
price cost per unit of trade. The final equation that describes this system is the trade equation:

X = —C(C]H —m,_, ) + sz (3)

For (3), the parameter ¢ measures how trades would respond to a mispricing from the
existing quote with respect to the efficient price. It is straightforward to prove that (1)-(3)
implies a lagged regression for the difference in mid quote prices (Ag,,). This lagged

regression has the form”:

Aq, = (Z+b).xt —}-iak—l (Zbc_b(l_a))xt,k _|_th11 (4)

k=1

Therefore, the changes in mid quote price can be represented as regression on the level and
lagged values of x,. Clearly, if a <1, the impacts of further lags will decrease over time so

that the effect of a shock is transitory. For the trade equation, the autoregressive
representation according to Hasbrouck microstructure model will follow:

> See Appendix 1 for a derivation.



X, = —Z a*ebx,_ +v,, (5)

k=1

Therefore, we also see that the process for the trades can be represented by an autoregressive
formula with infinite lags and decaying memory as long as « is lower than one. Also, since
c, b and o are expected to be positive, then a negative autocorrelation is expected for the
trades. Following the formulae in (4) and (5), we have an econometric argument for the use
of autoregressive models for trades and quotes. While the previous formulas in (4) and (5), do
not imply that trades will affects quotes (and vice versa), we still have theoretical reasons to
include them in the specifications. This motivates the use of a standard VAR model to
analyze trades and quotes.

A Microstructure Model with Spillover Effects

The econometric model used in the study has a theoretical foundation which is defined here.
We start with the simple model as before but change the notation in order to follow our
arguments. We are interested in defining a process for different assets in the market.
Therefore, we will incorporate an index i for the different instruments so that m,, is the

efficient price of instrument i at time ¢. Consider the following full process for trades and
quotes:

X m
m,, =m, ,+z,v, +V;, (6)
9, =M, T, (qi,t—l —m;, ) +b.x, (7)
M
J— X
X =76 (qz‘,t—l - ) + Z fz] (qj,t—l - mj,tfl ) + Vi (8)

J=lj#i

Equation (6) to (8) basically define the time evolution of a whole market of different
instruments. The extension of the microstructure model defined before relates to the trade
equation (8). The main point is that the mispricing of other instruments ;j=1.N also

motivates trades in the instrument i. This will have a shape of a (so far) generic function f; ;.

Such a relationship is not difficult to imagine if one thinks of the non-arbitrage pricing
argument. Consider that g,, is the tradable price of a futures contract. The fair tradable price

of this instrument is also a function of the spot price and the interest rate’. Suppose now that
interest rates stay still and a strong transitory effect impacts the quoted value of the spot price
(e.g. an excessive number of liquidity traders on one side of the market or a market maker
improving quotes to motivate a buy/sell, given his inventory risk limits). While there was no
news and no change in the fundamental value of both assets, the quoted spot prices are
implying the existence of a risk free’ profit some time in the future. This will motivate

% This relationship is F' =S (1 + r) holds for the non existence of transaction costs and extra cash flows (e.g.

dividends). When trading costs are added, the true price is bounded with a minimum and a maximum.
7 Assuming, of course, no margins for trading futures and no transaction costs.



opposing trades in both instruments which will move prices until the no arbitrage bounds
holds once again.

As one can see, the intuition behind the example is simple: transitory mispricing in one
instrument implies the existence of a risk free profit, therefore motivating trades in both
instruments where the direction of the trades is related to the sign of the mispricing and the
arbitrage operation itself. From formulas (6) to (8) it should also be possible to see a cascade
effect, where the mispricing in instrument A for #-1 influences the mispricing in B for ¢,
which will then influence the quotes for C in 7+1 and so forth. The strength of this effect
would clearly be dependent on the parameters of the model.

In this extended microstructure model, the spillover effects will also be classified as a
transitory and mean reverting change. The mispricing of the quotes with respect to the
fundamental value, g;,,—m,, , which is the driver of the spillover effect, is simply the
result of microstructure frictions such as the inventory problem. This is easy to see since
g =M, =a, (q 2 —m j’t72)+bj.xj,t. Also, the mispricing of other instruments will not
affect the efficient price of instrument i. One can see this by simply observing that the new
term, i Jis (qj,H -m;, ) , 1s part of the expected trade equation, while the impact on the
J=1,j#i

fundamental price (information asymmetry) is only for the unexpected trades, v;,. But, as
said before, in order for the function f; to be true there must be a common risk factor
among the instruments. Therefore our microstructure model implies the existence of a
covariance between the disturbances v/, and v}, in the efficient price process.

The microstructure model described in (6) to (8) implies® the following autoregressive
formula for the mid quote change and trades:

0

Ag,, =(z+b,)x,+ 2. (zbe,—b,(1-a,))x,, , +V/, )
k=1
s} M s}
X, ==y achx  + Y f, (Z al'bx;, j +v7 (10)
k=1 J=1,j#i k=1

Clearly, Equation (9) is the same as Equation (4), so we have the same lagged regression for
the mid quote changes in between Hasbrouck and the spillover model. For Equation (10), we
see that trades in the other instruments will also affect the trades in asset i, given values of

parameters «,, b, and the function S Again, if ¢, and « , are less than one, then the

l

weights of this autoregressive model with infinite lags will decline geometrically.

The mathematical representations given in (9) and (10) provide some intuition of what are the
consequences in the introduction of spillover effects in a simple microstructure model. When
following Hasbrouck model, Equations (1)-(3), the autoregressive representation of the trade
process didn’t imply any spillover effect but the formula in (10) clearly indicates that our
microstructure model suggests a correlation between present trades in each instrument and
lagged trades in others. This is a similar result to the multi asset microstructure model

¥ See Appendix 2 for derivations.



presented in (Hasbrouck, 2007). The difference is that for our model we show that this
correlation among trades would be a function of the parameters from the structural equations.

So far we have stated that f; ; is a generic unknown function. For the rest of the paper, we

1

will address f;; as a linear function with some (estimated) weight parameter. The intuition

behind such simplification is that the data used in the study is composed of European bonds
of different maturities and countries. These instruments have similar risk factors in terms of
default risk and discount rate. Therefore, it can be expected that the prices of different bonds
are correlated in a linear fashion. This simplification greatly facilitates the econometric
analysis taken in the paper.

A Simulation Exercise

We build an example on our simple microstructure model by considering just two assets, A
and B. Both are driven by the same risk factors but Asset A is more liquid and less volatile
than asset B. For simplicity, we assume that the link function f; ; in between these assets is

linear, given a weight parameter. Following Equations (6)-(8), the simulated full process for
asset A is:

2
_ x m
mAJ = mA,t—l + O'2VA,1 +EVZ

m_
vV, =

lifu, >0.5
—-1ifu, <0.5

G, =my,+ O.S(qA’H —m,, ) + 0.2.XAJ

Xge = _O-S(QA,H My ) + 0'2(q8,t—1 My, ) +Vi,
_ | lifu,>05
~|-lifu, <05

Vs

And the process for B will be given by:

m

5
_ x
mB’t = mB’Ll +0'5VB,t +Evt

G5, =My, +0.2(qy, —my, ) +0.5.x,,

Xps = _0.2(qB,t—l —Mp, ) + O'S(q*”f‘l M ) TV

lifu, >0.5
VvV =
B -lifu, <0.5

For the disturbances in the simulation, we choose to use Bernoulli variables (v;" and v, ) for

simplicity but it is clear that any distribution would fit. When choosing the values of the
parameter in the simulation, we followed the argument that asset A is more liquid than asset



B. For instance, the reaction of the efficient price to unexpected trades (parameter z ) is lower
for A when comparing to the value for B, meaning that A is more resilient to unexpected
trades than B. Also, it should be clear that A and B have the same disturbance in the price

process (v;"), but with different weights. The idea is that these assets have a common risk

factor that drives the efficient price process, but with distinct reactions to this random
component. For our simulation we assumed the tick (minimum price increment) is equal to
1/10, therefore asset A has a weight factor in the efficient price disturbance of 2 ticks against
5 ticks of asset B. Clearly, given this setup, prices changes in asset B are going to be more
volatile than price changes in asset A.

For the trade equation in our simulations, we imply that A has a higher reaction’ to
mispricing than B. The idea is that since A is more liquid, it is reasonable to say that more
people will be trading that stock when a mispricing occurs. Therefore the reaction to a
mispricing in the trade equation of A should be higher than for a less traded asset B. On the
spillover effect we have that asset B reacts to the mispricing in A with a rate of 0.5, which is
higher than the reaction of A to B (0.2). The idea is that when traders trade on the mispricing
of B, they hedge it against the risk factor by trading with opposite signs in A. Notes that if
q,,—m,, is positive implying that the quotes are underpriced, then it is likely that a sell sign

will be generated for asset A and the spillover part of the trade equation in B will generate a
buy sign. The same argument holds for spillover effect in the trade equation of B but with a
higher weight since the difference in volatility in between the instruments has to be taken into
account in the hedging process'”.

Next, we show the mid quote price and the efficient price behaviour for one of our
simulations.

? See parameter C.

' These weights were chosen arbitrarily, but it is clear that one can also use the structural equation in order to
find the optimal weight for hedging asset B with A.
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Figure 1 — Simulated Efficient and Quoted Prices for Asset A and B
108 -
106 -

104 -

102

100

Prices

98 -

96

—&— Mid Quote Asset A
94 - —&— Mid Quote Asset B
—— Efficient Price Asset A

92 ——— Efficient Price Asset B

90 -
1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136

Time

From Figure 1, it is possible to see that the quoted prices of Asset A (pink squares) has lower
discrepancy to its efficient prices (red line), when comparing to asset B. This is mainly the
consequence of parameter b,, which increases the sensitivity of the quotes with respect to the
incoming of a trade (buy or sell). For Figure 1, we can also see an intrinsic linear correlation
between prices in B and A. This is the effect of the common risk factor v". The simulation

we present is simply an illustration of our ideas, but it already points out some intuition on
how our microstructure model implies correlation on trades and efficient prices.

Methodology

The methodology of this paper is divided into two steps. First we define the origin of the data
and also data handling issues. Second, we describe the models estimated in the research.

The MTS Platform

Before explaining the data, it is worthwhile to describe the platform on which the European
bonds are traded. Such a system is composed of a primary and a secondary market. The
primary market is the local platform of each member of the Eurozone (e.g. Italy, Germany,
etc). Each of these members defines locally the ways to finance their own operations with
debt instruments. In general, the local platform (primary market) will present a higher variety
of fixed income asset classes when compared to the European platform (secondary market).
Both platforms have the same trading hours following central European time (CET). Each
day starts with a pre-market phase (from 7:30 -8:00), a pre-open phase (8:00-8:15) and open
phase (8:15 — 17:30). For the pre-market and pre-open part of the day, participants can submit
orders and post proposals but no trades are effectively executed. These proposals are then

11



ranked following price-time priority and are matched when the market officially opens (8:15
CET).

The secondary market for European bonds is the European platform. This is provided by
MTS Global Markets''. This company provides the interdealer electronic platform
(EuroMTS) for trading European benchmark bonds. It not only covers government bonds but
it also provides trading for high quality non government bonds such as mortgages and public
state loans. The members of this platform can either be a participant or a market maker.
While the participants (dealers) have no particular obligation towards the system, the market
makers (primary dealers) are obliged to provide quotes under specific restrictions for each
asset class. It should also be pointed out that this is an exclusive interdealer market composed
of highly capitalized banks; therefore an individual cannot participate directly.

Some of the bonds, depending on particular requirements such as the principal amount
outstanding and the available number of dealers, may acquire the Euro “benchmark” status,
meaning that it can be traded on the local and European platform. Arbitrage traders with
access to both markets should eliminate price discrepancies. Also, it is a multi dealer’s
market meaning that there might be several market makers for each asset class. Therefore, it
is possible to have more than one market maker quoting each specific bond.

These market makers (or primary dealers) have an obligation to continuously provide two
way quotes on the particular market they operate during trading hours. These quotes are
anonymous'~ and remain valid for the day until cancelled, altered or matched by a trade. The
maximum spread for each bond is also defined and set according to market and maturity. The
proposals can be formulated for a minimum quantity equal to 10, 5, 2.5 or 1 million Euros.
Odd volume lots can also be traded depending on market maker’s acceptance. The market
takers (or simply dealers) are relatively passive in the trading operation and can only either
hit the bid or ask quotes of the order book.

Further description of the trading platform for European bonds, including detailed
information for the Italian and German local markets, can be found in the paper of (Cheung,
et al., 2005) and (MTS Group, 2007).

The Data

The data for this study were kindly provided by the MTS group in association with the [CMA
Centre. Along with full description of each instrument the original data includes fills (the
trades) and posted quotes, which contains any change in the top 3 levels of prices on the order
book. From this data, firstly we select the time period of 2004-2005 and also restrict it to only
government bonds. We select these types of bonds and the year of 2004 given their higher
liquidity (measured by number of trades) when comparing to their counterparts. The selected
countries are Italy, Germany and France. These are selected given their higher trading
volume (these 3 countries represent approximately 76% of all trades in the dataset for the
period of 2004). For each of these, we make a further selection of bond types (fixed coupon
bonds) and across different maturities (1, 2, 5, 10 maturity years (from 01/01/2004)). We use
a band of a half year to classify the maturities. That is, a bond maturing in 01/06/2005 would

11 This is the result of the merger between MTS Spa and EuroMTS. The MTS stands for “Mercato dei Titoli de
Stato”.

2 The identity of the counterparties, however, is revealed after the trade for clearing and settlement purposes.
This anonymous system was implemented in 1997. Before this period, the market maker’s identity was visible
by all participants.
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be considered a 2 year maturity from 01/01/2004. When faced with 2 or more possible
selections given a maturity band, we select the bonds with highest number of trades. Using
these criteria, the final selection comprises the following bonds:

Table 1 — Bonds in Study

Maturity in
Bond Code (ISIN Code) Bond Type Market Code Issue Date Maturity Date  Years (from
01/01/2004)*
IT0003248512 BTP EBM&MTS 01/03/2002 01/03/2005 1
ITO001488102 BTP MTS 15/06/2000 15/12/2005 2
ITO003652077 BTP EBM&MTS 15/04/2004 15/04/2009 5
ITO003472336 BTP EBM&MTS 01/02/2003 01/08/2013 10
DE0001137024 DEM EBM&GEM 17/06/2003 17/06/2005 1
DE0001137057 DEM EBM&GEM 10/03/2004 10/03/2006 2
DE0001141430 DEM EBM&GEM 10/10/2003 10/10/2008 5
DE0001135242 DEM EBM&GEM 31/10/2003 04/01/2014 10
FR0104756962 BTA EBM&FRF 12/01/2002 12/01/2005 1
FR0106589445 BTA EBM&FRF 12/03/2004 12/03/2006 2
FR0106589437 BTA EBM&FRF 12/01/2004 12/01/2009 5
FR0010011130 OAT EBM&FRF 25/10/2002 25/10/2013 10

* The number of years is given by using a band of half year around each maturity date.

For Table 1, the bond Code column is the ISIN 3 nomenclature for the different assets. One
can also see that most of the bonds are traded in different markets. For instance, the one year
Italian bond IT0003248512 is traded on the Italian platform (MTS) and also on the European
market (EBM). With respect to the bond types, the BTP (“Buoni del Tesoro Poliennali”)
bonds are bullet'* bonds with different maturities paying a fixed coupon rate annually or
semi-annually. The French BTA and the Deutshe DEM are also fixed coupon bonds. But, the
French OAT bonds have coupons linked to the price index. This was the only 10 year French
bond we could find in the database. While it would be desirable to have only fixed coupon
paying bonds, we keep the French OAT in order to have a country wise symmetry for the
different maturities in the dataset.

The raw data has a several issues which have to be dealt with before the estimation of any
model. Next, we describe these issues and the steps taken in the paper.

Data Handling

Usually, raw high frequency data is very noisy and can incorporate different types of
unwanted effect. Therefore, the handling of high frequency data is a very important part of
empirical microstructure research. In this study we opt for using an event' time structure for
the creation of all variables. A big part of the research was filtering and handling the quotes
and trades database. This procedure was far from trivial. In order to make it clear, we
organized it in a set of steps. These phases are run sequentially in the algorithm. The steps
are:

" The ISIN code is a unique international label for each bond. Those are assigned by each country’s numbering
agency.

'* These are bonds that cannot be redeemed prior to maturity.

"> We also ran the models for aggregated data in calendar time (2 and 5 minutes intervals). The final conclusions
are very robust.
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1. Avoiding overnight noise. The MTS market opens at 8:15 — 17:30 CET (central
European time). For the pre-open phase of the market, an order can be send but it will
not be matched. The automatic matching process occurs when the market opens so
one might see a significant number of trades in the first minutes after the opening. For
the research, in order to avoid noise in market opening hours we only use events
between 8:30-17:30 CET.

2. Deleting events with no change in quote’s value or volumes. The original data
contains events in any part of the order book. We are particular interested in the
movements in the top of the order book. Therefore, we delete any event where there is
no price or volume improvement in the first level of bid and ask prices.

3. Finding best prevailing quotes. One of the problems in the data is that these bonds can
be traded in the local or in the European platform. While some studies were
concerned about different aspects of these markets (see Cheung et al (2005)) we treat
this duality as a single market. Following this logic, for the cases where a bond is
traded on different markets, we find the best prevailing quotes'®. As an example,
suppose an Italian bond is trading at 95 bid, 95.1 ask units on the MTS for time ¢.
Now, a new quote comes to the EBM market at #+1 with the prices 95.05 bid, 95.2
ask. While this quote has improved the bid price (95.05>95), it has not improved the
ask price. So, for time #+1, the prevailing quotes following the single market logic are
95.05 bid, 95.1 ask.

4. Filtering for large quote prices changes. The market makers in MTS are not obliged to
provide quotes in all trading hours or the day. It may happen that for some time
window, there are no primary dealers providing competitive quotes for a particular
bond. If this event is true and a large trade comes through, it will consume the order
book in the same direction of the trade. This joint event, if it happens, results in high
price movements in the bid ask quotes (very low (high) for bid (ask)). Since the mid
quote change is one of the dependent variables in our model, we are particularly
interested in removing such noise. The approach here is to find any price movement
that is higher than an arbitrary 5% percent threshold. When these cases are found, the
“inadequate” prices are substituted by the previous prices'”. This procedure produces
a smooth behaviour for the bid/ask prices and consequently, a smooth behaviour for
the mid quote price changes.

5. Filter for algorithmic quote changes. For the quotes data, when there is a change of
market from ¢ to ¢, and the duration between the events is small (lower than 0.1

seconds, ¢, —t,_, <0.1), we treat this as one quote change by the same market maker

(algorithm quoting). The intuition here is that, even though this quote may be a
genuine unique quote change within 0.1 second from the last one, we are trying to
avoid an algorithmic quote change by the same market maker in different markets.
This counts as a single quote change and should be treated as such.

' Curiously, using this scheme we find cases of negative spreads, meaning that one could make a riskless profit
by buying/selling in one market and selling/buying in the other. But, understandably, the number of cases is
small when compared to the sample size and these negative spreads tend to last for a short period of time before
quotes are again changed.

" The consequence of this procedure is the assumption that if there was a market maker, he/she would not price
the impact of these large trades in the quotes. While this is unrealistic, it is more intuitive (and simpler) than
assigning an arbitrary impact in the prices.
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6. Time aggregation of trades and quotes. For our high frequency data, the changes in
quote and trade prices are naturally happening in different calendar times. This results
in vectors of different sizes which are not suitable for standard VAR estimation.
While it would be possible to simply aggregate'® it for an arbitrary Az, we argue that
this would result in a great loss of information. In order to solve that, we build a
pooled process for trades and quotes. In Figure 1, the procedure is illustrated.

Figure 2 — Illustration of Data Aggregation

Trade #1 Trade #2 Trade #3 Trade #4
| | | | > Original time line fortrades
I I I I > Original time line for quotes
Q1 Q2 Q3 Q4
MoTrade Trade#! MoTrade Trade#2 MNoTrade Trade#3 Trade#4 Mo Trade
| | | | | | | | > Aggregated time line fortrades
Q1 Q_1 Q_2 Q_2 Q_3 Q3 Q3 Q_4

1 L L [ L L L L > Aggregated time line for quotes

From Figure 2 it can be seen that trades and quotes are being sampled in event time. First,
comparing the original time line for trades against the resulting aggregated time line, the
rule is that, for the times where a quote has taken place (in a different time than a trade),
we set a “no trade” flag. This means that the trading direction and the volume are both set
to zero. For the second time line (quotes), the rule is based on searching for the best
prevailing quotes. So, when there is a trade, the values for the quotes are set as the
prevailing ones, which is just the value for the previous event.

After the filtering and handling of the original data, we are left with the following descriptive
statistics of the sample, along with a report on the data handling:

'8 E.g. taking averages in each time interval.
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Table 2 — Descriptive Statistics and Data Handling Report

Panel A - Descriptive Statistics

Proportion of Proportian of Mean of log Return S'.ta'ndard Skewness of log Kurtosis of Igg Mean of Ste'mc'iard
Bond Code Buy Trades Sell Trades (mid price) Dewahoq of Igg Returns (mid price) Returps (mid Quoted Spread Deviation of

(%) (%) Return (mid price) price) Spread
IT0003248512 0.4752 0.5248 -0.0013 0.3993 -5.5259 46,620.0800 0.0068 0.0419
IT0001488102 0.4606 0.5394 -0.0013 0.3102 -0.4751 436.1399 0.0148 0.1317
IT0003652077 0.5662 0.4338 0.0006 0.5797 -3.9947 6,559.2553 0.0184 0.0212
ITO003472336 0.5261 0.4739 0.0015 0.8541 20.1144 11,585.2035 0.0229 0.0258
DE0001137024 0.5313 0.4687 0.0005 0.2547 0.0023 429.1207 0.0220 0.0068
DE0001137057 0.4937 0.5063 -0.0002 0.2627 1.5626 533.3570 0.0183 0.0062
DE0001141430 0.6739 0.3261 0.0012 0.6296 4.3150 1,736.5686 0.0252 0.0079
DE0001135242 0.5061 0.4939 0.0023 0.8029 -2.4362 1,619.7376 0.0260 0.0145
FR0104756962 0.4792 0.5208 -0.0023 0.1356 -2.9457 311.6521 0.0178 0.0074
FR0106589445 0.6244 0.3756 -0.0001 0.2681 -5.7099 598.4070 0.0184 0.0072
FR0106589437 0.4163 0.5838 0.0009 0.7732 2.9861 22,085.2395 0.0255 0.0809
FR0010011130 0.3923 0.6077 0.0023 0.7715 -0.5302 1,883.1036 0.0261 0.0179

Panel B - Data Handling Report
Nl.f.g%z;ﬁ NuQrEg;eerSof De'}leutrgr?:r((z);ro Nu'm ber of Number of . Numbgr of Number of
Bond Code - L . Deletions (short Replacements (High Negative Quotes (after
(original (original price/volume duration) Price Moves) Spreads data Handling)
Data) Data) movement) P 9

IT0003248512 3,169 323,828 179,065 20,597 0 121 124,166
IT0001488102 15,617 232,320 76,528 0 4 0 155,792
IT0003652077 6,657 303,672 73,838 40,094 22 762 189,740
ITO003472336 7,385 555,148 116,365 82,706 31 590 356,077
DE0001137024 559 162,752 60,409 15,076 0 3 87,267
DE0001137057 557 182,687 57,601 17,845 58 12 107,241
DE0001141430 417 262,589 51,387 40,623 18 46 170,579
DE0001135242 575 347,313 70,730 56,208 99 431 220,375
FR0104756962 144 151,145 85,766 10,242 12 4 55,137
FR0106589445 631 218,033 77,095 21,110 62 61 119,828
FR0106589437 800 313,301 65,965 40,906 182 366 206,430
FR0010011130 826 366,970 73,748 49,545 86 395 243,677
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Table 2 shows a statistical description of the data used in this study. Panels A describes the
main statistics of the trade direction (buy/sell), log return from the mid quote price and also
the spread, which are the most significant variables in the dataset. One can see from the first
two columns of Panel A that the proportion of buys and sells is relatively comparable for
each bond in the sample. When one looks at the standard deviation from the mid quote prices,
its possible to see that the values are mostly increasing with the maturity of the bonds.
Remember that the column bond code is sorted first by country (see two initial letters in ISIN
column) and then by maturity (see Table 1). Therefore, for higher maturities we observe a
higher variability in the mid quote price log return. This is intuitive as bonds with higher
maturity are more sensitive (price wise) to interest rate changes (see (Martellini, et al.,
2003)). So, if there are unexpected news regarding the effective interest rate, those bonds
with higher maturity will present a higher variation in the price, increasing consequently the
standard deviation of the mid quote log return. The last argument can also be extended to the
kurtosis of the log returns, meaning that we see higher frequency of extreme price
movements for bonds with higher maturity. But it is not as quantitatively clear for kurtosis as
it is for the standard deviation.

On a liquidity space, we also see that on average the mean spread grows with maturity. This
could also be explained by the fact that long term bonds are more sensitive to interest rate
changes. Therefore, if a trader has privileged information regarding a change in the interest
rate, he will maximize his profits by trading the longer maturities. The market maker is aware
of this effect and he will, in average, increase the spread'’ in response to this natural
motivation for informed traders to trade the longer maturities. Similar arguments can be made
with respect to the inventory effect. Since longer maturities have higher volatility, then
holding this inventory is riskier and should also be compensated in the form of a higher
spread premium.

For Panel B, Table 2, we show the summary from the data handling stage of the research. The
first columns show the number of trades and quotes in the original data and the following
columns show how much deletions were executed. Clearly the deletion of zero price
movement was the most aggressive filter where, on average, 31% of the original quote data
was discarded. This means that, on average, 31% of the events in the order book were for the
second and third level of the order book, which was not relevant information to this research.

The second most aggressive filter was the deletions of short intermarket durations, which
amounted to nearly 10% of the original data (except for the first bond, which is only traded in
the local platform). These durations were labelled as parallel dual market quoting and, from
what we can see in Panel B, it seems that this is not an uncommon practice in the market
place. Understandably, a market maker is better prepared to provide competitive liquidity if
he can, given fast changing market conditions, quickly update his quotes in the local and
European platforms. So, the investment in trading software is justified and this presence of
algorithmic quoting is not a surprise.

Another interesting feature of Panel B is that the number of negative spreads is mostly high
for long term bonds. Remember that the bonds with longer maturity are the ones with higher
sensitivity to interest rate unexpected news. So, this high volatility combined with the
different liquidities of both platforms (European and local) can result in market makers in one
platform quickly updating their prices with respect to unexpected news, while the other
platform lags its updating process. This can result in a temporary negative spread in the

' When trading with informed traders, the market makers are likely to lose wealth. These losses are recovered
by increasing the spread and trading with uninformed liquidity traders. See (Glosten, et al., 1985) for details.
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market, implying the existence of risk free arbitrage profits. Note though that the number of
negative spreads is small compared to the number of quote changes. While this is an
interesting feature of the data, it is directly not related to our research so we decide to only
report it, without any sort of adjustment.

From the final columns of Panel B, Table 2, we see that the data are mostly composed of
quote updates. On average, across all bonds, there are approximately 199 quote updates for
each trade. The Italian bonds (the first 4 entries in the table) are the most traded, with an
average number of quotes per trade equal to approximately 31, which is significantly lower
than for the rest of the countries (283 quote changes for each trade).

Next, we show a time series plot of a small subset of the data, particularly trades and quotes
for the 1 year German Bond (DE0001137024) between the dates of 02/01/2004 and
09/01/2004.

Figure 3 — Quote Prices and Trades for DE0001137024

o975 — Ask Prices

—— Bid Prices
& Buyer Initiated Trades
O Seller Initiated Trades

807 - l]ET

89.65

Pricas

I I I I I I
500 1000 1500 2000 2500 SO0
Event Time - 02/01/2004 -= 08012004

The sample plotted in Figure 3 was obtained after the pre-processing of the data and the scale
of the horizontal axis is in event time. The red (blue) dots are the trades which were buyer
(seller) initiated®. Not surprisingly, all buyer initiated trades were traded at the ask prices,
while all sell initiated trades were executed at the bid price. Interestingly, from Figure 3 we

20 These were not estimated from the data. The original database already contains the information regarding the
side of the aggressor. These are identified according to the trade originator, that this, the entity which has hit the
ask or bid prices.
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see a significantly higher number of quote price variations than trades, which is also
corroborated within the information in Table 2, Panel B. As an example, from event number
(x axis) 0 to 500 only one sell trade is observed, while the quotes prices are showing a great
deal of variation. This is also true for other intervals in the figure. These “unexplained” price
changes can be caused by fundamental changes in the efficient price (e.g. news regarding
interest rates).

The Models

The models used in this study are based on the theoretical implications for a microstructure
model with spillover effects defined in the previous section of the paper. In total, we
estimated three different models. We start with the benchmark representation (Hasbrouck,
1991) and we further extend it with the spillover variables in order to test our hypothesis,
which is that the trading process in other assets affects the trading process of each instrument.

Model 1 — Hasbrouck (1991)

The econometric model of (Hasbrouck, 1991) is defined as:

p P
Fu = Zﬂir,k}/},t—k + z YirOiiw T, (11)
k=1 k=1
N (@) N (@) (@)
Qz‘,t = ﬂk Qz‘,t—k + Zyk ’/;',t—k + gi,t (12)
=1 o

Where:

1, — log return of mid quote for bond i, time ¢

Q,, — Signed volume for bond i, time ¢

For this model, Equations (11) to (12), the idea is that trades and quotes evolve over time in a
joint process”'. The theoretical justification for the multivariate model was given previously

in the paper. The f, parameter in Equation (11) measures the autoregressive part of the

return equation. It is usually negative given the bid ask bounce effect™, that is, a positive mid
quote change is usually followed by a negative change. The parameter y;, measures the

impact that the signed volume has on the mid quote changes, i.e. the impact of a trade. We

*! Note that the original Hasbrouck model also had a contemporaneous trade variable in the return equation. For
our case, given the way that we structured the data in event time, such a term is meaningless since at the time of
a quote change, there are, by definition, no trades.

2 When applied to trade prices, the bid/ask bounce is the result of impatient liquidity traders coming to the
market and trading on the bid/ask quotes. This negative autocorrelation in traded prices changes is a function of
fixed transaction costs such as the spread. Formal proofs can be seen in (Jong, et al., 2009) and (Hasbrouck,
2007). For mid quote values, this negative autocorrelation can be explained by the fact that the mean reversion
of prices over a particular level (see Eq. (7)) results in a negative correlation for the price differences.
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expect this parameter to be positive, that is, the incoming of buy/sell orders will
increase/decrease the mid quote price.

For the trade equation of Hasbrouck model, (12), the parameter ﬁle measures the order flow

of the trades, that is, the autoregressive pattern of the signed volume. While for the
autoregressive representation given in (5) the sign of this parameter should be negative since
¢, b and a in (5) are positive, empirically we expect it to be positive. That is, a buy/sell
order is most likely to be followed by a buy/sell order. One of the explanations is that this is
the effect of traders splitting large trades across time. Another possible explanation would be
that an informed trader in need of liquidity executes a large order and is followed by
momentum liquidity traders. Both events would result in consecutive trades in the same

direction. The coefficient y° " relates to the impact that a mid quote change has on the trades.

It is usually negative meaning that a drop (rise) in the mid quote price is most likely to be
followed by a buy (sell) order. The usual explanation is the inventory problem. A market
maker in need of reducing his exposure will improve quotes in order to induce trades.

Model 2 - Spillover Effects

For the extension of (11) - (12), which is the basis of our research, we start with the inclusion
of two variables, the aggregated signed volume and the aggregated mid quote change. Again,
this has foundations in the autoregressive representation of the theoretical spillover
microstructure model defined earlier in the paper. This extension results in the next
equations.

P
AGG AGG
ri, Zﬂtrkltk+27/lk ltk+z/11!kltk +22’2rtk it—k i,t (13)
k=1
V4
_ AGG 0 HAGG |
Qz’,t— ll‘k+27/l tk+zﬂ“llk1tk +Z/121k i,t—k lt (14)
k:I k=1
Where:

AGG

r"" - Aggregated return for bond portfolio, betwenn #-1 and «.

QIAGG - Aggregated order flow for bond portfolio for time between £-1 and ¢.

t

#,, — Log return of mid quote for bond i.

O,, — Signed volume of trade for bond i.

The aggregated variables are built as:

nSBonds "
r/% = nSBonds™ Z exp{z logRet, . ] -1 (15)
J=lj# #=
nSBonds "j
thGG - z z Pj,Zj VOI/?Z,/‘ QJ@Z,/‘ "
J=lj#i z;=1
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Before explaining the intuition behind the variables’ creation, we need to explain how the
data were aggregated. First we need to set how to define whether a bond is similar to another.
For the paper we use the country as the criterion”. Exemplifying, for the one year Italian
bond we will build a portfolio with the two, five and ten year Italian bonds. We choose to
aggregate the bonds in a portfolio for reasons of simplicity*". This bond portfolio is then used
to build the return and order flow variables in (15) and (16).

The idea behind the creation of r,.ﬁGG and thGG is to measure the aggregate amounts of mid

quote change and signed volume for the reference time ¢. For the first formula, (15), we are
simply building the return of an equally weighted portfolio made of similar bonds. The term

Zlog Res;_ is the sum of log mid price changes for the same bond j, at time z;, which

gives the total logarithmic return for a bond in the portfolio for the period between ¢ and #-1.
Then, these returns are converted to the arithmetic formula and weighted by the number of
bonds in question. For the outer sum in (15), the term nSBonds is the number of bonds which
are similar to bond i. For our case, the value of nSBonds is constant and equal to three®. In

the creation of these variables, when there is no trade or quote change for bond j, they are set

AGG

to zero. For the creation of Q" , Equation (16), we are interested in measuring the order

flow for a portfolio of bonds. Each element P, Vol; O, of the sum in (16) will give the

money order flow, that is the amount of cash the position involved (price times volume),
signed by the trade direction ;. When this value is summed across the different bonds, it

gives the aggregated order flow of the bond portfolio in money terms.

Model 3 — Extended Hasbrouck’s Model with intensity effects

The intuition behind this model is comparable to model 2, that is, we include the trading
intensity variables following similar arguments in (Dufour, et al., 2000). The tweaking here is
that the number of quotes and trades per unit of time is interacting with the mid price log
returns of the bond itself*°. That is, we are investigating whether the trading intensity in the
similar bonds is increasing or decreasing the impact of explanatory variables in the
benchmark model. The formal specification is given by:

-1
AGG AGG T&0O
,t ﬂ'lrlkltk—‘rz/lglk i,tk+Z|:ﬂtk+¢lk ttk+1 ltk+
' ; (17)
T&0
2[7/ P TP, k+1:|Qi,t—k +&;,

k=1

3
‘T E

3 We also tested the robustness of the results by using a maturity criterion (instead of country). The main results
of the research are very comparable. But we do find weaker evidence for a spill over effects across the bonds
when the aggregation rule is based on the maturity instead of the country.

* Similar procedure was used in (Chordia, et al., 2000).

2 Each bond has three counterparties from the same country.

%% For the research, we also estimated a second version of model three where the intensity variables relates to the

. AGG AGG ..
impactof 7, and Qi . over 7., and Q,,. We do not find any surprising results, and therefore we do not

formally report it. The estimated parameters can be found in appendix 4.
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(18)

Where:

n' = (nTrades +nQuotes; ) (At)_l - Number of trades and quote changes for the bond portfolio

it
related to bond i, for each unit of time.

At - Number of seconds between event ¢-1 and ¢.

fGG Return for the bond portfolio, happening between ¢-1 and ¢.

QIA,GG - Aggregated order flow for bond portfolio, between ¢-1 and ¢.

7, — log return of mid quote for bond i.

O,, — Signed Volume of Trade for bond i.

Note that for last equation we added duration (time between events) indirectly by using Af,
which is in the denominator of n:t&Q. Therefore, the model in (17) and (18) has (Dufour, et

al., 2000) as a nested case’’. All of the models exposed before were estimated by ordinary
least squares and we use the Newey and West robust covariance matrix for the standard
errors. We also did not allow for day spillover in the lagged part of the models. If observation
t is using information from the previous day in the lagged regressors, we exclude it from the
estimation. With this procedure, one can say that we are performing a weighted OLS
estimation.

Results

Next, in the Table 3, we show the results from the estimation of the benchmark model,
(Hasbrouck, 1991). For the analysis of results in the next section, we choose to only look at
the sum of parameters in each dependent variable. That is, we assess the long term impact of
the regressors over the explained variable. We compute the null hypothesis that this sum is
equal to zero with a formal Wald test. This is the same approach used in (Hasbrouck, 1991)),
(Dufour, et al., 2000), (Furfine, et al., 2005) and greatly facilitates the analysis of our large
scale model.

27 On a side note, we also estimated the models without the duration variables and the conclusions from the
results were very similar and so the duration variable, solely, is not driving our results.

22



Table 3 — Parameters from Hasbrouck Model, Equations (11) — (12)

Panel A - Quote Equation for Hasbrouck Model, (11)

Breush-Godfrey LM

bondCode Sum of Betas Sum of Gammas Breush-Pagan Test Test adj R2
IT0003248512 -0.02 0.01*** 11,187.11** 311.67*** 0.01
IT0001488102 -0.38*** 0.05*** 116,849.01*** 67.85*** 0.07
IT0003652077 0.06*** 0.04*** 9,727 .53*** 12.15** 0.01
ITO003472336 -0.17 0.06*** 143,335,542.63*** 172.8*%** 0.02
DE0001137024 -0.33*** 0.04*** 2,198,547 .55*** 79.74%** 0.04
DE0001137057 -0.06 0.02*** 89,178.91** 10.12* 0.01
DE0001141430 0.1%* 0.04*** 17,709.12%** 2.54 0.01
DE0001135242 0.17** 0.09*** 60,858.99*** 3.42 0.02
FR0104756962 -0.08*** 0.02*** 9,615.32*** 155.51*** 0.01
FR0106589445 -0.13*** 0.03*** 17,151.05** 20*** 0.01
FR0106589437 0.04 0.03*** 9,313.99*** 2.73 0.01
FR0010011130 0.17** 0.06*** 91,796.95*** 14.83** 0.02

- All autoregressive parameters values are interpreted as a sum and we use a Wald test for testing the null hypothesis that this sum is equal to zero.

- % **% and *** means rejection of the null hypothesis at the 10%, 5% and 1% levels, respectively.

- Breush-Pagan is a test for heteroscedasticity. The null hypothesis is of homocesdasticity (no heterokesdasticity). We use 5 lags in the test.

- The Breush-Godfrey is a test for serial correlation. The null hypothesis is of no serial correlation. We use 5 lags in the test.

- All standard errors are computed following (Newey, et al., 1987).

The Model is:

D D

— r

]/;‘,z - Zﬁi,k}:’,t—k + Zyz‘,k it—k + 81‘,[
k=1 k=1

r,, — log return of mid quote for bond i, time # (times 10,000 (basis point scale)).

O,, — Signed volume of trade for bond i, time ¢ (divided by 1,000,000 (minimum trading quantity))
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Panel B - Trade Equation for Hasbrouck Model, (12)

Breush-Godfrey LM

bondCode Sum of Betas Sum of Gammas Breush-Pagan Test Test adj R2
IT0003248512 0.3*** -0.12** 120,126.82*** 28.01*** 0.04
IT0001488102 0.44*** -1.14*** 65,807.52*** 983.51*** 0.08
ITO003652077 0.34*** -0.07*** 137,617.94*** 165.78*** 0.05
ITO003472336 0.32*** -0.01* 324,542 .59*** 269.45** 0.05
DE0001137024 0.35*** -0.14** 366,281.29*** 98.37*** 0.06
DE0001137057 0.36*** -0.17* 551,812.74*** 31.83* 0.06
DE0001141430 0.38*** -0.01* 1,735,692.13*** 143.23*** 0.06
DE0001135242 0.28*** 0.01 1,065,429.35*** 137.84*** 0.04
FR0104756962 0.23*** -0.01 613,626.46*** 174.6™* 0.03
FR0106589445 0.34*** -0.12%* 556,167.41** 155.98*** 0.04
FR0106589437 0.45*** -0.01 1,381,104.58*** 142.38*** 0.10
FR0010011130 0.26*** -0.01 852,947.88*** -1.1 0.03

- All autoregressive parameters values are interpreted as a sum and we use a Wald test for testing the null hypothesis that this sum is equal to zero.
- %, ** and *** means rejection of the null hypothesis at the 10%, 5% and 1% levels, respectively.

- Breush-Pagan is a test for heteroscedasticity. The null hypothesis is of homocesdasticity (no heterokesdasticity). We use 5 lags in the test.

- The Breush-Godfrey is a test for serial correlation. The null hypothesis is of no serial correlation. We use 5 lags in the test.

- All standard errors are computed following (Newey, et al., 1987).

The Model is:

p r

— o

Q[,t - Zﬂin,t—k + Z }/kr;',t—k + gi,t
k=1 k=1

r,, — log return of mid quote for bond i, time ¢ (times 10,000).
O,, — Signed volume of trade for bond i, time ¢ (divided by 1,000,000)



As one can see, the signs of most of the parameters are as expected. For Table 3, Panel A (the
quote equation), the betas are negative for more than half of the cases and the gammas are all
positive. This means that the bid ask bounce effect is present in the data, but it is not strongly
defined. The gamma parameter in the quote equation is, for all bonds, positive and
statistically significant at the 1% level. This indicates that a trade has an impact on the mid
quote price. For example, on average across all bonds, the existence of five buy trades in the

previous time periods, each with a volume of 1.000.000 bonds (the minimum), will result in a
nBonds 5

log return increase of approximately 0.034 basis points ( nBonds™' Z Z 7 £0.034) in the

i=1 k=1
mid-quote price. Another interesting piece of information from Panel A of Table 3 is that the
value of the sum of gamma is, in a modest way, increasing within maturities of the bonds.
This is intuitive since bonds with higher maturity have higher sensitivity to interest rate
dynamics. Therefore, the information absorbed from the order flow regarding this risk factor
should be priced more heavily for bonds with higher maturities.

For Panel B (trade equation), we see that the autoregressive pattern in the dependent variable
(signed volume) is strongly defined, meaning that a buy (sell) order is most likely to be
followed by another buy (sell) order. This is generally linked to traders splitting their whole
order into small pieces over time, resulting in consecutive trades on the same side of the
market. We also see from Table 3, Panel B, that the effect of a mid quote change on the trade
signed volume is mostly negative, meaning that a decrease (increase) in the mid quote price is
most likely to be followed by a buy (sell) order. An argument towards this effect is the
inventory problem of the market makers. If a dealer has an excessive capital committed to a
particular asset, then this risky exposure will force him to rapidly liquidate part of the
position by submitting improvements in the bid/ask price. This results in a positive (negative)
log return of the mid quote price being followed by a sell (buy) trade.

From Table 3, Panels A and B, its possible to check that serial correlation (Breush-Godfrey
LM Test) is an issue for the majority of the estimated models®®. We also see a great degree of
heteroscedasticity, measured by the Breush-Pagan test. While the OLS parameters are
unbiased and consistent in the presence of heterokesdasticity and serial correlation, the
standard errors are not™. In order to overcome such an issue, we use a Newey and West
robust covariance matrix”° in all standard errors. These are then used as inputs in the Wald
hypothesis tests.

Next, we follow the analysis for the second model, Equations (13)-(14).

¥ Note that one of the bonds has a negative value for Breush-Godfrey test which is, in general, unexpected. But,
remember that the estimated trade equation doesn’t include a constant so it is possible for the r squared of the
auxiliary regression in the Breush-Godfrey test to be negative.

% These standard errors will be biased downwards, which is a dangerous feature for any hypothesis testing. See
Maddala (1991) for further information.

3 See (Newey, et al., 1987).
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Table 4 — Estimates for Spillover Effect Model, Equations (13) - (14)

Panel A - Quote Equation, Spill Over Model (13)

bondCode Sum of Betas Ls?#wrg: d:f 1 Gi\unTmcgcs Sum of Lambda 2 Breush-Pagan Test Brellj_sl\l/lw-_?ec:ifrey adj R2
IT0003248512 -0.0414 0.005*** 0.0077*** 0.0002** 137,348.9360*** 373.4935*** 0.03
IT0001488102 -0.6008*** 0.0314*** 0.0413*** 0.0006 4,725,625.2142*** 469.1931*** 0.16
IT0003652077 -0.1528*** 0.0865*** 0.0283*** 0.0039*** 7,597,210.0498*** 184.2412*** 0.11
ITO003472336 -0.325** 0.1932*** 0.0545*** 0.0069*** 157,879,155.4331*** 223.2181*** 0.06
DE0001137024 -0.489*** 0.0171*** 0.0304*** 0.0005 2,765,667.6841*** 187.6324*** 0.11
DE0001137057 -0.3522*** 0.0333*** 0.0205*** 0.0022 5,873,121.2147*** 207.2242*** 0.14
DE0001141430 -0.2554*** 0.1252*** 0.0299*** 0.0001 34,099,966.7761*** 147.7299*** 0.27
DE0001135242 -0.0418 0.1788*** 0.0723*** -0.0104 17,733,809.5304*** 60.1146*** 0.23
FR0104756962 -0.1294*** 0.0043*** 0.0107*** 0.0007* 291,468.4461*** 136.8616*** 0.05
FR0106589445 -0.3821*** 0.0334*** 0.0211*** 0.0027* 5,879,967.5077*** 290.9236*** 0.13
FR0106589437 -0.1277* 0.1029*** 0.0197*** 0.0031 4,867,753.2456*** 42.6651*** 0.12
FR0010011130 0.0048 0.1481*** 0.0492*** 0.0022 127,597,980.7001*** 20.1695*** 0.19

- All autoregressive parameters values are interpreted as a sum and we use a Wald test for testing the null hypothesis that this sum is equal to zero.
- %, **% and *** means rejection of the null hypothesis at the 10%, 5% and 1% levels, respectively.

- Breush-Pagan is a test for heteroscedasticity. The null hypothesis is of homocesdasticity (no heterokesdasticity). We use 5 lags in the test.

- The Breush-Godfrey is a test for serial correlation. The null hypothesis is of no serial correlation. We use 5 lags in the test.

- All standard errors are computed following (Newey, et al., 1987).

The quote equation is given by:

C > & 166 & AGG
—_ r r r r r
= Z Bt t z Viklie T z Ay + z A O e
=1 =1 =0 =0

r4%¢ - Return for the bond portfolio, happening between -1 and .
ijGG - Aggregated order flow for bond portfolio, between #-1 and ¢.
7, — log return of mid quote for bond i.

O, — Signed volume of trade for bond i.
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Panel B - Trade Equation, Spill Over Model (14)

Sum of

Sum of

Breush-Godfrey

bondCode Sum of Betas Lambda 1 Gammas Sum of Lambda 2 Breush-Pagan Test LM Test adj R2
IT0003248512 0.2902*** 0.002 -0.1586** 0.0051*** 120,782.2264*** 26.2391*** 0.04
IT0001488102 0.433*** 0.0029 -1.5539*** 0.0444*** 61,463.7266*** 1097.9178*** 0.08
IT0003652077 0.336™** 0.0047 -0.1021*** 0.0139*** 137,775.3885*** 170.0312*** 0.05
ITO003472336 0.3119*** 0.0029 -0.0144** 0.0052** 325,336.3705*** 270.7336*** 0.04
DE0001137024 0.3407*** -0.002 -0.1751*** 0.0038*** 367,038.8018*** 100.4445*** 0.05
DE0001137057 0.3534*** 0.0053 -0.2467*** 0.0081*** 556,557.2159*** 39.4061*** 0.06
DE0001141430 0.3712*** 0.0072 -0.0111** 0.0012* 1,735,874.6295*** 135.0773*** 0.06
DE0001135242 0.2703*** 0.0076 0.0003 0.0012 1,069,067.1379*** 139.1213*** 0.03
FR0104756962 0.2205*** 0.001 -0.0419 0.0022*** 613,396.3199*** 172.768*** 0.02
FR0106589445 0.3307*** 0.0037 -0.1739*** 0.0064*** 556,578.1721*** 161.6024*** 0.04
FR0106589437 0.4496*** 0.0082* -0.0003 -0.0002 1,380,621.4669*** 142.1956*** 0.10
FR0010011130 0.253*** 0.0162 -0.0055 0.0012 887,408.9280*** 2.3998 0.02

- All autoregressive parameters values are interpreted as a sum and we use a Wald test for testing the null hypothesis that this sum is equal to zero.

- %, ** and *** means rejection of the null hypothesis at the 10%, 5% and 1% levels, respectively.
- Breush-Pagan is a test for heteroscedasticity. The null hypothesis is of homocesdasticity (no heterokesdasticity). We use 5 lags in the test.
- The Breush-Godfrey is a test for serial correlation. The null hypothesis is of no serial correlation. We use 5 lags in the test.

- All standard errors are computed following (Newey, et al., 1987).

The trade equation is given by:

X 0 X o & 0 _AGG & 0 AGG
0, = Z ﬂi,k ik T Z Viktii-k +Z ﬂ’l,i,kr;‘,t—k + z ﬂz,i,k -k
=1 =1 k=0 k=0

14%¢ ~Return for the bond portfolio, happening between ¢-1 and .

ijGG - Aggregated order flow for bond portfolio, between #-1 and ¢.
7, — log return of mid quote for bond i.

O,, — Signed Volume of Trade for bond i.

+&2

27



For Table 4, Panel A, the coefficients of interest are the lambda values. These are measuring
the effect of the quote changes and trades in the bond portfolio’! towards the mid quote price
change of the bond in question. For lambda 2, we find that only five (out of twelve) are
statistically significant. But the sign of this sum is consistent across bonds, where eleven out
of twelve are positive. Therefore, we argue for modest evidence of the importance of the
order flow in the bond portfolio towards price changes in each bond.

For lambda 1, we find a strong dependency in the data. For this parameter, across all bonds,
all the values are positive and statistically significant. This implies the existence of a positive
correlation between the changes in the mid quote price of a bond portfolio and the changes of
the mid quote price of the bonds. Looking at the values of adjusted R squared in Table 4,
Panel A, and comparing to the ones obtained with the Hasbrouck model, Table 3, Panel A,
we see a significant increase. The average difference in adjusted R squares in between the
models (Table 4 and Table 3) is 0.11, with a maximum of 0.27 and a minimum of 0.02. We
also see a clear “maturity” pattern for the values of the sum of lambda 1, where the lower the
maturity of the bond, the lower the value of sum of lambda 1. This pattern is the result of the
country wise construction of the portfolio. In general, the lower (higher) the maturity, the
higher (lower) the relative variability of the portfolio price changes when comparing to the
variability of the bonds in question. The lambda 1 parameters are then scaled given this
difference in variability.

. .. . AGG - .. ..
This positive correlation between 7, and 7, is not surprising. Similar results were found

for US equities in Hasbrouck and Seppi (2001). The explanation is that, since the bonds have
similar risk factors, then it can be expected that fundamental changes will make the prices of
these instruments move in the same direction. But the interesting part of this effect is that
these changes are first seen in the bond portfolio and then it follows through to the bonds.
Remember that all models are estimated in event time so that all information in the
independent variables is available at the time of the event in the dependent variable. This
means that a significant part of the variation in the mid quote prices of the bonds is
statistically predictable. In general, we can calculate how much the mid price would move at
each arrival of information in the bond portfolio but, without any explicit parameterization of
the time vector (e.g. ACD models), we cannot predict when such expected change in mid-
quote would occur™”,

In Table 4, Panel B, we see the results from the estimation of the trade equation with the
spillover extension. Again, the parameters of interest are the lambda values. For the sum of
lambda 1, we see the pattern that the great majority of these values are positive. This means
that positive (negative) changes in the bond portfolio will be followed by buy (sell) orders in
the bond in question. We can explain this effect as a lagged update of the bonds prices with
respect to the incoming of news to the market. If news about a common factor comes to the
market and first impact the prices of other bonds, traders will realize such event and will
trade on the un-updated bond until the equilibrium is once again reached. This effect can

explain the positive correlation between Q,, and the lags of rl.jGG . But it should be clear that
for only 8% (1/12) of the bonds this sum is statistically different than zero. We conclude that

the effect of the returns on the bond portfolio quotes over trading volume is robust, but not
particularly significant.

3! The construction of this portfolio was obtained using aggregation rules over the maturity of the bonds.
32 It would be interesting to see how a high frequency trading strategy based on this predictability would
perform in an out of sample setting. Such a path of research was not followed as it diverges from our main
objectives.
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For lambda 2 in Panel B (Table 4) we see that the coefficient is predominately positive and
statistically significant. Out of twelve cases, eleven are positive as expected and nine are
statistically significant at 5%. This means that the order flow (sign and volume) in the bond
portfolio is significantly (and positively) affecting the individual trades in each bond as
expected. The derivations of the autoregressive form for the trade equation in the first part of
the paper predicted this effect. Therefore, one could argue that the results from the
econometric estimation modestly corroborate with the theoretical expectations from our

microstructure model and the correlation between O/,
effect. But this effect of correlation in between the trades could also be explained by
informed traders splitting their orders across the bonds in different countries (but the same
maturities). A trader with information (e.g. long term interest rate dynamics) may start
trading the longer (more sensitive) maturities but will fill other legs of the order with shorter
maturities according to his assessment of the risk of disclosing his private information
through the fragmented operation. Another possible explanation is that this correlation across
trades in different instruments is simply the incoming of news. Since the bonds are linked by
similar risk factor, the incoming of news will generate trades in all instruments, resulting in
cross correlations. From the results in Table 4, it is not possible to distinguish between these
three alternative explanations.

and Q,, is the result of a spillover

Summarizing the results in Table 4, the main point in Panel A is the strong dependency of the
mid quotes changes of the bonds with respect to the aggregated changes in the bond portfolio.
This is assessed as a fundamental change in the common risk factor underlying the bonds. For
Panel B, the main information is the positive correlation between trades in the bonds and
trades in the bond portfolio. In our theoretical formulation, such a result was expected. In a
microstructure sense, the idea is that mispricing in other instruments is motivating trades in
the bond in question. But this positive correlation could also be explained by informed traders
splitting large trades across different maturities or by news regarding a common risk factor.
As said before, we were not able to distinguish such effects based solely on our results in
Table 4.

The next part of our research is the analysis of the extension of the basic spillover effect
model. Following similar arguments as in (Dufour, et al., 2000), we include a proxy for
trading intensity in the parameters of the model.
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Table 5 — Results from Extended Spillover Effect Model, Equations (17) - (18)

Panel A — Quote Equation for extended Spillover Model, (17)

. . Breush-
Sum of Sum of Sumof Sum of Phis Sumof Sum of Phis .
bondCode Lambda 1 Lambda 2 Betas y Gammas 2 Breush-Pagan Test God_lf;es); LM adj R2
ITO003248512 0.0489***  0.0003*** -0.008 -0.0006**  0.0077*** -0.0001 147,199.1788*** 218.1524*** 0.03
ITO001488102 0.3118*** 0.0006 -0.6038*** 0.0003 0.0399*** 0.0002** 4,732,028.0560*** 482.8989*** 0.16
ITO003652077 0.8621***  0.004***  -0.1337*** -0.0007* 0.0257*** 0.0004* 7,573,803.3008*** 180.621*** 0.12
ITO003472336 1.928*** 0.007*** -0.3152* -0.0003 0.0326*** 0.0028 408,153,082.6327*** 116.1719*** 0.07
DEO0001137024 0.1699*** 0.0005 -0.4833*** -0.0001 0.0313***  -0.0001*** 2,699,144.7083*** 182.4706*** 0.1
DEO0001137057 0.3312*** 0.0024 -0.3962***  0.0003***  0.0198*** 0.0001** 5,559,206.7241*** 256.4371*** 0.15
DEO0001141430 1.2531%** 0.0007 -0.2232*** -0.0007 0.0298*** 0.0001 35,916,371.8527*** 149.8814*** 0.27
DEO0001135242 1.7881***  -0.0098 -0.0272 -0.0005***  0.0656***  0.0007*** 18,104,335.5121*** 58.8948*** 0.23
FR0104756962 0.0421***  0.0006*  -0.1245*** -0.0001 0.0114**  -0.0001** 286,037.7872*** 11.5922** 0.05
FR0106589445 0.3331*** 0.0026 -0.3603***  -0.0004**  0.0214***  -0.0001*** 5,853,640.6427*** 266.494*** 0.13
FR0106589437 1.0223*** 0.0032 -0.1189* -0.0002 0.0151** 0.0008* 9,878,086.2961*** 73.0228*** 0.12
FR0010011130 1.4823*** 0.0024 0.0071 -0.0001 0.0411** 0.001* 125,706,183.4365*** 38.818*** 0.19

- All autoregressive parameters values are interpreted as a sum and we use a Wald test for testing the null hypothesis that this sum is equal to zero.
- %, **% and *** means rejection of the null hypothesis at the 10%, 5% and 1% levels, respectively.

- Breush-Pagan is a test for heteroscedasticity. The null hypothesis is of homocesdasticity (no heterokesdasticity). We use 5 lags in the test.

- The Breush-Godfrey is a test for serial correlation. The null hypothesis is of no serial correlation. We use 5 lags in the test.

- All standard errors are computed following (Newey, et al., 1987).

The estimated equation is given by:

p p-1 p
_ r AGG r AGG r r _ T&Q0 r r _ T&0 r
e = Z Ai,i,k Ve T Z Z‘Z,i,k ik T Z [ﬂtk + ¢1,k Mk ] Ve T Z |:7i,k + ¢2,k Bk :' O, te&,
= k=0

D
k=1 k=1

T& AGG AGG
w2 =

» nTrades;”” +nQuotes;, )(At)f1 - Number of trades and quote changes for the bond portfolio,

for each unit of time.

At - Number of seconds between event ¢-1 and .

r4°¢ - Return for the bond portfolio, happening between ¢-1 and ¢.

0/ - Aggregated order flow for bond portfolio, between #-1 and ¢.
7, — log return of mid quote for bond i.

0., — Signed volume of trade for bond i.
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Panel B — Trade Equation for extended Spillover Model, (18)

Sum of Sum of Sum of  Sum of Phis Sum of  Sum of Phis Breush-Godfre .
bondCode Lambda1 Lambda2  Betas 1 Gammas 2 Breush-Pagan Test | \\ ™™ adjR2
IT0003248512 0.0503***  0.0019  0.2982***  -0.0006*** -0.195** 0.0005 122,117.3531*** 27.3542*** 0.04
IT0001488102 0.4346***  0.0031* 0.4696*** -0.0041*** -1.7022***  0.0041*** 60,121.5153*** 1078.4487*** 0.08
IT0O003652077 0.1455***  0.0044  0.3923***  -0.0071** -0.1068*** 0.0003 262,022.3505*** 172.4459*** 0.06
ITO003472336 0.0807***  0.0028  0.4306*** -0.0162***  -0.0137** -0.0001 385,657.0244*** 250.3709*** 0.05
DEO0001137024 0.0378***  -0.0016  0.3485*** -0.0008* -0.1722*** -0.0001 368,539.7946*** 85.1548*** 0.05
DEO0001137057 0.0805***  0.0055 0.3653***  -0.0008**  -0.2684*** 0.0002* 553,493.7352*** 37.407*** 0.06
DEO0001141430 0.0141** 0.0071 0.3982***  -0.0029** -0.0079* -0.0001* 1,674,969.1831*** 125.6865*** 0.06
DEO0001135242 0.0099 0.0074  0.2807*** -0.001 -0.0015 0.0001 1,059,156.6595*** 136.8517*** 0.03
FR0104756962 0.0238*** 0.001 0.2253***  -0.0001*** -0.0501 -0.0001 615,208.3230*** 26.6177*** 0.03
FR0106589445 0.0608***  0.0038 0.337*** -0.0007* -0.1918*** 0.0004* 552,014.3138*** 180.5666*** 0.04
FR0106589437 0.0076 0.0083* 0.5324***  -0.0138*** 0.0018 -0.0001* 1,917,011.2135*** 197.1651*** 0.1
FR0010011130 0.0115 0.0145 0.3878*** -0.0166*** -0.0048 0.0001 845,149.1493*** -18.4761 0.03

- All autoregressive parameters values are interpreted as a sum and we use a Wald test for testing the null hypothesis that this sum is equal to zero.
- %, ** and *** means rejection of the null hypothesis at the 10%, 5% and 1% levels, respectively.

- Breush-Pagan is a test for heteroscedasticity. The null hypothesis is of homocesdasticity (no heterokesdasticity). We use 5 lags in the test.

- The Breush-Godfrey is a test for serial correlation. The null hypothesis is of no serial correlation. We use 5 lags in the test.

- All standard errors are computed following (Newey, et al., 1987).

The estimated equation is given by:
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_ 0 GG AGG 0 Q T&0
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- Number of trades and quote changes for the bond portfolio,

for each unit of time.

At - Number of seconds between event ¢-1 and .

’jGG Return for the bond portfolio, happening between ¢-1 and ¢.
0/ - Aggregated order flow for bond portfolio, between #-1 and ¢.
r,, — log return of mid quote for bond i.

it

0., — Signed volume of trade for bond i.



From Table 5, the parameter of interest is the sum of the phi coefficients. From Panel A, we
see that the sum of the ¢, parameters is negative for 91% of the cases (ten out of twelve).

But it is statistically different than zero at the 5% significance level for only six cases. In a
modest way, this result implies that on average an increase in the quoting activity in the bond
portfolio will strengthen the negative autocorrelation process for mid quote changes. A
possible reasoning for this effect is that the increase in quoting activity in the bond portfolio
relates to the presence of news in the market, which increases the volatility of the efficient
price, increasing the spread and therefore making the bounce between bid and ask prices
higher in absolute value. This would result in a stronger negative autocorrelation for mid
quote changes. But, while we find consistency in the signs of the sum, the p values tell a
different story. For only five cases we do find positive and statistically significant sums.
Therefore this effect is weakly defined across different bonds.

When looking at the sums of ¢, Panel A, Table 5, we also find modest results. Among the

bonds, the sum of this parameter is positive (and statistically significant) for six out of eight
cases. While this is also not a strong result, the signs of the parameters are intuitive. A higher
quoting activity in the bond portfolio indicates the presence of fundamental news in the
market. Therefore, it can be expected that the market maker would be statistically sensitive to
the activity in the market when pricing the incoming order flow. This results in a higher price
impact when there is higher trading and quoting activity in the bond portfolio.

In Panel B, Table 5, we have the trade equation results of the extended spillover model. The
sums of ¢€k show a consistent negative effect of trading and quoting activity towards the

autocorrelation process of signed volume. For all bonds, the sum of this parameter is
statistically significant and negative. This means that the higher the trading and quoting
activity in the bond portfolio, the lower the chance that a buy (sell) order is followed by
another buy (sell) order in the respective bond. The explanation we find for the negative signs

of the sums of ¢fk is the inventory problem faced by the primary dealers (market makers). If

the market is trading intensively, then it indicates the presence of news (or informed traders
trading before news). If the impact of this news is uncertain, then there would be more
motivation for the market maker to decrease his inventory limits given the higher risk profile
of the situation. Therefore, while in a normal market situation the market maker would
accommodate successive trades in the same direction, in a higher intensity trading situation
the market maker would have more incentive to tighten the inventory control by improving
quotes and motivating the trades in the opposite direction. This improvement of quotes

corroborates with the result for the sum of parameters ¢, in the quote equation of the

extended model (Table 5, Panel A) where an increase in quoting activity in the bond portfolio
increases the autocorrelation process of the mid quote changes.

32



Conclusions

The main idea of the paper was to introduce spillover effects in a general microstructure
model. We build the structural equations of which we draw our ideas and showed that it had a
particular autoregressive representation for changes in mid quote prices and trades. Based on
this result, we estimate different econometric specifications in order to test the consistency
and robustness of the expected relationships in twelve fixed income instruments for the
European bond market over the time period of one year.

The result of this exercise was positive. For the quote equation we see a significant increase
in the adjusted R squared when comparing to the benchmark model in (Hasbrouck, 1991).
This indicates the high explanatory power of some of the new variables. A strong positive
correlation between the mid quote changes in the respective bonds and the bond portfolio was
uncovered. This was expected as the bonds have similar risk factors and this correlation is the
simple result of common fundamental changes in prices.

In the microstructure model built in the first part of the paper it was possible to show that the
trade equation had an autoregressive representation which incorporated the trades in other
instruments. This result was also seen empirically in the estimated econometric models,
where a trade in the bond portfolio is positively related to trades in the respective bonds. But,
as pointed out in the paper, the result was not strong and we were not able to distinguish the
spillover effect of our microstructure model from the simple case of informed traders splitting
orders across different maturities in the market. Therefore, we argue that the results of the
study with respect to the robustness of the proposed microstructure model were positive but
inconclusive.

In a second part of the paper, we follow the same arguments as (Dufour, et al., 2000) and
investigate the effect of trading intensities on the parameters of our model. We find that these
parameters do change according to the intensity with which the bond portfolio was being
traded and quoted. First, we got the result that positive changes in the quoting activity of the
bond portfolio strengthen the negative autocorrelation for mid quote changes. Second, we see
that the trade and quote activity decreases the autocorrelation in the trade equation. Both
results can be explained by the inventory problem, where the trading (and quoting) activity
indicates news in the market, increasing the risk of market maker’s exposures, and therefore
forcing him to improve quotes in the opposite direction in order to motivate trades. This
would cause stronger negative autocorrelation in the mid quote price changes and weaker
positive autocorrelation in the trade equation for cases where the market is trading
intensively.

The contributions of this paper to the existing literature rely on showing empirical evidence
that trades and quotes of instruments with similar risk factors are not independent. In the
document, we argued in favour of a simple microstructure model where the spillover effect
had a transitory effect on prices. Even though we could not argue in favour of empirical
evidence for our theoretical model given a higher complexity in the trading data, we do
uncover a significant amount of evidence towards a spillover effect in the trading process of
European bonds. The most reliable result we have is for the spillover of trading intensities in
the trade equation. Further steps in the research would be to study empirically the effect of
the spillover variables on the spread and volatility of the bonds, checking whether they have
similar impacts as with the mid quote change and order flow.
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APPENDIX

Appendix 1 — Derivation of Autoregressive Form of Hasbrouck Model
The microstructure model in Hasbrouck (1991) is given by this set of recursive equations:

m,=m,_ +zv, +v/ (A.1.1)
g, =m,+a(q,_ —m,_)+bx, (A.1.2)
x, =g, —m_)+v; (A.1.3)

Our interest is in finding the autoregressive form of the mid quote price changes, ¢, —q, ;.
We start by adding —¢, , in both sides of the equation, resulting in:

q,—q,_,=m +a (‘];_1 -m,_, ) +bx, —q, (A.1.4)
Substituting the value of m, and v,” we get:

4 -4 =(m_—q.)1-a—zc)+(z+b)x,+Vv/ (A. 1.5)
Now, rearranging and substituting for ¢, , we get:

9,—q =a(m_,—q,_,)(1-a-zc)+(zbc=b(1-a))x_ +(z+b)x, +v/" (A.1.6)

This is a similar equation as in formula (10) in Hasbrouck (1991). The author further expands
the equation by substituting for g, ,. But, the pattern is already clear, each expansion of g, ,

will release a””' (zbc -b(1- a)) x,_, - Using this simplification and generalizing we get:

Ag, =(z+b).x, +§:ak_l (zbc—b(l—a))x,_k +v" (A. 1.7)
k=1

Therefore, this autoregressive system has a decaying value of lag parameters as long as o <1

For the derivation of the autoregressive system for the trades, x,,, we start with the trade

equation:

x, =—c(q_—m_)+v; (A. 1.8)
Substitute for ¢, ;:

x, =—cbx_ —ac(q_,—m_,)+v/ (A.1.9)

Again substitute for g, ,:
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X
t

x,=—cbx,,—acbx, ,+ (05 (q,,3 —m )) TV

But, the pattern is already clear. The generalized equation for trades will be:

0
_ k-1 X
X, = E a chx, , +v,
k=1

(A. 1.10)

(A. 1.11)
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Appendix 2 — Derivation of Autoregressive Form of Simplified Spillover Model
This model will follow this set of recursive equations:

mi,t_ it— 1+Z1V”+V (A21)

g, =m, +q, (qi,t—l -m;, ,)+b.x, (A.2.2)
M

X, == (g —m, )+ 2 S (g —m )+ (A2.3)

Jj=1,j#i

Again, the interest is in the mid quote price changes Ag,, =¢,, —q,,_, . It is easy to see that the

insertion of the extra term in the trade equation will not change the autoregressive
representation for Ag,, . Therefore, the solution of mid quote changes in the spillover model

1s the same as in Hasbrouck:
Ag,, =(z,+b)x,, + i af ' (zbe,—b(1-a,))x,_ +,, (A2.4)
k=2

For the autoregressive formula of the trade equation, we start with:

M

X =€ (Qi,t—l -m; ) + z fl‘j (qj',z—l - mj,t—l ) + Vi),(z (A25)

JLji
And recognise that, from Hasbrouck’s solution:
(g —m,,)=c, Za" 'hx,, (A.2.6)
Therefore, its easy to see that
Gjo M0 = i afilbjxj,tfk (A.2.7)

Substituting back into A.2.6, the final representation is:

—Zak 'ehx, , + Z f,j(Zak lbjxj,k] - (A.2.8)

j=1,j#i
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Appendix 4 — Results from extended Spillover Model, Version 2

Panel A — Quote Equation for extended Spillover Model

Sum of Sum of Sum of Sum of Phis Sumof Sum of Phis Breush-Godfre .
bondCode ) . bda1 Lambda2  Betas 1 Gammas 2 Breush-Pagan Test > Y08 adjR2
IT0003248512 0.0407*** 0.0001 -0.0418 -0.0108 0.0068*** 0.0003 4,326.5062*** 325.6475*** 0.01
IT0001488102 0.1751*** -0.0003 -0.5916***  0.9315***  0.0414*** 0.0044 2,232,619.5238*** 527.9054*** 0.17
IT0O003652077 0.6744*** 0.0038 -0.1639*** 0.1893 0.0236*** 0.0069 1,359,245.6350*** 28.1477*** 0.09
IT0O003472336 1.7467*** 0.0074* -0.2** -1.4827* 0.0411*** -0.0062 642,303.2565*** 882.1091*** 0.05
DE0001137024 0.2394*** 0.0004 -0.4852*** -0.6792 0.027*** 0.0201 1,864,336.1463*** 152.7297*** 0.16
DE0001137057 0.4204*** -0.0033 -0.2889*** -1.1148 0.0172*** 0.0253 3,895,835.3121*** 81.1789*** 0.19
DE0001141430 1.2044*** -0.0026 -0.3029*** 0.5658 0.019*** 0.0134*** 879,430.1457*** 22.9774%* 0.33
DE0001135242 1.4214*** -0.008 -0.0883*** 0.3128 0.0764*** 0.0564 570,904.3280*** 10.4960* 0.15
FR0104756962 -0.0057 0.0008 -0.2057***  0.5218***  0.0101*** -0.0068 10,973.6441*** 27.2206*** 0.04
FR0106589445 0.2556*** 0.0041 -0.5096***  0.8249***  0.0219*** -0.0184 36,910.6446*** 106.7503*** 0.13
FR0106589437 0.9334***  -0.0116*** -0.0872 0.0396 0.0119***  0.0909*** 709,302.8176*** 369.2947*** 0.12
FR0010011130 3.0612*** -0.0116 -0.2577*** -3.7894 0.0469*** 0.0823 3,177,288.5790*** 29.3913*** 0.38

- All autoregressive parameters values are interpreted as a sum and we use a Wald test for testing the null hypothesis that this sum is equal to zero.
- %, ** and *** means rejection of the null hypothesis at the 10%, 5% and 1% levels, respectively.

- Breush-Pagan is a test for heteroscedasticity. The null hypothesis is of homocesdasticity (no heterokesdasticity). We use 5 lags in the test.

- The Breush-Godfrey is a test for serial correlation. The null hypothesis is of no serial correlation. We use 5 lags in the test.

- All standard errors are computed following Newey and West (1987).

p-1 p-1

P
r r r r  T&Q0 AGG r r  T&0 AGG r
ﬁi,kr;',t—k + z ViiOiw t Z[ﬂu,k +4 ik ]rz‘,r-k + []’Z,i,k + ¢2,kni,r—k :|Qi,z-k te;,
=l

Mm

T

= k=0

-
]

1

-

)(At)_1 - Number of trades and quote changes for the bond portfolio,

T& AGG AGG
o <

» nTrades],” +nQuotes;,
for each unit of time.
At - Number of seconds between event ¢-1 and ¢.
r,°¢ - Return for the bond portfolio, happening between ¢-1 and ¢.
Q:‘,GG - Aggregated order flow for bond portfolio, between -1 and ¢.
7, — log return of mid quote for bond i.

0,, — Signed volume of trade for bond i.
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Panel B — Trade Equation for extended Spillover Model

Sum of Sum of Sumof Sum of Phis Sumof  Sum of Phis Breush-Godfre .
bondCode Lambda1 Lambda 2 Betas 1 Gammas 2 Breush-Pagan Test LM Test ! adj R2
ITO003248512 0.0929** 0.0041 0.3553*** -0.1323 -0.1235 -0.0193 140,849.6430*** 67.0557*** 0.07
ITO001488102 0.3975***  0.0077** 0.4331*** 0.3234 -1.5658*** -0.022 60,936.4104*** 1,094.8627*** 0.08
ITO003652077 0.0761** -0.016**  0.4037*** -0.0001 -0.0986***  0.0615*** 36,788.3161*** 4.8346 0.08
ITO003472336 0.0799 0.0002 0.3923*** -0.1871 -0.0234** 0.0398 73,929.8244*** 9.3842* 0.08
DEO0001137024 0.0531** -0.0083 0.393*** -0.0402 -0.2516*** 0.0349 131,361.9154*** 124.8865*** 0.07
DEO0001137057 0.0233 0.0067 0.3977*** 1.083 -0.3968*** -0.0701 172,388.8841*** 89.8649*** 0.09
DEO0001141430 0.0022 0.0094 0.4839*** 0.0781 -0.0083 -0.0123 318,734.8728*** 133.0418*** 0.16
DE0001135242 -0.0334 0.0122 0.3512** 0.3446 -0.0111 -0.0767* 177,675.1587*** 102.2906*** 0.07
FR0104756962 -0.0005 0.0056 0.2028*** 0.4198 -0.0772 -0.0325 119,327.3701*** 97.4394*** 0.03
FR0106589445 0.0813** -0.0226  0.3317*** 0.0369 -0.2266*** 0.2246 137,186.6040*** 83.8415*** 0.05
FR0106589437 0.0129 0.0094 0.5067*** -0.2792 -0.0058 -0.0567***  313,114.6273*** 27.3610*** 0.16
FR0010011130 -0.0426 -0.0115  0.3601*** 0.8831 -0.014 0.1519 168,378.5677*** 71.7770%** 0.06

- All autoregressive parameters values are interpreted as a sum and we use a Wald test for testing the null hypothesis that this sum is equal to zero.

- %, **% and *** means rejection of the null hypothesis at the 10%, 5% and 1% levels, respectively.

- Breush-Pagan is a test for heteroscedasticity. The null hypothesis is of homocesdasticity (no heterokesdasticity). We use 5 lags in the test.
- The Breush-Godfrey is a test for serial correlation. The null hypothesis is of no serial correlation. We use 5 lags in the test.

- All standard errors are computed following Newey and West (1987).

P

Qz,t:Zﬁzk zzk+z7k k+Z|:ﬂ'11k k”IT;&g]QIAtGg"'Z[ﬂq +¢2knth&1?:| AGkG"'g
=

n'* = (nTradesAGG + nQuotesAGC")(At)_1

it

- Number of trades and quote changes for the bond portfolio,

for each unit of time.

At - Number of seconds between event ¢-1 and ¢.

AGG
)‘

- Return for the bond portfolio, happening between ¢-1 and ¢.

AGG

Q7" - Aggregated order flow for bond portfolio, between #-1 and ¢.
., — log return of mid quote for bond .

it

0,, — Signed volume of trade for bond i.
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