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Abstract

In this paper we study the conditions under which efficient behavior can spread from a finite initial seed group to an infinite
population living on a network. We formulate conditions on payoffs and network structure under which overall contagion
occurs in arbitrary regular networks. Central in this process is the communication pattern among players who are confronted
with the same decision, i.e. who are at the same distance from the initial seed group. The extent to which these agents
interact among themselves (rather than with players who already have faced or subsequently will face the decision problem)
is critical in the Prisoner’s Dilemma. In the Coordination Game the key element is the cohesion of the efficient cluster,
a property which is different from the one identified in the Prisoner’s Dilemma. Additional results are obtained when we
distinguish the interaction and information neighborhoods. Specifically, we find that contagion tends to be favored by fast
neighborhood growth if an assumption of conservative behavior is made. We discuss our findings in relation to the notions
of clustering, transitivity and cohesion.
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1. Introduction

Casual observation suggests that most economic and social interactions take place locally, within restricted subsets
of a larger population. It is convenient to think of the set of pairwise relationships among agents as a network. An
agent’s neighborhood might include family and friends, colleagues, business partners, geographic neighbors, etc. Within
his neighborhood, an agent shares, exchanges and develops information, knowledge and other resources, new behaviors
are learned and strategic interactions take place.2 Improved corporate governance practices spread across the economic
system via board interlocks; increased awareness of Society towards environmental issues was achieved through associations,
communities and friendship ties.

When it comes to the adoption of new behavior or technology, interaction being confined to neighborhoods implies that
diffusion takes place gradually. Starting from a seed group, diffusion reaches the group’s neighborhood, the neighborhood’s
neighborhood, and so on. The sequential process through which iterated neighborhoods convert resembles an epidemics,
progressing through the population as contacts occur between infected and susceptible individuals. The extent and speed of
contagion therefore depend on the properties of the iterated neighborhoods of the initial seed group.

In this paper, we formulate results on imitative contagion by efficient play in arbitrary regular networks,3 based solely on
the structure of the iterated neighborhoods of some initial, finite group of efficient players. We focus on one-shot two-by-two
symmetric games. Efficient play implies the choice of cooperation in the Prisoner’s Dilemma, and the choice of the action
associated with the Pareto-dominant equilibrium in the Coordination Game. The decision to adopt one particular behavior
depends on the payoff advantage of that behavior over alternative courses of action. We assume imitative learning: agents
adopt successful actions without necessarily understanding why they are successful, i.e. imitation rather than best reply
drives learning. We identify structural properties of iterated neighborhoods which are key to contagion by efficient behavior.
In the Prisoner’s Dilemma, efficient behavior spreads if and only if it has a chance of being imitated, which requires that
it generates high payoffs. This can only happen if players are, to a certain extent, segregated, and remain so as contagion
unfolds. This in turn requires that agents play mostly with agents who are at the same distance from the initial seed group.

Email address: nicolas.jonard@uni.lu (Nicolas Jonard )
1Financial support from the Fonds National de la Recherche (FNR) under Project BaBe C08/IS/13 is gratefully acknowledged.
2Different neighborhoods could serve different purposes, for instance when interaction and information neighborhoods do not coincide. We

come back to this later.
3Networks in which all nodes have the same degree, i.e. the same neighborhood size.
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Put another way, an efficient outcome can be reached when those facing the challenge interact among themselves rather
than with those who faced it yesterday or those who will face it tomorrow. In the Coordination Game, efficient contagion is
possible if the cluster of efficient players has few outward connections, a condition easier to fulfill.

This paper is related to a large set of references, which we (selectively) review below, focusing on how imitation and local
interaction have been incorporated so far in the literature.

In the Prisoner’s Dilemma, best reply precludes cooperation regardless of how agents are matched (be it locally or
globally). Best reply however assumes that a great deal is known about the structure of the game. For many applications
this is neither reasonable nor necessary. Economic agents are often unfamiliar with the set of actions they can choose from,
and with the details of the strategic environment they are immersed into (see Simon’s 1955 seminal paper). When information
is incomplete but the performance and action of others are (perhaps indirectly) observable, imitation is a reasonable behavior:
it saves time and attention, and simplifies decision making. Mimetism in financial markets, best practices identification and
benchmarking in industry are typical illustrations of imitative behavior (on the latter, see Lieberman and Asaba 2006).
Experimental evidence supports the idea that agents use imitation in decision making (see Pingle and Day 1996). There
is also evidence that, within a large class of possible imitation rules, agents follow the principle of “imitating the best”
(Apesteguia et al. 2007), a principle which is showed to be the only “non-exploitable” standard learning algorithm (Duersch
et al. 2010).4

Imitation alone is however not enough. To protect efficient play from too much exposure to the other action (which
would implied lowered payoffs), interaction also needs to be local. This can be achieved with a fixed structure like a network,
or in a more fluid way through random pair (or small group) formation. An early analysis of imitation in conjunction
with local interaction is in Nowak and May (1992, 1993). Using numerical simulation, it is showed that for a substantial
part of the possible payoff values (the magnitude of the defection premium plays a significant role here) and most initial
conditions, defectors and cooperators can coexist forever on a lattice, either in static irregular patterns or in dynamic patterns
with chaotic or cyclical fluctuations around predictable long-term averages. Similar results obtain in both synchronous and
asynchronous environments (Nowak et al. 1994; Hubermann and Glance 1993), when various changes are introduced in the
learning procedure (noise, memory, etc.), and on a variety of network structures. Variations on these elements have been
explored in numerous simulation studies, of which recent examples are Abramson and Kuperman (2001), Ohtsuki et al.
(2006) and Jun and Sethi (2007). Roca et al. (2009) perform a very systematic simulation study which explores the various
degrees of freedom of the problem, and emphasize the central role played by clustering (or transitivity) in sustaining efficient
play.

Taking an analytical approach, Eshel et al. (1998) examine the survival of cooperation in a Prisoner’s Dilemma played on
the circle and show that at least two thirds of cooperators exist in any stochastically stable configuration. The authors however
are constrained by their methodology to stick to the circle (the one-dimensional periodic lattice) with two or four nearest
neighbors. Outkin (2003) characterizes the necessary and sufficient conditions for the existence of a mixed configuration on
the circle with 4 neighbors, showing how the size of the equilibrium cluster of cooperators relates negatively to the defection
premium. Eshel et al. (1999) consider larger neighborhoods on the line and distinguish interaction from information. They
make however an assumption of “conservatism” according to which only players at the border of clusters can change strategy.
Depending on the relative size of the information and interaction neighborhoods, risk-dominance and Pareto-dominance can
prevail in Coordination Games, while cooperation emerges in the Prisoner’s Dilemma provided learning takes place at long
enough distances. Mengel (2009) also distinguishes interaction and information in an imitation-driven approach with players
located on the circle and a few additional structures. Whenever agents use information beyond their interaction neighbors,
the unique stable outcome is inefficient. Introducing sufficient conformism (which in effect implies that the payoffs are
distorted, and not those of a Prisoner’s Dilemma anymore as they include a bias towards the majority behavior) is a way of
sustaining efficient play.

Similar issues arise in coordination games, where best reply also leads to inefficiency (i.e. the selection of the risk-dominant
equilibrium). Noisy best reply in relation to equilibrium selection is studied in global contexts by Kandori et al. (1993),
Young (1993) and Binmore and Samuelson (1997) (see Bergin and Lipman 1996 on the very particular role played by noise in
these models). Myopic best reply in local contexts has been examined in the early papers of Blume (1993, 1995); Anderlini
and Ianni (1995); Berninghaus and Schwalbe (1996); Young (1998); Ellison (1993, 2000); Morris (2000). All conclude that
the risk-dominant equilibrium is selected. Most of these papers consider lattices, but there are two noticeable exceptions.
Morris (2000) formulates very general results on contagion in arbitrary, infinite-order networks. The approach uses the
notion of cohesion, i.e. the extent to which groups of individual have interactions within the group rather than outside the

4See also Schlag (1998) for a motivated and motivating discussion of imitation, and Samuelson’s (1997) book. The recent study by Bergin and
Bernhardt (2009) shows that imitation tends to favor cooperative solutions, and that this tendency is stronger when there is a longer memory of
past interactions.
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group (see also Young 1998). The paper shows that a necessary and sufficient condition for contagion by the q-dominant
action (q < 1/2) starting for a finite group X, is that the complement of X (where the inefficient, (1− q)-dominant action is
played) contains no group which is at least (1− q)-cohesive. Uniformity of interaction and low neighbor growth are showed
to support contagion by efficient play. Durieu et al. (2005) also provide general results, using the graph-theoretic concept
of dominating set to provide a complete characterization of step-by-step contagion in finite networks, and pointing at the
possibility of non-homogeneous equilibria as well as two-period cycles. Recent contributions include López-Pintado (2006),
who uses a mean-field approach to show that in random networks of arbitrary degree distribution there is a threshold for
the degree of risk-dominance q below which contagion happens (the threshold being dependent on the degree distribution).
Cartwright (2007) explores the relationship between the waiting time for a transition from the efficient to the risk-dominant
equilibrium, and network structure, finding that small world types of architectures yield fastest transitions.

When learning is driven by imitation, the opposite conclusions obtain. Robson and Vega-Redondo (1996) have a very
parsimonious model where random pairs of agents play a Coordination Game and publicize the outcome of the interaction.
This gives the possibility that efficient players meet, collect the largest payoff and are imitated by others. Although there
is no fixed network over which interactions take place, interactions are local, and efficient play is sustained. Alós-Ferrer and
Weidenholzer (2008) distinguish the interaction and the information neighborhoods, extending the latter strictly beyond the
former, and show that efficient play spreads contagiously to the entire population when interaction is not “too global”, i.e.
neighborhoods are small relative to the maximal number of disjoint neighborhoods, and information is fluid enough.

In this paper we analyze arbitrary regular networks of infinite order. Focusing on the case of a constant premium to
defection, we are able to fully characterize the process through which the iterated neighborhoods of a given finite-sized initial
set of efficient players convert, propagating the epidemics through the entire network. In the Prisoner’s Dilemma, the results
emphasize the importance of a property of iterated neighborhoods which is related to, though distinct, from cohesion. For
the Coordination Game, neighborhood growth plays a central role. When the interaction and information neighborhoods
are distinguished, neighborhood growth plays an important part in the Prisoner’s Dilemma as well.

2. The model

2.1. Network definitions

Consider a countably infinite set of players S and a set g of ties (links) between unordered pairs in S. The pair (S, g)
defines a network. Writing ij to represent the tie between i and j, ij ∈ g indicates that i and j are linked in the network.
The neighborhood of i consists of the players to whom i is directly connected, denoted Ni = {j 6= i : ij ∈ g}. The size of the
neighborhood of i is the number of ties held by i, also called its degree, and is denoted ni = #Ni (in the following, lower
case letters are used for set sizes). In the paper, degree is assumed to be identical across S, i.e. ni = n, ∀i ∈ S: the network
is n-regular. The neighborhood of a set of players X is the union of neighborhoods of the players in X, denoted NX .

A path in g is a sequence of links i1i2, · · · , ip−1ip between unordered pairs, without cycles, such that ilil+1 ∈ g, ∀k =
1, . . . , p−1. Denote di,j the number of links in the shortest path between i and j, di,j is the (geodesic) distance between i and
j in the network (S, g). It is straightforward to see that di,j = 1∀j ∈ Ni. The convention is to set di,j = ∞ whenever there is
no path connecting i and j. We suppose that di,j < ∞, ∀i, j ∈ S, i.e. the network is connected. The distance between a finite
set X ⊂ S of players and the individual player i /∈ X is dX,i = minj∈X{di,j}. We write Nd

X for the d-iterated neighborhood
of X, the set of players who are exactly at distance d of the player(s) in X they are closest to, Nd

X = {i ∈ S : dX,i = d}. We
define the d-shell of X as the set of players who are within distance d of X, augmented with X,

Xd = X
⋃

16l6d

N l
X . (1)

For a given finite set X and any i in the d-shell of X (thus dX,i = d), we define the in-degree nin
i of i as #Ni ∩ Nd−1

X ,

the out-degree nout
i of i as #Ni ∩ Nd+1

X , and the intra-degree of i as n∗
i = n − nin

i − nout
i = #Ni ∩ Nd

X . This allows to
distinguish the interactions of i within the iterated neighborhood it belongs to, from the interactions of i with the previous
and the following iterated neighborhoods. We assume that each player has a link to both the next and the previous
iterated neighborhoods, i.e. nout

i , nin
i > 1, ∀i ∈ S. As a consequence, the d-shell of X is bounded, its size satisfying

x+ d 6 xd 6 x
(

(n− 1)
d+1

− 1
)

/(n− 2).

Finally, it is useful to introduce the notions of clustering coefficient, transitivity and cohesion in a network. The clustering
of i’s neighborhood, cli, is the number of neighborhood ties which exist among i’s neighbors, #{jk ∈ g : j, k ∈ Ni}, divided by
the number which could in principle exist, n(n−1)/2. Put another way, cli is the number of (unordered) triangles connected
to player i divided by the number of (unordered) open triangles centered on player i. The clustering coefficient in a network
is the average of that statistic taken over all players. An alternative measure which is sometimes more easily computed is
transitivity. Transitivity is the fraction of transitive triples in the whole network, i.e. 3 times the number of (unordered)
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triangles in the network, divided by the total number of (unordered) open triangles centered on any player (the factor 3
appears because each triangle involves 3 open triangles). Last, a group of players in a network is x-cohesive (where x is
between 0 and 1) if all players have at least a percentage x of their interactions within the group. These three notions, while
yielding different values in general, revolve around the issue of local neighborhood growth: the number of agents reached in
d steps tends to grow only slowly when networks are clustered, transitive, or contain many cohesive groups.

2.2. The game and learning

Players repeatedly engage in the symmetric two-by-two Prisoner’s Dilemma depicted in Table 2.2, with payoffs satisfying
τ > π + β and π, β > 0. D is a dominant strategy, while C is the only symmetric and efficient outcome (it dominates any
symmetric mix of play). Assuming an identical defection premium (β) for any action of the column player, payoff differences
can be compared in terms of the number of C-players involved.

C D
C τ − β π − β
D τ π

Table 1: Payoffs to the row player in the Prisoner’s Dilemma.

A (pure) configuration is a function ω : S → {C,D}. The state or action of player i ∈ S is ω (i) ≡ ωi ∈ {C,D}. Write
p (ωi, ωj) for the payoff of player i from a particular interaction with player j. The aggregate payoff to player i is

Pi =
∑

j∈Ni

p (ωi, ωj) = γi (τ − π) + nπ − nβ · 1{ωi=C} (2)

where γi = #{j ∈ Ni : ωj = C} is the number of C-players in the neighborhood of i, and 1{condition} = 1 if {condition} is
true, and 0 otherwise.

At the end of each period, each agent decides on a course of action for the next period. If agents were myopic expected
utility maximizers, then the strictly dominant strategy D would be chosen systematically. Instead, the rule they follow is
imitation. Players imitate the actions of others whom they observe to be earning high(er) payoffs. Specifically, in each
period, each agent observes his own payoff, and the payoff and action of each every other agent in his neighborhood (though
an agent does not play with himself, he also considers his own payoff and state when imitating). Agent i sticks or switches
to C whenever the highest payoff in his augmented neighborhood N+

i = {i} ∪ Ni is achieved by a C-player. In case of a
tie, i.e. if the highest payoff is achieved simultaneously by players of C and D, we assume C is chosen. So there is always a
unique imitative reaction for any player i to any configuration ω.

Identify now a configuration with the group of players who choose C in that configuration. So configuration ω is identified
with the group Z = {i : ωi = C}, and group Z is identified with the configuration ω where ωi = C if i ∈ Z, and D otherwise.
For any i, let c (i) denote a C-player who collects the largest payoff among C-players in the augmented neighborhood of i.
Formally, c (i) ∈ argmaxj∈N

+

i
∩Z Pj . Symmetrically, let d (i) ∈ argmaxk∈N

+

i
∩Z̄ Pk be a D-player with largest payoff among

the D-players. One of the two sets is necessarily non empty. Then the imitative reaction for player i to group Z is uniquely
defined as

r (Z, i) = C if Pd(i) 6 Pc(i) (3)

and r (Z, i) = D otherwise. Observe that the inequality Pd(i) 6 Pc(i) can be rewritten as

β 6

(

γc(i) − γd(i)
)

(τ − π)

n
(4)

and let βℓ = ℓ (τ − π) /n, for ℓ = 1, . . . , n − 1 and β0 = 0. When the defection premium β ∈ (0, β1], it is sufficient to have
γc(i) = γd(i) + 1 to ensure that Pd(i) 6 Pc(i): this is the most “favorable context” for collaboration. More generally, when
the defection premium β lies in (βℓ−1, βℓ], Pd(i) 6 Pc(i) is equivalent to γd(i) + ℓ 6 γc(i). The larger the defection premium β
is, the larger the number of extra C-players necessary for C to be more rewarding than D. For β ∈ (βℓ−1, βℓ], we can thus
formulate the imitative reaction correspondence as

R (Ω) = {i ∈ Z ∪NZ : γd(i) + ℓ 6 γc(i)}. (5)

3. Contagion

The question we seek to answer is whether a (connected) finite group of C-players can start an epidemic which, under
the deterministic imitation dynamics described above in Equation 5, will lead to cooperation being played everywhere in
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the population. Central in answering this question is the local structure of the network, as cooperation can only propagate
through neighborhood relationships. Morris (2000) addresses a similar question in the case of Coordination Games played
under myopic best reply, whereas the present paper is concerned with imitation in both the Prisoner’s Dilemma and the
Coordination Game.

We will say that a connected finite-sized set X of players seeds shell-wise contagion when R (Xd) = Xd+1, for all d > 0.
In this form of contagion, iterated neighborhoods at any distance convert homogeneously to C, one at a time, and never
revert to D. Then we will say that there is shell-wise contagion in a given network (S, g) if there exists a finite set X such
that X seeds shell-wise contagion.5 An additional assumption we place is that players in the initial seed group X obtain the
largest possible reward to cooperation: any i ∈ X either is or has a neighboring C-player only interacting with C-players,
and that this is enough for them not to switch to D.

3.1. Shell-wise contagion

We are now ready to formulate the central result of the paper, in which shell-wise contagion is characterized only in terms
of the network structure. It is worth emphasizing that, although the formulation is very simple, the result is quite general
on the effect of network structure on the possibility of successful diffusion of cooperation.

Proposition 1. Suppose β ∈ (βℓ−1, βℓ], for ℓ > 1. There is shell-wise contagion in (S, g) if and only if there exists a

connected finite-sized set X ⊂ S such that

max
k∈N

+

i
∩N

dX,i

X

{nin
k }+ ℓ 6 max

j∈N
+

i
∩N

dX,i−1

X

{nin
j + n∗

j} (6)

for all i ∈ S −X.

Proof. Suppose contagion has reached the d-neighborhood of X (ωi = C for all i ∈ Xd), where d is a non-negative integer
number. For any i2 ∈ Nd+1

X (and thus playing D), i2 switches from D to C if and only if Condition 6, max
k∈N

+

i2
∩N

d+1

X

{nin
k }+

ℓ 6 maxj∈N
+

i2
∩Nd

X
{nin

j + n∗
j}, holds. A trivial consequence is that then nin

k + ℓ 6 n − 1, for all k ∈ Nd+1
X . Turn now to

any i1 ∈ Nd
X (i1 thus plays C). Observe that i1 sees a player in Nd−1

X who interacts only with Cs (if d = 0 and thus we
are considering N0

X = X and N1
X , remember we have assumed that any i ∈ X is or sees a C-player only interacting with

C-players). Thus sticking to C is the best response to i1 if and only if max
k∈N

+

i1
∩N

d+1

X

{nin
k }+ ℓ 6 n. But we have just seen

that nin
k + ℓ 6 n−1, ∀k ∈ Nd+1

X . So the stability of Cs in Nd
X is implied by the conversion of Ds in Nd+1

X . This is true for any
value of d > 0. Starting from a finite C-cluster X, Condition 6 triggers the conversion of the D-players in N1

X and guarantees
the stability of the C-players in X. Remember Ds further away see no C-player and thus cannot switch. So X1 = R (X) . In
the next period, Condition 6 triggers the conversion of the D-players in N2

X and guarantees the stability of the C-players in
X1, thus X2 = R (X1) . It follows that Xd+1 = R (Xd) for all d > 0. Put another way, X seeds shell-wise contagion if and
only if Condition 6 holds for all i ∈ S −X. �

This simple and general result highlights the importance of intra-neighborhood interaction for the diffusion of cooperation.
To illustrate, consider player i in Figure 1, where n = 5. Suppose the current C-cluster is XdX,i−1, so that the iterated

neighborhood to which i belongs, N
dX,i

X , is the frontier between the C- and D-playing regions. With the assumption that
ℓ = 1 the payoff difference between cooperation and defection is large enough to trigger a change as soon as there is at least

one extra C-player. It is intuitive that players in N
dX,i−1
X generate high payoffs when they play mostly among themselves,

i.e. have low out-degree, and thus have large in- and/or intra-degree. Here we see players in N
dX,i−1
X with out-degrees 1

and 2, and thus summed in- and intra-degree of 3 and 4. Similarly, players in N
dX,i

X generate low payoffs when they play

among themselves, i.e. have low in-degree, and thus have large out- and/or intra-degree. Here we see players in N
dX,i

X with

in-degrees of 1 and 2. Any C in N
dX,i−1
X plays at least with 3 Cs, whereas any D in N

dX,i

X plays at most with 2 Cs. Thus C

can spread from N
dX,i−1
X to N

dX,i

X , as happens in Figure 1.

5Another, less demanding form of contagion is the continuing growth of the initial C cluster who is joined by at least one player in each period.
Unlike shell-wise contagion, which ensures conversion of the entire population, such a form of contagion would only ensure that an infinite-sized
cluster forms, possibly coexisting with an infinite-sized D-cluster. The present paper focuses on shell-wise contagion, acknowledging that conditions
for the other (weaker) form of contagion are much more difficult to characterize.
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    NX
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    NX

dX , i +1

Figure 1: An illustration of shell-wise contagion when ℓ = 1.

Interestingly, note that such interactions do not imply clustering in the iterated-neighborhoods. Though neighbor com-
monality is possible, and more likely for larger values of ℓ, it is not systematically implied by large intra-degrees. We now
turn to a more detailed analysis of the importance of intra-degree for the diffusion of efficient play.

3.2. Partial characterizations

3.2.1. Homogeneous and partly homogeneous networks

The strongest homogeneity case is the one in which, for given X, the in-, out- and intra-degree are identical across all
players: nin

i = nin, n∗
i = n∗ (and thus nout

i = nout = n − nin − n∗) for all i ∈ S. Observe however that in-, out- and
intra-degree cannot take any values (even when these add to n). There are two ways of counting the number of edges across
two adjacent iterated neighborhoods: as the total number of edges going from NX

d to NX
d+1 (thus using out-degrees) and as

the total number of edges going from NX
d+1 to NX

d (thus using in-degrees) for any d > 0. This is written

∑

j∈Nd
X

nout
j =

∑

k∈N
d+1

X

nin
k . (7)

In homogeneous networks the expression boils down to nout · nd
X = nin · nd+1

X , for all d > 0. This allows the size of Nd
X to

be written as nd
X = x

(

nout/nin
)d

, for all d > 0, an expression which tends to zero if nin > nout and thus contradicts our
assumption of (S, g) being of infinite order. Thus we must have nin 6 nout (if nin = nout, the growth of Xd is linear, when
nin < nout growth is geometric) and will only consider such networks in this section. The following proposition then directly
obtains from Proposition 1.

Proposition 2. Suppose β ∈ (βℓ−1, βℓ], for ℓ > 1. There is shell-wise contagion in the homogeneous network (S, g) if and

only if intra-degree is large enough, n∗ > ℓ.

In a homogeneous population, a necessary and sufficient condition for shell-wise contagion is that the number of intra-
(iterated-)neighborhood interactions is large enough, and larger when the cooperation penalty is larger. As an example,
consider a tree and begin with X = {r} ∪Nr, where r is a random player in the tree. The iterated neighborhoods of X are
characterized by n∗

i = 0, nin
i = 1 and nout

i = n − 1, for all i ∈ S − X. Even when the payoff matrix is most favorable to
cooperation (β ∈ (0, (τ −π)/n], i.e. cooperation outperforms defection when played by at least one extra C-player) shell-wise
contagion is impossible. For any choice of the seed group X, iterated neighborhoods in a tree have no intra-degree and thus
cooperation cannot diffuse. The infinite line (the non-periodic 1-dimensional lattice) is a particular tree, for which any initial
connected X yields nin

i = nout
i = 1 and n∗

i = 0, for all i ∈ S −X. Shell-wise contagion is thus impossible on the line.6

A richer situation obtains when the homogeneity assumption is partly relaxed by imposing only one dimension of identity.

6In Eshel et al. (1998), where imitative learning is based on the average payoff earned by each strategy rather than on the largest payoff earned,
there is contagion starting from an initial cluster of three C players. The learning rule used here is different, and thus the results are.
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Proposition 3. Suppose β ∈ (βℓ−1, βℓ], for ℓ > 1. There is shell-wise contagion:

(i) in the out-degree homogeneous network (S, g) if and only if intra-degree is large enough: n∗
i > ℓ, ∀i ∈ S −X;

(ii) in the intra-degree homogeneous network (S, g) only if intra-degree is large enough: n∗ > ℓ;
(iii) in the in-degree homogeneous network (S, g) if intra-degree is large enough: n∗

i > ℓ, ∀i ∈ S −X.

Proof. (i) In the out-degree homogeneous network we have nout
i = nin, ∀i ∈ S. Condition 6 is rewritten as nin

k 6

n−ℓ−nout, or equivalently n∗
k > ℓ, ∀k ∈ S−X. (ii) In the intra-degree homogeneous network where n∗

i = n∗, ∀i ∈ S, Condition
6 becomes max

k∈N
+

i
∩N

dX,i

X

{nin
k } 6 max

j∈N
+

i
∩N

dX,i−1

X

{nin
j }+n∗−ℓ, for all i ∈ S−X. Suppose ℓ > n∗. By assumption, in any

iterated neighborhood nin
j 6 n−2. Thus for the players in N1

X , if Condition 6 holds it implies that nin
k 6 n−2−(ℓ− n∗) , for all

k ∈ N1
X . Turn to the players in N2

X . Condition 6 is written maxk∈N
+

i
∩N2

X
{nin

k } 6 maxj∈N
+

i
∩N1

X
{nin

j }+n∗− ℓ, for all i ∈ N2
X .

But we have seen that nin
k 6 n− 2− (ℓ− n∗) , for all k ∈ N1

X . Thus Condition 6 implies that nin
k 6 n− 2− 2 (ℓ− n∗) , for all

k ∈ N2
X . Repeating the argument will imply the existence of a finite d for which in-degree becomes negative, a contradiction

which proves the result. (iii) Finally, in the in-degree homogeneous network where nin
i = nin, ∀i ∈ S, Condition 6 is written

ℓ 6 max
j∈N

+

i
∩N

dX,i−1

X

{n∗
j}, ∀i ∈ S −X, which is implied by the condition n∗

i > ℓ for all i ∈ S −X. �

An immediate consequence of part (ii) of Proposition 3 is that the existence of (at least some amount of) intra-degree is
necessary for shell-wise contagion. If all players have zero intra-degree for any finite X, there cannot be contagion. These
results again emphasize the fundamental role played by intra-neighborhood interactions. To contrast intra-degree in iterated
neighborhoods and clustering, a few examples are considered. Consider (S, g) such that the population is divided into regions
of m players each. Each player in a region interacts with n∗ players in the region he belongs to. The regions are arranged
in a line and each player interacts with one (or more) player(s) in each neighboring region, so the whole graph looks like a
bracelet, as displayed in the figures below, with n = 4 and n∗ = 2 in Figure 2; n = 5, n∗ = 3 and nin = 1 in Figure 3; and a
partly homogeneous situation, with n = 5, n∗ = 2 but nin

i ∈ {1, 2}, in Figure 4.

Figure 2: An illustration of contagion with nin
= nout

= 1 and n∗
= 2.

Begin with Figure 2. This is the 2-dimensional periodic lattice with Newman neighborhood. Take as the starting set X
three adjacent C-playing regions on the left. Then (S, g) is homogeneous as nin = nout = 1 and n∗ = 2, for a total of n = 4
neighbors for each player. X seeds shell-wise contagion for β ∈ (0, (τ − π) ·2/4]. This is a typical illustration of a situation in
which interactions take place mostly between players with the same strategy. Starting with segregated regions, it is visible
that Cs do well, as they have a majority of their interactions among themselves, and for the same reason Ds do poorly.
Thus even with a large penalty to cooperation, cooperation can diffuse provided it starts in a well-protected region, and
interaction is mostly taking place within iterated neighborhood (50% of the interactions of any agent in Figure 2 are within
the iterated neighborhood to which the agent belongs). It is worth noting that there is no transitivity or clustering in the
network (there are no triangles). So intra-degree, i.e. the existence of edges between players which belong to a given iterated
neighborhood of X, and transitivity (or clustering) are different notions. The d-shells are 3/4 = 0.75-cohesive (agents at the
border have 3 of their interaction within the d-shell, other inside the shell have all their interactions within the d-shell.
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Figure 3: An illustration of contagion with n = 5 and n∗
= 3.

Figure 3 exemplifies further the absence of a need for transitivity, with n = 5 and n∗ = 3. Again no edge exists between
any pair of neighbors of a given player (the network has no cycles of period less than 4) and yet X seeds shell-wise contagion
for β ∈ (0, (τ − π) · 3/5], a larger interval of acceptable values than in Figure 2. This time d-shells are 4/5 = 0.8-cohesive
(agents at the border have 4 of their interaction within the d-shell, other inside the shell have all their interactions within
the d-shell).

Imagine now enlarging neighborhoods by connecting all the players in a given region (this is not represented). Then n = 7,
with n∗ = 5 and again nin = nout = 1. This time X seeds shell-wise contagion for β ∈ (0, (τ − π) · 5/7]. The acceptable
interval has grown even larger. However, agents’ neighborhoods are now highly clustered: among the 7 · 6/2 = 21 possible
pairwise links which can form, 5 · 4/2 = 10 exist, i.e. cli = 10/21 = 0.48 for any i ∈ S. Iterated neighborhoods of X are also
highly transitive: they form cliques and thus have a transitivity of 1. Finally in this case d-shells are 6/7 = 0.86-cohesive.
So local overlap is good for contagion, but unnecessary, which is in contrast with many findings in the literature (see for
instance Abramson and Kuperman 2001; Vega-Redondo et al. 2005; Roca et al. 2009).

Figure 4: An illustration of contagion with n = 5 and n∗
= 3.

As a final example, look at the partly homogeneous network in the Figure 4. Now n = 5, n∗ = 2 but nin
i ∈ {1, 2}.

According to Proposition 3, whenever β > (τ − π) · 2/5 we should not expect contagion. We see in the figure that the
threshold is also sufficient: when β ∈ (0, (τ − π) · 2/5] Condition 6 holds, and so X seeds shell-wise contagion. We have
clustering in agents’ neighborhoods: among the 5 · 4/2 = 10 possible pairwise links, 3 exist, i.e. cli = 3/10 = 0.3 for any
i ∈ S.

It is interesting to contrast Condition 6 with the notion of cohesion as used in Morris (2000). The cohesion of Xd is easily
seen to be mini∈Nd

X
(nin

i +n∗
i )/n. Thus sufficiently cohesive shells will imply a large right hand side term in Condition 6, but

cannot alone guarantee that the entire condition holds. Clustering and transitivity are harder to compute in general, but
have already been seen necessary for contagion in the examples above.
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r r 

Figure 5: Contagion in a network with geometric neighborhood growth.

As a last illustration, Figure 5 displays two homogeneous network structures with geometric neighborhood growth in
which contagion takes place. Starting from a seed group X = {r} ∪Nr (one player and his 4 neighbors), both network are
characterized by n = 4, n∗ = 1 and nin

i = 1. From Proposition 2 there is contagion if and only if n∗ > ℓ, and thus X seeds
shell-wise contagion for β ∈ (0, (τ − π) /4]. However the size of Nd

X is written nd
X = nd−1

X

(

nout/nin
)

, for all d > 2, so that
xd = 5 + 8(1 + 2 + . . . + 2d−1) = 5 + 8(2d − 1), i.e. we have very fast (geometric) iterated-shell growth in both networks.
Interestingly, the network in the left panel exhibits some amount of transitivity (there are triangles) whereas the network
in the right panel has no cycle of length less than 4 (of which it has many) except in the seed group. In terms of speed of
contagion however both networks behave the same way.

3.2.2. Inhomogeneous networks

Contagion in inhomogeneous networks where in-, out- and intra-degree can be anything is much harder to characterize.
However the importance of intra-shell interaction is maintained, as summarized in the following proposition which establishes
both a necessary and a sufficient condition for contagion.

Proposition 4. Suppose β ∈ (βℓ−1, βℓ], for ℓ > 1.
(i) A connected finite-sized set X ⊂ S does not seed shell-wise contagion in (S, g) if n∗

i < ℓ for all i ∈ S −X;
(ii) There is shell-wise contagion in (S, g) if there exists a connected finite-sized set X ⊂ S such that n∗

i > (n+ ℓ)/2− 1, for

all i ∈ S −X.

Proof. The first part is similar to point (ii) in Proposition 3. If n∗
i 6 ℓ−1, Condition 6 implies that maxk∈N

+

i
∩N1

X
{nin

k }+

ℓ 6 maxj∈N
+

i
∩X{nin

j +n∗
j} 6 n− 2+ ℓ− 1, ∀i ∈ N1

X . So nin
k 6 n− 3, ∀k ∈ N1

X . Turn to the players in N2
X . Condition 6 yields

maxk∈N
+

i
∩N2

X
{nin

k }+ ℓ 6 maxj∈N
+

i
∩N1

X
{nin

j + n∗
j} 6 n− 3 + ℓ− 1. So nin

k 6 n− 4, for all k ∈ N2
X . Repeating the argument

will imply the existence of a finite d for which in-degree becomes negative, a contradiction which proves the result.
For the second part, assume n∗

i > n∗ for all i ∈ S −X. Then 1 6 nin
i 6 n− 1− n∗ and Condition 6 holds if the largest

possible value of the left-hand side expression is smaller than the smallest possible value of the right-hand side expression,
i.e. n− 1− n∗ 6 n∗ + 1− ℓ, that is to say n∗ > (n+ ℓ)/2− 1. �

Point (i) in Proposition 4 generalizes point (ii) in Proposition 3 to a heterogeneous network. Point (ii) in Proposition 4
formulates a sufficient condition in heterogeneous networks, but a fairly weak one: the cutoff value of n∗

i is much larger than
ℓ. Between ℓ and the halved-sum of n and ℓ, it is difficult to characterize what happens. We nonetheless can conclude that
systematic low values of intra-degree prevent contagion, whereas systematic high values of intra-degree entail contagion.

Typical examples of inhomogeneous networks are the lattices very often studied in the literature. Figure 6 below displays
a two-dimensional lattice with Moore neighborhood structure (each agent has 8 neighbors, the 4 obvious ones on the lattice
with Newman neighborhood, and the additional four players “at the corners”). The n

∗, nin-pairs are provided for the iterated
neighborhoods of an initial seed set X = {r} ∪Nr.
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Figure 6: Two-dimensional lattice with Moore neighborhood.

Suppose X = {r} ∪Nr. When ℓ = 1, we are unable to use Proposition 4 to characterize contagion, but we can directly
use Proposition 1, as for any i ∈ NX , maxk∈N

+

i
∩NX

{nin
k }+ ℓ 6 maxj∈N

+

i
∩NX

{nin
j + n∗

j}. Indeed if maxk∈N
+

i
∩NX

{nin
k } = 2,

then maxj∈N
+

i
∩NX

{nin
j + n∗

j} = 2 + 1 = 3, whereas if maxk∈N
+

i
∩NX

{nin
k } = 3, then maxj∈N

+

i
∩NX

{nin
j + n∗

j} = 4 + 1 = 5:

the inequality holds for ℓ = 1 in both cases. When ℓ = 2 Condition 6 does not hold anymore, i.e. there is not shell-wise
contagion (it can be showed there is still contagion, but it is not shell-wise).

4. Contagion dynamics in Coordination Games

Players engage in the symmetric two-by-two Coordination Game with positive payoffs given in Table 4, with π > τ and
ρ > τ . We assume π > σ, which implies that (C,C) is the Pareto-dominant equilibrium or equivalently that C is the efficient
action, and τ < π, to rule out the stag-hunt game. In addition, we assume ρ + σ < τ + π, implying (D,D) risk dominates
(C,C) .

C D
C ρ σ
D τ π

Table 2: Payoffs to the row player in the Coordination Game.

The aggregate payoff to player i is written

Pi =
∑

j∈Ni

p (ωi, ωj) =

{

vi (ρ− σ) + nσ if ωi = C,
vi (τ − π) + nπ if ωi = D.

Given configuration ω, the imitative reaction for player i to group Z is uniquely defined as

r (Z, i) = C if Pd(i) 6 Pc(i) (8)

and r (Z, i) = D otherwise, with d(i) and c(i) defined as in Section 2.2. The Coordination Game, unlike the Prisoner’s
Dilemma, is characterized by the fact that the payoff to each strategy is increasing in the number of players endowed with
that strategy in the augmented neighborhood of the focal player. This results in a proposition very similar to Proposition 1.

Proposition 5. There is shell-wise contagion in (S, g) if and only if there exists a connected finite-sized set X ⊂ S such

that

min
j∈N

+

i
∩N

dX,i−1

X

{nout
j } 6 n

ρ− π

ρ− σ
(9)

for all i ∈ S −X.

Proof. Given the initial set X, if contagion has reached the d-neighborhood of X then any i ∈ Nd+1
X playing D switches

to C if and only if Condition 9 holds. Now i ∈ Nd
X playing C sees a player in Nd−1

X who interacts only with Cs, collecting
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payoff nρ, the largest possible payoff, and thus never switches behavior. Applying the reasoning iteratively implies that
Xd+1 = R (Xd) for all d > 0, and thus X seeds shell-wise contagion if and only if Condition 9 holds for all i ∈ S −X. �

The situation is different from the one studied in the Prisoner’s Dilemma: here, largest payoffs for both actions are
collected inside the C- and D-clusters, rather than at the border between the clusters. The constraint is explicitly on
neighborhood growth: for efficient play to prevail there must be agents whose neighborhoods grow slowly, i.e. who have
small out-degree. Imposing a low out-degree implies interactions which are mostly within the C-cluster for C players, i.e. we
are interested in shells displaying large amount of cohesion (or, to be more precise, such that enough players’ neighborhoods
display large amounts of cohesiveness). The simplest characterization obtains in out-degree homogeneous networks, where
there is shell-wise contagion if and only if out-degree is small enough, nout/n 6 (ρ − π)/(ρ − σ). Formulated in terms of
cohesion, this means that d-shells should be at least 1 − (ρ − π)/(ρ − σ)-cohesive (see the discussions on the implications
of cohesion in Young 1998 and Morris 2000). Note that when D is risk-dominant the ratio (ρ − π)/(ρ − σ) is strictly less
than 1/2, i.e. the growth rate of iterated neighbourhoods cannot be too large. Also note that, as the network is regular, we
could formulate an obvious sufficient condition on intra-degree such that any agent’s out-degree is sufficiently small. Finding
a necessary condition on intra-degree is however much more difficult.

5. Discerning interaction from information

Recent literature has explored the consequences of distinguishing interaction and information neighborhoods (see Alós-
Ferrer and Weidenholzer 2008; Mengel 2009). In such a context, players interact with their neighbors, but exchange payoff
information beyond their neighborhoods. Eshel et al. (1999) already have this feature in their model, but with an additional
assumption of conservative behavior: though information is acquired beyond the interaction neighborhood, adopting the
new behavior is only possible if it is played in the interaction neighborhood. This distinction is particularly relevant in
the Prisoner’s Dilemma, as payoffs to the D-players are larger at the border than inside D-clusters. Thus without the
conservative assumption, one could imagine D-players switching to C within a cluster, while those D-players at the border
would not, the resulting diffusion process being then much harder to study.

Alós-Ferrer and Weidenholzer (2008) show that when information can be obtained beyond players’ interaction neigh-
borhoods there is efficient contagion in the Coordination Game. The intuition goes as follows. Letting δ > 2 be the
information distance, the interactions of player i are with players in Ni as before, while information is obtained from players
in {i}δ = {i}∪Ni ∪ . . .∪N δ

i (i.e. from the δ-shell of i). Consider a finite group X of C-players such that there is at least one
C-player interacting only with C-players (and thus collecting the largest payoff nρ) in any player’s information neighborhood.
Call such a player a top-scorer. All C-players at the border of X (i.e. having both strategies in their neighborhood) have a
top-scorer at distance 1. Obviously players in X do not switch to D. Furthermore, all D-players in NX have a top-scorer
at distance 2, and more generally all D-players in Xδ−1 have a top-scorer within distance δ. After one period contagion will
thus extend to Xδ−1, and the reasoning can be iterated.

With the conservative assumption, the same result of efficient contagion obtains in the Coordination Game, iterated-
neighborhood converting one after another as time passes (all D-players in NXd

have a top-scorer at distance 2 in Xd, and
δ > 2).

The Prisoner’s Dilemma offers a different perspective, and we make the conservative assumption to avoid complicated,
discontinuous types of contagion. Let the information distance be δ > 2. The results are summarized in the proposition
below.

Proposition 6. Suppose β ∈ (βℓ−1, βℓ], for ℓ > 1. There is shell-wise contagion in (S, g) if and only if there exists a

finite-sized set X ⊂ S such that

nin
i + ℓ 6 n (10)

for all i ∈ S −X.

Proof. Given the initial set X, assume contagion has reached the d-neighborhood of X (ωi = C for all i ∈ Xd) where
d is a non-negative integer number. When δ > 2, the C-players in Nd

X and the D-players in Nd+1
X are in exactly the same

situation. Each of them sees at least one player in Nd−1
X who only play with Cs. In addition, each of them sees the players in

the intersection of his augmented neighborhood with Nd+1
X . If all the D-players in Nd+1

X play with (strictly) less than n− ℓ

Cs, the D-players convert to C. If there is (at least) one D-player in Nd+1
X who plays with more than n − ℓ Cs, him and

possibly others who see him will not switch. The same is true for the C-players in Nd
X , under exactly the same condition: if

there is (at least) one D-player in Nd+1
X who plays with more than n − ℓ Cs, those Cs who see him will switch to D. As a

result all, R (Xd) = Xd+1, if and only if nin
i + ℓ 6 n for all i ∈ S −X. �
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This very simple condition contrasts with the one obtained when the interaction and information neighborhoods coincide.
In the former situation, interacting with players in the same situation (i.e. facing the same choice) was essential for shell-wise
contagion to take place. In the present context, when information can be acquired beyond the interaction neighborhood, the
extent to which players facing the same situation interact is no longer relevant. It is interesting to note that we have here
a fast neighborhood growth condition, rather than a slow neighborhood growth condition. So things are to a large extent
reverted, compared to the case of identical interaction and information neighborhoods. To see this, observe that even in a
tree it is now possible to get efficient contagion. Starting with X = {r} ∪ Nr, where r is a random player in the tree, and
constructing the iterated neighborhoods of X yields n∗

i = 0, nin
i = 1 and nout

i = n − 1, for all i ∈ S − X. Condition 10 is
written ℓ 6 n− 1, i.e. efficient contagion obtains when β ∈ (0, (τ − π) · (n− 1)/n]. Even the least favorable payoff conditions
(when cooperation needs to be played by n−1 additional players to outperform defection) allow efficient shell-wise contagion
to happen.

6. Conclusion

This paper has examined the conditions under which efficient behavior diffuses in a network, starting from an initial
seed group. Our focus is on imitative learning, i.e. we assume that players imitate the best observable action in their
neighborhood. For arbitrary regular networks, we find that efficient contagion in a Prisoner’s Dilemma depends strongly on
the extent to which play mostly happens within (rather than across) the iterated neighborhoods of the initial seed group.
These interactions take place between players who are confronted with the same decision at the same time, i.e. who are at
the same distance from the initial seed group. Interactions with players who were confronted with the decision yesterday
or who will be confronted with it tomorrow turn out to be less crucial. Depending on how homogeneous the network is,
the number of intra-(iterated-)neighbourhood interactions can act as a sufficient or a necessary condition for contagion by
efficient play. In all cases these connections play a central part. The larger the premium for defection is in the game, the more
it is important to have these connections in place. When the premium to defection becomes too large, cooperative behaviour
cannot be sustained. We show that slow neighborhood growth is not necessary for efficient contagion, and contrast our
notion of intra-(iterated-)neighbourhood interactions with clustering, transitivity and cohesion. We show that transitivity
(or clustering) is not required for efficient contagion. Cohesion is more closely related to our structural property, though
the two notions remain distinct, as we illustrate in several examples. The main result of the paper is thus that contagion
can be obtained, and sometimes demands a particular type of local structure, one which is not as intuitive as friendship
commonality (the property that friends of my friends should be my friends as well).

In the Coordination Game, the growth of the efficient cluster requires that the cluster has fewer outward than inward
connections. When the efficient and risk-dominant actions differ, there should always be strictly less than 1/2 of outward
connections. The condition is similar to what other papers have identified earlier in the literature (see Morris 2000). As risk
dominance gets stronger, efficient contagion requires slower neighborhood growth.

We then examine the situation in which information neighborhoods extend beyond interaction neighborhoods. In that case
efficient contagion obtains in the Coordination Game, as identified elsewhere in the literature (Alós-Ferrer and Weidenholzer
2008). For the Prisoner’s Dilemma, adding an assumption of conservative learning yields an upper bound on in-degree.
In-degree should be low for efficient contagion to happen, a configuration in which typically neighborhood growth could be
very fast. Therefore, extended information neighborhoods are not only favorable to cooperation, but actually permit the
most rapid diffusion of efficient behavior on regular networks, as contagion takes place in networks in which neighborhoods
grow fast.
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