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1. Introduction 

 

Stochastic models for solving some problems were used among others by 

Ermakov (see [8,9]) and Văduva (see [18,20]).  

For solving the linear system 

 

fxAx +⋅=  (1) 

 

Ermakov uses an ergodic Markov chain with n states, where n is the 

dimension of the system. The transition probabilities of this Markov chain are 0 

for the null elements of A and non-zero values in the contrary case. We consider 

an arbitrary vector h and an initial distribution ( )
nii

p
,1=  with non-zero values at 

the same positions. Using a trajectory of this ergodic Markov chain Ermakov 

estimates the scalar product xh, , where x  is the solution of the system. 

Văduva (see [18,20]) uses, opposite Ermakov, an absorbing Markov 

chain with 1+n  states instead of an ergodic Markov chain with n states. The 

values Pij for  nji ≤≤ ,1  are built in the same way as in Ermakov, but the sums 

of the transition probabilities from the state ni ,1=  to the states from 1 to n 

become less then 1. The differences to 1 are the probabilities to move to the 
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state n + 1 (absorption). Using N independent trajectories 
N

γγ ,...,
1

 with the 

initial transient state i0, Văduva estimates 
0i

x . 

In fact between the ergodic Markov chains and the absorbing Markov 

chains there exists a connection (see [13]). 

In [5] we use a Jackson queueing network (see [10]) to solve some linear 

systems of equations. A Jackson queueing network is an open network with k 

nodes such that the inter-arrival time in the node i from outside the network 

is ( )
i

λexp , the service time at the node i is ( )
i

µexp  and after he finishes its 

service at the node i, a customer goes to the node j with the probability Pij or 

lives the network with the probability Pi0. The arrivals from outside network are 

set according to the right sides, and the transition probabilities Pij are set 

according to the system matrix A (see [5]). If the right sides have elements with 

different signs we have to generate two Jackson queueing networks: one for 

positive values and one for the negative ones. Using the average numbers of 

customers in the nodes we can find the solution of the system. 

In [6] we have solved by the Monte Carlo method the nonlinear equation in σ   

 

( )( ) ,1 σσµ =−∗A  (2) 

 

where A* is the moments generating function of the inter-arrival times density 

function a  (i.e. its Laplace transform): 

 

( ) ( )dttaeA t ⋅= ⋅−
∞

∗ ∫ ξξ
0

. (2’) 

 

We generate (see [6]) a G/M/1 queueing system with the inter-arrival 

times density function a and the service times ( )µexp . We divide the simulation 

period t into m periods when we have no arrival and no service finalization. We 

estimate the average number of customers in the system and, using this 

estimation we estimate a solution of the nonlinear equation if we know an 

analytical formula for A*. In the contrary case, we can solve an integral equation 

in the same way (see [6]). 

A Gordon and Newell queueing network (see [11]) is a closed queueing 

network with k nodes and N customers. The service time in the node i has the 

distribution  ( )
i

µexp , and after the service in this node the customer goes to the 

node j with the probability Pij. We notice that the matrix P as above is the 

transition matrix of an ergodic Markov chain (see [13]). If we denote by 

( )
kii

p
,1=  the ergodic probability we know that 
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( ) jn

j

k

j

kk
xnNnNP ∏

=

⋅===
1

11
,..., α ,  (3) 

 

where xj is proportional with 
j

jp

µ
, and α is computed such that 

 

( ) 1,...,
11

1

===∑
∑ =

=

kk

Nn

nNnNP

j

k

j

.  (3’) 

 

A Buzen queueing network (see [3]) is a generalization of a Gordon and 

Newell queueing network where the service in the node i depends on the 

number ni of customers in that node: its distribution is ( )( )
iii

na µ⋅exp , where 

0>
i

µ  and ai is a given function. In this case we have 

 

( ) ( )
jj

n

j
k

j

kk
nA

x
nNnNP

j

∏
=

⋅===
1

11
,..., α ,  where (4) 

 

( ) ( )⎪⎩

⎪
⎨
⎧

≠∏

=
=

=
0,

0,1

1
jj

n

i

j

jj
nifia

nif

nA j  (4’) 

 

and α is given by (3’). 

We will solve some nonlinear systems of equations by the Monte Carlo 

method using closed queueing networks and some results from games theory 

that we will present in the following. 

 

Definition 1 

A game is in the normal form if ( )
ii

DI π,,=Γ , where I is the set of the 

players, Di is the set of pure strategies of the player i, and R→×
=

i

n

i

i
D

1

:π  is a 

function with ( )d
i

π  being the utility of the player i if the player j uses the 

strategy dj and  ( ),...,...,
1 i

ddd = . 

 

 

Definition 2 

The game is finite if I={1, 2, …, n} is finite. The game is with complete 

information if  Di are finites. 
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Definition 3 

A mixed strategy of the player i is a probability distribution xi on Di. 

We denote by ∆i the set of mixed strategies of the player i and by 

i
i

n

∆×=Θ
=1

. We denote also by ( )ii dx  the probability that the player i uses the 

pure strategy di. Because in the case of non-cooperative games the mixed 

strategies xj are independent, we obtain the following formula for the average 

utility of the player i: 

 

( ) ( ) ( ) ( )ddxx,...,xuxu ijj

n

1jd
n1ii π⋅== ∏∑

=Θ∈
. (5) 

 

Definition 4 

( ) Θ∈= −ii
xxx ,  is a Nash equilibrium if for any 

ii
y ∆∈  we have  

( ) ( )
iiii

xyuxu −≥ , . 

 

Theorem 1([22,16,17]) 

For any finite game with complete information the set NEΘ  of Nash 

equilibria is not empty. 

 

Definition 5 

A two-player game with complete information is called bimatriceal. 

In this case { } { } ( )
ij

AjinDmD === ,,,...,1,,...,1
121

π  and ( ) ij2 Bj,i =π . 

 

Definition 6 

The game is symmetric if m = n and AT = B. The game is doubly symmetric 

if AT = B. 

In a symmetric game ∆=∆=∆
21

. We denote by ( ){ }NENE xxx Θ∈∆∈=∆ , . 

 

Theorem 2([22]) 

For any symmetric two-player game NE∆  is not empty. 
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2. Solving Nonlinear Systems of Equations 

 

Consider the symmetric two-persons game given by the kk ×  matrix A. 

We denote by e(i) the vector with k components ( ) i

j

i

j
e δ= . We denote by ∆0 the 

set of the solutions from ∆ of the nonlinear system 

 
( )( )

⎪⎩

⎪
⎨
⎧

=∑

==⋅−

=
1

,1,0

1
i

k

i

i

Ti

x

kixAxxe
 (6) 

 

and by ( )∆∩∆=∆ Int000 . 

 

Theorem 3([22]) 

In the above conditions we have ( )∆∩∆=∆ IntNE00 . 

Consider now the function 
kR→D:g , where D is a domain such that  

kD R⊂⊂∆ . We will use the same notations as above for the system 

 

( )

⎪⎩

⎪
⎨
⎧

=∑

==⋅

=
1

,1,0

1
i

k

i

ii

x

kixxg
 (6’) 

 

Definition 7([22]) 

The function g from (6’) is a regular growth-rate function if it is Lipschitz 

continuous on D and ( ) 0=⋅ xxg T  for any ∆∈x . 

 

Definition 8([22]) 

Let g be a regular growth-rate function. g is payoff monotonic if for any  

∆∈x  and { }kji ,...,1, ∈  we have ( )( ) ( )( ) ( ) ( )xgxgxeuxeu ji

ji >⇔> ,, . g is payoff 

positive if for any ∆∈x  and { }ki ,...,1∈  we have ( )( ) ( )( )( )xxeuxg i

i
,sgnsgn −= . 

 

Definition 9([22]) 

A regular growth-rate function is weakly payoff positive if for any  ∆∈x  

we have  ( ) ( )( ) ( ){ } ( ) 0,, >⇒Φ≠>= xgxxuxeuixB
i

i   for at least one ( )xBi∈ . 

We know (see [22]) that if a regular growth-rate function g is payoff 

positive or payoff monotonic then g is weakly payoff positive. If g from (6’) is a 

regular growth-rate function we know that 
i

k

i

x
1=
∑  is constant. 
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Theorem 4([22]) 

If g is a weakly payoff positive growth-rate function and ( )∆∈ Intx  x is a 

solution of (6’)  if and only if NEx ∆∈ . 

Therefore solving the nonlinear system of equations (6’) in the case that 

we know the matrix A such that g is a weakly payoff positive growth-rate 

function is equivalent with finding the interior Nash equilibrium. 

Suppose that at a given moment the distribution of the pure strategies in 

the population is given by x. A player who uses the pure strategy i at that 

moment decide to revise his strategy with the average rate ( )xr
i

. At the revision 

moment the player continues with the strategy i with the probability ( )xp i

i
, or 

he changes his strategy with ij ≠  with the probability ( )xp j

i . 

For some particular cases of ri and j

i
p  Lipschitz-continuous on an open 

domain X that contains ∆ and any ∆∈ Intx 0 , if the time moments tends to 

infinity x tends to an interior Nash equilibrium (see [22]). 

The first model considered by Weibull is the imitation driven by 

dissatisfaction. In this case we have 

 

( )
( ) ( )( )( )⎩

⎨
⎧

=
=

xxeuxr

xxp
i

i

j

j

i

,,ρ
, (7) 

 

where ρ is a Lipschitz-continuous function, strictly decreasing in its first 

argument. Particularly, if ( ) aba ⋅−= βαρ , , where β>0 and ( )( )xeu i ,⋅≥ βα  

we obtain 

 

( )
( ) ( )( )⎩

⎨
⎧

⋅−=

=

Axexr

xxp
Ti

i

j

j

i

βα
.  (7’) 

 

For instance we can take in (7’) β = 1 and 
ij

ji
A

,
max≥α , and the above 

conditions are fulfilled. In the C++ program we consider ij
ji

A
,

max>α  to avoid 

the average rate 0  (i.e. with ∞=µ ). 

Another model is the imitation of the successful agent, model I (see [22]). 

We have 

 

( )
( ) ( ) ( )( )( ) ( ) ( )( )⎩

⎨
⎧

>−−Φ⋅=
=

0,,

1

xeeuifxeeuxxp

xr
ijij

j

j

i

i
 ,  (8) 
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where Φ  is a probability distribution on the strategies that involve a greater 

payoff strictly increasing on the payoffs' difference ( ) ( )( )xeeu ij ,− . A simple 

modality to compute the above probabilities is to divide the positive differences 

of payoffs by their sum. Because 
( ) ( )( )( )xeeu ij ,−Φ  is multiply by xj the sum of 

the above probabilities  ( )xp j

i  is less than 1. The rest to 1 is uniform distributed 

to all the strategies (including i) such that ( ) ( )( ) 0, =− xeeu ij . 

Another model is the imitation of the successful agent, model II (see [22]). 

We have 

 

( )
( ) ( )( )( )

( )( )( )⎪⎩

⎪
⎨
⎧

=
=

⋅∑

⋅

=
h

h
i

k

h

j
j

i

xxxeu

xxxeuj

i

i

xp

xr

,,

,,

1

1

ω

ω ,    (9) 

 

where ( ) 0, >⋅⋅
i

ω  is Lipschitz-continuous in the first argument. If we take 0>µ  

and  ( )( )xeu i ,⋅−> µλ  for any i we can consider the above function 
i

ω  linear: 

( ) zxz
i

⋅+= µλω , . If the payoffs are positives (we can make them positives by 

adding a positive constant to each element of the matrix A) we can take λ = 0 

and we obtain 

 

( )
( ) ( )( )

⎩
⎨
⎧

=
=

Axx

Axej

i

i

T

Tj

xp

xr 1
.  (9’) 

 

We solve the nonlinear system of equations (6’) by generating a closed 

queueing network with k nodes and N customers as follows. 

1) We consider at each moment 
N

N

i
ix = , where Ni is the number of 

customers in the node i. 

2) After the end of a service at the node i the customer goes to the node j 

with the probability ( )xpP j

iij
=  from the above models. 

3) We generate the next service in the node i having the distribution 

( )( )xr
i

exp . 

The above queueing network is generated as a Gordon and Newell 

queueing network or a Buzen queueing network during a maximum simulation 

period tsim, but after any service in the node i we have to refresh the values of 

Pij and µi. Pij are computed just before the customer lives the node i, and µi is 

computed just after these. For starting from an interior x we take initially Ni = N1 

and 
1

NkN ⋅=  and we generate the first service in each node. 
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Example 1 

Consider the system of equations (6) with 

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−−
−

−−

=

5.27011

10114

123125.3

09241

15.2315

A . 

 

First we generate the exponentials by the inverse method. We obtain 

 

( )T
x 185.0,203.0,209.0,192.0,211.0=  

 

and  
( )( )( ) ( )T

ii

Ti xAxxe 00478.0,00116.0,02489.0,02467.0,00339.0 −−−=⋅−  (these values 

are theoretically equal to 0) if we consider the imitation driven by dissatisfaction, 

 

( )Tx 081.0,112.0,12.0,189.0,498.0=  

 

and  
( )( )( ) ( )T

ii

Ti xAxxe 00445.0,00209.0,03636.0,00386.0,03487.0 −−=⋅−   if we 

consider the imitation of the successful agent, model I, and 

 

( )T
x 192.0,192.0,217.0,201.0,198.0=  

 

and  
( )( )( ) ( )T

ii

Ti xAxxe 00383.0,00122.0,02272.0,02477.0,00466.0 −−−=⋅−   if we 

consider the imitation of the successful agent, model II . 

Next we generate the exponentials by the rejection method. We obtain 

 

( )Tx 208.0,203.0,196.0,19.0,203.0=  

 

and 
( )( )( ) ( )T

ii

Ti xAxxe 00396.0,00157.0,02319.0,0246.0,0038.0 −−−=⋅−   if we 

consider the imitation driven by dissatisfaction, 

 

( )Tx 092.0,112.0,163.0,183.0,45.0=  
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and ( )( )( ) ( )T
ii

Ti xAxxe 00259.0,00451.0,03898.0,00723.0,02983.0 −−=⋅−   if we 

consider the imitation of the successful agent, model I, and 

 

( )Tx 155.0,27.0,185.0,183.0,207.0=  

 

and ( )( )( ) ( )T
ii

Ti xAxxe 00928.0,00834.0,02985.0,0312.0,00229.0 −−−=⋅− if we 

consider the imitation of the successful agent, model II. 

Finally we generate the exponentials by the mixture method. We obtain 

 

( )Tx 194.0,202.0,204.0,202.0,198.0=  

 

and ( )( )( ) ( )T
ii

Ti xAxxe 00417.0,00254.0,02353.0,0263.0,00441.0 −−−=⋅−  if we 

consider the imitation driven by dissatisfaction, 

 

( )Tx 092.0,12.0,133.0,173.0,482.0=  

 

and ( )( )( ) ( )T
ii

Ti xAxxe 00399.0,00337.0,03779.0,005.0,03341.0 −−=⋅−  if we 

consider the imitation of the successful agent, model I, and 

 

( )Tx 205.0,171.0,201.0,203.0,22.0=  

 

and ( )( )( ) ( )T

ii

Ti xAxxe 00126.0,00063.0,02195.0,02279.0,00272.0 −−=⋅−  if 

we consider the imitation of the successful agent, model II. 

 

 

3. Solving Nonlinear Systems of Differential Equations 

 

First we denote for any vector ( )T
k

yyy ,...,
1

=  by ( ) ( )Tyy keey ,...,exp 1= . 

Consider the  kk ×  matrices B and BA ⋅=α , and the Cauchy problem 

 

( ) ( ) ( ) ( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

=

⋅⋅⋅⎟
⎠
⎞

⎜
⎝
⎛ −=

0

0

~~

'~exp
~exp

'~

ii

i

i

yy

yB
y

ey

τ

τϕ
α

τ
, (10) 
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where φ is a monotonic function on the interval bordered by τ0 and τ1 with 

( ) 0
0
=τϕ  and  ( ) ( )

01
1

lim τττϕ
ττ

≠∞=
→

, and ( )( )∑
=

=
k

i

i
y

1

0~expα . If we take ( )yy ~exp=  

and 
( ) ( )( )00 ~exp yy =  we obtain the equivalent Cauchy problem 

 

( ) ( )( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

=

′⋅⋅⋅⋅−=′

0

0 ii

i

Tyi

i

yy

yyBey

τ
τϕτ α . (11) 

 

Consider a weak positive payoff growth-rate function g if A is the payoff matrix 

of a symmetric two players game. Consider also the systems of differential equations 

 

( ) ( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

=

⋅⎟
⎠
⎞

⎜
⎝
⎛=

0

0

~

'
~exp

'~

ii

ii

yy

y
gy

τ

τϕ
α

τ
, respectively (10’) 

 

( ) ( ) ( )
( ) ( )

⎩
⎨
⎧

=

′⋅⋅=′

0

0 ii

i

y

ii

yy

ygy

τ
τϕτ α . (11’) 

 

If we use in (11) and (11’) the substitutions α
y

z =  and ( ) ( )

α

0
0 y

z = , we 

obtain the systems of differential equations 

 

( ) ( )( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

=

′⋅⋅−=′

0

0
zz

zAzzez

i

i

Ti

i

τ
τϕτ

  and (12) 

 

( ) ( ) ( )
( ) ( )

⎩
⎨
⎧

=

′⋅⋅=′

0

0
zz

zzgz

i

iii

τ
τϕτ

, (12’) 

 

where ( ) 10

1

=∑
=

i

k

i

z . 

Finally we use the substitutions ( ) ( )( )tztx 1−= ϕo  and ( ) ( )00 zx = . We 

obtain the systems of differential equations 

 

( ) ( )( )
( ) ( )⎪⎩

⎪
⎨
⎧

=
⋅−=′

00 xx

xAxxetx

i

i

Ti

i   and  (13) 
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( ) ( )
( ) ( )

⎩
⎨
⎧

=
⋅=′

00 xx

xxgtx

i

iii . (13’) 

 

We know that for ∞→t  in (13) or (13’) x tends to an interior Nash 

equilibrium x* if ( )0x  is interior (see [22]). 

Therefore we obtain x* as in the previous section, and ( ) ∗= xz
1
τ . 

Obviously ( ) ( )( )
11

~exp τατ yxy =⋅= ∗ . In the algorithm we do not need to 

multiply B by α because if we apply a linear increasing function to the payoffs 

we obtain an equivalent game. We notice that the results do not depend on φ, τ0 

and τ1. The only conditions are that φ is a monotonic function on the interval 

bordered by τ0 and τ1 with ( ) 00 =τϕ  and ( ) ( )
01

1

lim τττϕ
ττ

≠∞=
→

. From a given φ 

monotonic on an interval we can find ( )01

0

−= ϕτ  and ( )∞= −1

1
ϕτ . If we have 

only φ’ we need the value of τ0. 

 

Example 2 

Consider the system of differential equations 

 

( )
τα

τ
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑∑

= =

+

= 6

11
'~

5

1

5

1

~~
5

1

~

j k

yy

jk

j

y

iji

kjj eBeBy  

 

with  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−−
−

−−

=

5.27011

10114

123125.3

09241

15.2315

B  

 

and the initial condition 
( ) ( ) ( )Tyy 3,1,0,1,11~~ 0 −== . 

We obtain ( )( ) 60826.29~exp
5

1

0 ==∑
=i

i
yα . Because the primitive of τ−6

1  is  

( ) C+−− τ6ln  we obtain 6,5ln
1
== τC  and ( ) ττϕ −=

6

5ln . 

First we generate the exponentials by the inverse method. We obtain 

 

( ) ( )Ty 7935.1,82263.1,7533.1,7533.1,76857.16~ =  

 

if we consider the imitation driven by dissatisfaction, 
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( ) ( )T
y 93465.0,08547.1,34783.1,70604.1,6909.26~ =  

 

if we consider the imitation of the successful agent, model I, and 

 

( ) ( )T
y 74816.1,75841.1,71674.1,4159.1,82263.16~ =  

 

if we consider the imitation of the successful agent, model II. For the computation 

of the theoretical solution we make the substitutions to obtain the system (13) 

and, from the above considerations we take BA =  instead of BA ⋅=α . We obtain 

 
( )( )( ) ( )T

ii

Ti xAxxe 00444.0,00282.0,02356.0,02611.0,00417.0 −−−=⋅−  

 

if we consider the imitation driven by dissatisfaction, 

 
( )( )( ) ( )T

ii

Ti xAxxe 00476.0,00293.0,03743.0,00297.0,03623.0 −−=⋅−  

 

if we consider the imitation of the successful agent, model I, and 

 
( )( )( ) ( )T

ii

Ti xAxxe 00288.0,00305.0,0237.0,02744.0,00357.0 −−−=⋅−  

 

if we consider the imitation of the successful agent, model II. 

Next we generate the exponentials by the rejection method. We obtain 

 

( ) ( )Ty 77862.1,71674.1,79842.1,77862.1,81784.16~ =  

 

if we consider the imitation driven by dissatisfaction, 

 

( ) ( )Ty 00209.1,1988.1,27609.1,64508.1,69491.26~ =  

 

if we consider the imitation of the successful agent, model I, and 

 

( ) ( )Ty 68978.1,75841.1,84159.1,75841.1,83688.16~ =  

 

if we consider the imitation of the successful agent, model II. The theoretical 

solution is 
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( )( )( ) ( )T

ii

Ti xAxxe 00295.0,00076.0,02278.0,02431.0,00371.0 −−−=⋅−  

 

if we consider the imitation driven by dissatisfaction, 

 
( )( )( ) ( )T

ii

Ti xAxxe 00514.0,0028.0,03638.0,00312.0,03561.0 −−=⋅−  

 

if we consider the imitation of the successful agent, model I, and 

 
( )( )( ) ( )T

ii

Ti xAxxe 0043.0,00077.0,0245.0,02443.0,00346.0 −−−=⋅−  

 

if we consider the imitation of the successful agent, model II. 

Finally we generate the exponentials by the mixture method. We obtain  

 

( ) ( )Ty 7935.1,80311.1,7836.1,7736.1,73779.16~ =  

 

if we consider the imitation driven by dissatisfaction,  

 

( ) ( )Ty 05501.1,3555.1,4639.1,62196.1,6006.26~ =  

 

if we consider the imitation of the successful agent, model I, and 

 

( ) ( )Ty 64508.1,60426.1,83216.1,86937.1,90525.16~ =  

 

if we consider the imitation of the successful agent, model II. The theoretical 

solution is 

 
( )( )( ) ( )T

ii

Ti xAxxe 00421.0,00283.0,02292.0,02626.0,00472.0 −−−=⋅−  

 

if we consider the imitation driven by dissatisfaction, 

 
( )( )( ) ( )T

ii

Ti xAxxe 00279.0,00398.0,03829.0,00749.0,0296.0 −−=⋅−  

 

if we consider the imitation of the successful agent, model I, and 

 
( )( )( ) ( )T

ii

Ti xAxxe 00188.0,00004.0,02372.0,02443.0,00253.0 −−−=⋅−  

 

if we consider the imitation of the successful agent, model II. 
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4. Conclusions 
 

For the problems solved in this paper by the Monte Carlo method we use 

queueing networks as in [7] for solving nonlinear equations and linear systems 

of equations. We use for a nonlinear equation a service system with one sever 

and exponential service ( 1/M/G  service system as it is denoted by Kleinrock 

[15]) as in [6,7], and for linear systems of equations we use Jackson queueing 

networks (see [10]) as in [7,5]. For nonlinear systems of equations (and of 

differential equations) we use a closed network (a Jackson network is an open 

network). The difference between this kind of network and a Gordon and Newell 

network (see [11]) is that in our case the values of 
i

µ  and 
ij

P  are not constant. 

We use also some results from games theory. A relation between queueing 
theory, inventory theory and games theory is presented in [7,4]. 

In the case of the imitation driven by dissatisfaction the service in the 

node i depends on the number of customers in the node, ni (in fact it depends on 

N

n

i
ix = ). This is true as well for the Buzen queueing networks (see [3]). But in 

our model this service depends also on the other xj, and on the payoffs matrix A. 

In the case of the imitation driven by dissatisfaction we have ( )
j

j

i
xxp = , hence 

even the probabilities j

i
p  are not constant and depend on nj. In the cases of the 

imitation of successful agent (model II and model II) these probabilities depend 

also on the payoffs matrix A, but the services remain constant 1. 
For solving the above problems we must know the matrix A in the case of 

a nonlinear system of equations and the matrix B in the case of nonlinear system 
of a nonlinear system of differential equations. An open problem is to find the 
matrix if the system of equations is in the form (6’) and if the system of 
differential equations is in the form (10’) (of course, we must find first the 
weakly payoff positive growth-rate function g). Other open problems are to use 
the Monte Carlo method and queueing networks to solve other problems, as the 
linear programming problem and quadratic programming problem. 
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