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Abstra c t  

This p a p e r p re se nts a n e ssa y o n e mp iric a l te sting  p ro c e d ure  fo r e c o no mic  

c o nve rg e nc e . Re fe rring  to  the  unit ro o t te st p ro p o se d  b y Mo o n a nd  Pe rro n (2004), 

we  p ro p o se d  a  mo d ifie d  Eva ns (1996) te sting  p ro c e d ure  o f the  c o nve rg e nc e  

hyp o the sis. The  a d va nta g e  o f this mo d ifie d  p ro c e d ure  is tha t it ma ke s p o ssib le  to  

ta ke  into  a c c o unt c ro ss-se c tio na l d e p e nd e nc e s tha t a ffe c t GDP p e r c a p ita . 

It a lso  a llo ws to  ta ke  into  a c c o unt struc tura l insta b ilitie s in the se  a g g re g a te s. The  

a p p lic a tio n o f the  p ro c e d ure  o n OECD me mb e r c o untrie s a nd  CFA zo ne  me mb e r 

c o untrie s le a d s to  a c c e p t the  hyp o the sis o f e c o no mic  c o nve rg e nc e  fo r the se  two  

g ro up s o f c o untrie s, a nd  it sho ws tha t the  c o nve rg e nc e  ra te  is sig nific a ntly lo we r in 

the  OECD sa mple . Ho we ve r, the  re sults o f the  te sts a p p lie d  to  the  G lo b a l sa mple  

c o mp o se d  b y a ll c o untrie s in the se  two  sa mple s c o nc lud e  a  re je c tio n o f the  

c o nve rg e nc e  hyp o the sis. 
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abstract

This paper presents an essay on empirical testing procedure for economic convergence. Referring

to the unit root test proposed by Moon and Perron (2004), we proposed a modified Evans (1996)

testing procedure of the convergence hypothesis. The advantage of this modified procedure is that

it makes possible to take into account cross-sectional dependences that affect GDP per capita.

It also allows to take into account structural instabilities in these aggregates. The application

of the procedure on OECD member countries and CFA zone member countries leads to accept

the hypothesis of economic convergence for these two groups of countries, and it shows that the

convergence rate is significantly lower in the OECD sample. However, the results of the tests

applied to the Global sample composed by all countries in these two samples conclude a rejection

of the convergence hypothesis.
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1 Introduction

Since the works of Baumol (1986), Barro and Sala-i-Martin (1991, 1995), a large number of pa-

pers have focused on the analysis of convergence using generally two conventional approaches:

β−convergence and σ-convergence. These two forms of convergence have many applications in

time series properties. Indeed, the development of econometric analysis techniques and the avail-

ability of databases (Summers and Heston, 1991) covering large periods provide the opportunity to

go beyond the cross-sectional analysis and exploit properties of nonstationary time series (Bernard

and Durlauf 1995; Edjo 2003) to better inform the debate on economic convergence.

Convergence tests are also expanded in the framework of panel data analysis. The first tests in

panel based primarily on the methodology used in cross-sectional analysis. One can cite the works

of Islam (1995) and Berthelemy et al (1997). Then, like the procedure used in the individual time

series, panel unit root tests are used to study economic convergence. This procedure based on panel

unit root test is implemented by Quah (1992), Evans (1996), Evans and Karras (1996), Bernard

and Jones (1996), Gaulier et al. (1999) among others. Indeed, the combination of the cross-section

and time dimensions allows for more powerful tests. Now, there are essentially two generations of

unit root tests. And most of the methodologies of the analysis of economic convergence using the

properties of non-stationary series refer to the first generation that puts forward the hypothesis

of independence between individuals (Levin and Lin 1993; Im, Pesaran and Shin 1997; Harris

and Tzavalis 1999; Maddala and Wu 1999; Hadri 2000; Choi 2001). However, as pointed Hurlin

and Mignon (2005), in applications of macro-economic convergence tests, this assumption of cross-

section independence is particularly troublesome. The second generation of unit root tests (Choi

2002; Phillips and Sul 2003; Pesaran 2003; Bai and Ng 2004; Moon and Perron 2004) generally

based on common factors models allows taking into account more general forms of cross-sectional

dependences.

In this paper, the empirical procedure we propose is based precisely on unit root tests of

the second generation and allows to take into account explicitly the dependences in the cross-

sectional dimension. We focus on the fact that the cross-country correlation that may exist in the

convergence equation is not only due to simple correlation of residuals, but also to the presence of

one or more common factors that jointly affect the real GDP per capita of the countries. Therefore,

the study of the convergence in panel based on the standard ADF model as advocated by Evans

and Karras (1996) is no more suitable because it leads to tests with very low power (Strauss and

Yigit, 2003 ).

Another issue addressed in this procedure is the existence of structural changes in per capita

GDP. Works addressing structural changes in panel data with cross-sectional dependence are gen-

erally very rare. Examples include Bai and Carrion-i-Silvestre (2009) and Carrion-i-Silvestre and

German-Soto (2009). As pointed out by Carrion-i-Silvestre et al. (2005), ignoring these shocks in

the econometrics of panel data can lead to biases that lead to wrong conclusions. The financial

and economic crises, economic reforms ..., are factors that may cause such shocks.

In the next section, we present the approach generally used to test convergence in nonstationary
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panel data. Then, we apply the procedure we propose which is inspired by this traditional approach.

In section 4, we conduct monte carlo simulation to explore the impact of the proposed procedure on

performance test. Section 5 presents the application conducted using a sample of OECD member

countries and a sample of CFA zone member countries.

2 Convergence tests in panel data econometrics

The convergence hypothesis tests in panel data are generally based on the standard approach in

cross-section that is to test whether economies with low initial income relative to their long-term

position or steady state will grow faster than economies with high initial income. This involves

applying ordinary least squares (OLS) to the equation

1

T
ln(yi,T /yi,0) = α+ β ln(yi,0) + ϕΞi + ξi ξi ∽ i.i.d(0, σ2

ξ ) (1)

where yi is real GDP per capita of country i, Ξi is a vector of controlled variables so as to maintain

constant steady state of each economy i and ξi is the error term. The index T refers to the

length of the time interval. α, β, ϕ are unknown parameters which have to be estimated. The

convergence speed θ = − ln (1 + βT )/T is the speed required for each economy to reach its steady

state. The null hypothesis tested is the lack of convergence against the alternative that some

countries converge to a certain level of production initially different. If the estimated coefficient

β is negative and significant, one can accept the hypothesis of convergence, which means that

once the variables that influence growth are controlled, low-income economies tend to grow faster

towards their own steady state. It is possible to deduce the time necessary for countries to fill half

the gap separating them from their steady state, from the coefficient β. This half-life is given by

the expression τ = − ln (2)/ ln(1 + β)

However, OLS estimation of (1) is useful for inference only under certain conditions. Indeed,

Evans and Karras (1996) explain that the estimators β̂ and ϕ̂ obtained by applying ordinary least

squares to (1) are valid only if ξi and yi,0 are uncorrelated and the constant term is generated as

δi = ψ
′

Xi (2)

with ψ ≡ (λ−1)ϕ/β. In panel data, Evans and Karras’s (1996) procedure based on unit root tests

is a basic procedure for many studies on economic convergence tests. Considering a group of N

countries, these authors show that the countries converge if deviations of the log GDP per capita

from the international average are stationary for each country. Let yit be the log GDP per capita

of country i at the period t with i = 1, ...N ; t = 1, ...T and ȳt the international average1 of yit.

This is to test whether the data generating process (yit − ȳt) is stationary for all i

lim
h→∞

(yi,t+h − ȳt+h) = µi (3)

Convergence occurs if for each i deviations of per capita GDP from the international average tend

to a constant when t→ ∞. Specifically, the convergence hypothesis is accepted only if yit − ȳt are

1ȳt =
∑N
i=1 yit/N
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not stationary while the yit are integrated of order 1. In such case, we have stochastic convergence.

However, as stressed by Carrion-i-Silvestre and German-Soto (2009), stochastic convergence is

a necessary but not sufficient condition to satisfy the definition of β-convergence. For this, we

consider the data generating process proposed by Evans (1996)

yit − ȳt = δi + λ(yi,t−1 − ȳt−1) + uit (4)

where λ ≡ (1 + βT )(1/T ) is inferior to 1 if the N economies converge and in this case β ≺ 0.

However, there is divergence if λ = 1 this also implies that β = 0. δi is a constant specific to

each economy and the error term is serially uncorrelated. Moreover, Evans and Karras (1996)

show that in the case where the error terms are correlated in the cross-sectional dimension, this

specification implies serious problems of statistical inference. Or, international trade in goods and

assets makes innovations probably correlated. In addition, given the specificity of countries in

terms of technology, the parameter λ should be specific to each economy. Therefore, the ADF

specification in panel with a heterogeneous autoregressive root is generally used as alternative

∆(yit − ȳt) = δi + ρi(yi,t−1 − ȳt−1) +

p
∑

s=1

γi,s∆(yi,t−p − ȳt−p) + uit (5)

The parameter ρi is negative if the economies converge and is equal to zero if they diverge. The

roots of
∑

s γi,sL
s are outside the unit circle. In the application we propose below, we use a general

specification of equation (4) which allows better control of cross-sectional dependences of the term

uit and the specificity of the coefficient λ. It also takes into account possible structural changes

affecting the parameter δi.

3 An alternative procedure

This section exposes the proposed procedure for testing β-convergence hypothesis which is equiva-

lent to verify if 0 � λ ≺ 1 . To do so, the procedure is decomposed into two steps. In the first step

we use the Moon and Perron (2004) procedure to produce a consistent modified pooled estimator

of λ. Then we test stochastic convergence, a primary condition of β-convergence. This is to test

nonstationarity of per capita GDP cross economies differences (H0 : λ = 1). If stochastic conver-

gence is verified, the second step consists of testing whether λ = 0 and determining the implied

value of β.

3.1 The econometric specification

As mentioned previously, specification (4) is useful only under certain conditions and if they are not

verified estimating consistently parameters of the model will be very challenging. These conditions

are relative to the error term uit and can be summarized in two general points related by Evans

(1996). (i) uit is a serially uncorrelated error term with a zero mean and finite and constant

variance. (ii) Also, uit is contemporaneously uncorrelated across countries. To deal with cross-

sectional correlation of uit we use the data generating process in Moon and Perron (2004) to define
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a general form of equation (4)

(yit − ȳt) = δi + λi(yi,t−1 − ȳt−1) + uit (6)

In this model, the correlation among the cross-sectional units of uit are captured by using a factor

model

uit = π
′

iFt + eit (7)

where Ft is a (T × r) matrix representing the common factors, πi is a (r × 1) vector of factors

loadings and the (T × 1) vector represents the idiosyncratic term.

The procedure is to first deal with these cross-sectional dependences by removing common

factors. Then the null hypothesis of divergence is tested on the variable yit − ȳt previously de-

factored. This is equivalent to test the null hypothesis of unit root H0 : λi = 1 ∀i against the

alternative hypothesis of stationarity H1 : λi ≺ 1 for some individuals of the panel.

To take into account the structural changes that may affect the series, we propose a general

form of equation (4) which admits the presence of one break in the constant

yit − ȳt = δi + θiDUi,t + λi(yi,t−1 − ȳt−1) + uit (8)

where DUi,t = 1 for t ≻ Ti and 0 elsewhere. Ti denotes the break in the intercept for the i − th

individual. Let y0,it − ȳ0,t = λi(yi,t−1 − ȳt−1) + uit with y0,i,0 − ȳ0,0 = 0, the first-differenced form

of equation (8) is

∆(yit − ȳt) = θiI(Ti)t + ∆(y0,it − ȳ0,t) (9)

where I(Ti) are impulses such that I(Ti)t = 1 for t = Ti + 1 and 0 elsewhere. Following2 Bai

and Carrion-i-Silvestre (2009), we ignore these impulses since they take into account a few unusual

events and their effect is asymptotically negligible.

Thus, replacing ∆(yit − ȳt) by ∆yc
it and ∆(y0,it − ȳ0,t) by ∆yc

0,it in equation (9), we can define

ŷc
0,it =

∑t
s=2 ∆ŷc

is = (yit − ȳt) − (yi1 − ȳ1) the cumulative sum of yc
0,it. That is

ŷc
0,it = λiŷ

c
i,t−1 + (uit − ui1) (10)

Finally for t = 2, ..., T , we define

ŷc
0,it = λiŷ

c
i,t−1 + ûit (11)

where ûit = π
′

ift + εit with ft = (Ft −F1) and εit = (eit − ei1). Indeed, the ŷc
0,it series preserve the

same nonstationarity property as the original series yc
0,it (Bai and Ng, 2004) and has the advantage

to not suffering from the presence of structural change. Thus, we face the simple case of a test

without break. In section 4 we proceed to monte carlo simulations to verify whether this procedure

can affect the performance of the test.

Now, considering all individuals of the panel, the matrix form of equation (11) under the null

hypothesis is

Ẑ0 = Ẑ0,−1 + fπ
′

+ ε (12)

2These authors adopt this procedure in their modified Sargan-Bhargava (MSB) tests which takes into account

structural changes and common factors.
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where Ẑ0, Ẑ0,−1 and ε are (T − 1) × N matrices. Ẑ0 is the matrix of individual observations of

ŷc
0,it and Ẑ0,−1 the lagged observations matrix. π is the N × r matrix of factor loadings.

To remove common factors, Moon and Perron (2004) propose an orthogonalization procedure

that is similar to Phillips and Sul’s (2003) method. Considering the equation (12), they use the

projection matrix that allows de-factoring the data by right-multiplying by the matrix projection.

With Z̃0 = Ẑ0Q̂π and Z̃0,−1 = Ẑ0,−1Q̂π, equation (12) becomes

Z̃0 = Z̃0,−1 + ε̃ (13)

Then, for each individual i with i = 1, ..., N , the de-factored form of model (11) is

ỹc
0,it = λiỹ

c
i,t−1 + ε̃it (14)

where ε̃it is uncorrelated across country accordance to condition (ii). Note that the projection

matrix is obtained by principal component analysis developed by Bai and Ng (2002). This allows

to estimate the number r of common factors and the factor loadings matrix π.

3.2 Testing stochastic convergence

The implementation of the testing procedure of Moon and Perron (2004) requires to estimate the

projection matrix used to eliminate dependences and to define a consistent estimator of λ. In the

next sub-sections we present the method for estimating the projection matrix, the estimation of λ

and the tests statistics of the null hypothesis λ = 1.

3.2.1 Estimation of the projection matrix

The matrix of estimated factors f̃ is equal to
√
T − 1 times the eigenvectors corresponding to the r

largest eigenvalues of the (T − 1)× (T − 1) matrix ûû
′

. Considering the normalization π
′

π/N = Ir

and f
′

f/(T − 1) = Ir , the matrix of factor loadings can be obtained by ordinary least squares

π̃
′

= (f̃
′

f̃)−1f̃
′

û = f̃
′

û/(T − 1). Then, we can use a re-scaled estimator defined as

π̂ = π̃

(

1

N
π̃

′

π̃

)1/2

(15)

Furthermore, to estimate r we use the IC1 and BIC3 information criteria of Bai and Ng (2002).

The BIC3 criterion is a modification of the usual BIC which perform better in small samples

(N ≤ 20). Let 3 V (r, f) the sum of squared residuals (divided by N(T − 1) ) of the regression of

ûit on the r factors for each i. If N ≤ 20, we can use4 V (r, f)+rmaxgBIC(N,T ), where gBIC(N,T )

is the penalty function. Bai and Ng (2002) show that in this case, r can be estimated consistently

with gBIC(N,T ) = (N+T−1−r)ln(N(T−1))
N(T−1) by minimizing5

BIC3(r) = V (r, f̃) + rσ̂2
ǫ (rmax)

(

(N + T − 1 − r)ln(N(T − 1))

N(T − 1)

)

(16)

3V (r, f) is the variance of the idiosyncratic component estimated with the maximum number of factors
4rmax is the maximum number of factors
5σ̂2
ǫ is the variance of the estimated idiosyncratic components
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For IC1 the penalty function is gIC(N,T ) = N+T−1
N(T−1) ln

(

N(T−1)
N+T−1

)

and the problem consists of

minimizing

IC1(r) = ln
(

V (r, f̃)
)

+ rσ̂2
ǫ (rmax)

N + T − 1

N(T − 1)
ln

(

N(T − 1)

N + T − 1

)

(17)

An estimate of the projection matrix Qπ which allows to get de-factored data is given by

Q̂π = IN − π̂
(

π̂
′

π̂
)

−1

π̂
′

(18)

In the next subsection, this matrix is used to define a pooled estimator of λ that we denote λ̂∗ and

then we construct the Moon and Perron (2004) test statistics.

3.3 Estimation of λ and construction of test statistics

The test statistics can be constructed using the modified pooled OLS estimator of the autoregres-

sive root. Note that this estimator is adjusted to take account condition (i). Thus the possible

serial correlation of the idiosyncratic residual ε̃it is controlled. Let φe be the sum of positive auto-

covariances of the idiosyncratic component and λ̂∗ the modified pooled OLS estimator of λ which

is defined as

λ̂∗ =
trace

(

Ẑ0,−1Q̂πẐ
′

0

)

−N(T − 1)φ̂e

trace
(

Ẑ0,−1Q̂πẐ
′

0,−1

) (19)

Two test statistics of the null hypothesis λ = 1 are constructed by Moon and Perron (2004) from

the pooled estimator. They are noted ta and tb and both follow a standard normal law

t∗a =
(T − 1)

√
N(λ̂∗ − 1)

√

2ν̂4
e/ω̂

4
e

−→ N(0, 1) (20)

t∗b = (T − 1)
√
N(λ̂∗ − 1)

√

1

N(T − 1)2
trace

(

Ẑ0,−1Q̂πẐ
′

0,−1

) ω̂2
e

ν̂4
e

−→ N(0, 1) (21)

ω2
e and ν4

e respectively correspond to the means on N of the individual long-term variances ν4
e,i

and of squared individual long-term variances φ4
e,i of the idiosyncratic component eit. Let Γ̂i(j)

be the residual empirical autocovariance

Γ̂i(j) =
1

T

T−j
∑

t=1

êitêi,t+j

From Γ̂i(j), it is possible to construct an estimator of the individual long-term variances6

ω̂2
e,i =

1

N

T−1
∑

j=−T+1

ω(qi, j)Γ̂i(j)

φ̂e,i =
T−1
∑

j=1

ω(qi, j)Γ̂i(j)

6qi = 1.3221

[

4ψ̂2

i,1Ti

(1−ψ̂i,1)4

]1/5

with ψ̂i,1 the first-order autocorrelation estimate of êit; ω(qi, j) =

25
12π2κ2

[

sin(6πκ/5)
6πκ/5

− cos
(

6πκ
5

)

]

with κ = j
qi

7



This allows to define the estimates of the means of the individual long-term variances as follows

ω̂2
e =

1

N

N
∑

i=1

ω̂2
e,i φ̂e =

1

N

N
∑

i=1

φ̂e,i ν̂4
e =

1

N

N
∑

i=1

(ω̂2
e,i)

2

The test statistics are obtained by substituting the estimated values of these variances in the

expressions of t∗a and t∗b . If the realization of the statistic t∗ is lower than the normal critical level,

we accept the hypothesis of stochastic convergence for all N countries.

3.3.1 Analyzing β-convergence

In this subsection, the aim is to estimate the implied value of β given by β̂ =
(

(λ̂∗)T − 1
)

/T

in order to analyze β-convergence. For this purpose we use λ̂∗, the consistent estimator of λ.

However, we previously need to test the nullity of λ, and for this we proceed to three steps.

Step 1: We use the recumulated first differenced form of equation (4) and obtain

ŷc
0,it = λŷc

i,t−1 + ûit (22)

where the variables are defined as in equation (11). Then, for each i, we normalize the ŷc
0,it series by

the OLS regression standard error σ̂ûi to control for heterogeneity across countries. The normalized

series is Ŝ0,it = ŷc
0,it/σ̂ûi

Step 2: Considering the normalized model, we have

Ŝc
0,it = λsŜ

c
i,t−1 + ν̂it (23)

where ν̂it = ûit/σ̂ûi. Applying the procedure presented in subsection 3.1 we obtain the de-factored

form of the normalized model

S̃0,it = λsS̃
c
i,t−1 + ν̃it (24)

Step 3: Let Ŝ0 the matrix of observations Ŝc
0,it and Ŝ0,−1 the matrix of lagged observations. Using

λ∗s the modified pooled estimator of the normalized equation obtained by replacing Ẑ by Ŝ in (19),

we calculate the t-statistic

t∗λs
=
λ∗s
σ∗

λ

(25)

where

σ∗

λ = σ̂ε̃∗

(

N
∑

i=1

T
∑

t=2

(S̃c
i,t−1)

2

)−1/2

and

σ̂ε̃∗ =

√

trace
(

(S̃0 − λ∗sS̃0,−1)(S̃0 − λ∗sS̃0,−1)
′

)

/N(T − 1)

S̃0 and S̃0,−1 are respectively the matrices of S̃c
0,i,t and S̃c

0,i,t−1. We compare this statistic with

the appropriate critical value. However, since we don’t now the limiting distribution of t∗λs
, it is

approximated by simulations. We use ordinary least squares to estimate the parameters of the null

model yit−ȳt = δi+θiDUi,t+uit where uit = π
′

iFt+eit. For this, we fit yit−ȳt to country fixed effect
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and break (if any). Then the residual from this OLS regression are used to effectuate the principal

component analysis described in sub-section 3.2.1 in order to get parameters of common and

idiosyncratic components of uit. We generate 10,000 data sets for the fitted null model. For each of

the generated data sets, we use the alternative model yit − ȳt = δi +θiDUi,t +λ(yi,t−1− ȳt−1)+uit

and proceed to the three steps above to estimate the modified OLS pooled estimator for the

normalized model and to determine the test statistic t∗λs
. With a sample of 10,000 values of t∗λs

we

obtain critical values which correspond to quantiles 5% and 10%. Then, t∗λs
is compared to these

critical values.

3.4 Monte Carlo Simulations : Exploring the test performance of the

difference-recumulation approach

This section presents the results of Monte Carlo simulations which investigate whether the difference-

recumulation procedure used in this paper affects the Moon and Perron (2004) test performance

of the null hypothesis λ = 1 in the case of the presence of single break. That is precisely to show

that the transformations effectuated for testing unit root will not impact negatively on the size

and power of the test. We will conduct two experiments using MATLAB 6.5 and for simplicity of

notation we replace yit − ȳt by xit.

The experiment 1 reproduces the same conditions in Moon and Perron (2004), case ”single

factor, fixed effects not estimated”.

Experiment 1 :

xit = δi + x0,i,t

x0,i,t = λix0,i,t−1 + uit

x0,i,0 = 0

Let µi = Ti/T be the break fraction for every i. The break points are randomly positioned

with break fractions following µi ∼ [0.2, 0.8] and we have

Experiment 2 :

xit = δi + θiDUi,t + x0,i,t

x0,i,t = λix0,i,t−1 + uit

x0,i,0 = 0

For this second experiment, using the same transformations presented in sub-section 3.1, we

define x̂0,it =
∑t

s=2 △x0,it = xit − xi1 the estimate of x0,it. In both experiments, the error term

has a factor structure and we adopt the data generating process in Bai and Ng (2002)

uit =

r
∑

j=1

πijFtj +
√
reit

9



However, we only consider the case of a single common factor in which common shocks are iid

standard normal

(Fij , πij , eit) ∼ iidN(0, I3)

Note also that in both experiments δi ∼ N(0, 1). To study the size, we set λi = 1 for all i. For

power, we have considered values of λi that are not far from the null hypothesis of unit root. Thus,

under the alternative, the parameter λ is specific to each individual and has an average value equal

to 0.99. The number of common factors is estimated with the procedure of Bai and Ng (2002) and

using the BIC3 and IC1 criteria. The maximum number of factors is equal to 8. Simulations are

conducted using 1000 replications with N = {10, 20} and T = {100, 300} and we consider the 5%

significance level.

[TABLE 1 HERE]

Table 1 presents the results for power and size in each empirical experiment described above.

For these two data generating processes, the properties of size and power of t∗a and t∗b tests are

studied by considering the percentage of replications in which the unit root hypothesis is rejected.

This table gives also the average number of factors estimated using the selection criteria and

the average true number of factors which is equal to 1. As expected in our analysis, the results

show that this procedure does not affect the finite-sample properties of Moon and Perron’s (2004)

test. The properties of size and power of the two experiments are very similar especially for

the t∗b test which provides the best performance statistics. In addition, these results show that

the proposed transformations in the procedure have no impact in the results of estimating the

number of common factors. The average number of common factors remains the same for both

experiments and irrespective of the couple (N,T ) considered. Finally, note that the BIC3 criterion

gives a precise estimate of the number of common factors when N = 20.

4 Application

4.1 Data

The data are from the World Development Indicators (WDI) of World Bank Group. These are

annual real per capita GDP covering the period 1975-2008. To compare results for developed

and poor countries we consider two samples. The first sample OECD include 20 OECD members

countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy,

Netherlands, Norway, Portugal, Spain, Sweden, United Kingdom, Canada, United States, Japan

and New Zealand. The second sample called CFA is composed by 8 CFA Zone members countries

identified as co-moving countries in Diagne and Niang (2008). These countries are given by the

following list: Benin, Burkina Faso, Cameroon, Congo Rep., Cote d’Ivoire, Niger, Senegal and

Togo. A global sample called GLOBAL and composed by these two groups of countries is also

considered. Thus, this last sample consists of 28 countries including poor and rich countries.

10



4.2 Results

Table 1 presents the results of convergence tests for these three samples. Note that we have

previously tested the existence of breaks in our data using the test procedure of Bai and Perron

(1998). We also tested the null hypothesis of cross-sectional independence using the Pesaran (2004)

test in panel data which is robust to breaks. The results of these tests are given in Appendix and

show that we face problems of structural changes and cross-section dependences in our samples.

By implementing the proposed empirical procedure to take into account these problems, the results

show that the OECD sample have converged over the period 1975-2008 and admit a number of

common factors equal to 6. The p-values associated to tests statistics t∗a and t∗b are respectively

lower than the 10% level, indicating rejection of the null hypothesis of divergence for these countries.

Thus, the parameter λ̂∗ is lower than unit with a value λ̂∗ = 0.9815. Results of the tests based on

t∗λs
show that λ ≻ 0.7 Consequently, the implied value β̂ = −0.0140. These results allow defining

the speed of convergence and the half-life for the countries of this sample. The convergence rate is

1.88% and the corresponding half-life is 49 years.

[TABLE 2 HERE]

The results for the countries of CFA Zone show that both t∗a and t∗b tests accept the hypothesis of

stochastic convergence for these countries at the 1% level. Also, CFA Zone member countries have

converged during the 1975-2008 period with a speed of convergence higher than that of countries in

OECD. Indeed, with a parameter β̂ = −0.0295 the speed of convergence is 11%, implying a half-life

equal to 23 years. For this sample, the number of common factors selected by BIC3 criterion is

equal to 6. Given the small size of this sample, we set rmax = 6 unlike the other samples where

the maximum number of common factors allowed is 8. However, results for this sample (CFA)

must be analyzed with caution. Indeed, as shown by simulation results, the reduced size of the

cross-sectional dimension tends to make it difficult the estimation of r̂.

Regarding the full sample (GLOBAL), the null hypothesis of divergence was accepted. The

probabilities associated to t∗a and t∗b are higher than the standard levels of 5% and 10%. Moreover,

for this case the number of factors is estimated using the IC1 criterion which suggests the presence

of 7 factors.

5 Conclusion

This study presented a testing procedure of economic convergence in panel. Based on the approach

proposed by Evans (1996), we implemented an application of this convergence test procedure

drawing on recent work by Moon and Perron (2004). This procedure allows to focus on cross-

sectional dependences and structural changes which, if ignored, can lead to bias. This approach

goes beyond the standard approach of considering these phenomena as nuisance parameters.

The application of the procedure on OECD and CFA samples lead to accept the hypothesis of

economic convergence for each of these two groups of countries, with convergence rates respectively

7Following Evans and Karras (1996) we take for granted that λ ≥ 1
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equal to 1.88% and 11%. However, the results of the test applied to the full sample (GLOBAL)

led to the rejection of the convergence hypothesis
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Table 1: Monte Carlo simulations results

(N,T ) Experiment 1 Experiment 2

t∗a t∗b mean r t∗a t∗b mean r

Size

(10, 100) True r 12.1 7.7 1.00 13.1 7.7 1.00

BIC3 29.2 23.1 5.86 30.7 23.2 5.85

IC1 40.1 32.8 8.00 41.5 33.3 8.00

(20, 100) True r 12.1 7.3 1.00 11.5 6.7 1.00

BIC3 12.1 7.3 1.00 11.5 6.7 1.00

IC1 12.1 7.3 1.00 11.5 6.7 1.00

(10, 300) True r 12.8 8.0 1.00 12.6 7.7 1.00

BIC3 15.9 10.8 1.81 16.4 10.0 1.81

IC1 39.5 33.3 8.00 40.6 33.4 8.00

(20, 300) True r 12.2 7.7 1.00 11.8 7.8 1.00

BIC3 12.2 7.7 1.00 11.8 7.8 1.00

IC1 12.2 7.7 1.00 11.8 7.8 1.00

Power

(10, 100) True r 59.2 45.7 60.6 45.4

BIC3 62.5 54.0 63.5 53.2

IC1 64.1 56.0 64.6 53.7

(20, 100) True r 76.3 68.3 75.2 67.0

BIC3 76.3 68.3 75.2 67.0

IC1 76.3 68.3 75.2 67.0

(10, 300) True r 91.2 85.3 90.5 83.8

BIC3 90.5 84.9 89.9 82.6

IC1 84.4 76.2 81.8 73.9

(20, 300) True r 97.7 96.7 96.4 95.1

BIC3 97.7 96.7 96.4 95.1

IC1 97.7 96.7 96.4 95.1

Notes : For size, t∗a and t∗b columns give the percentage of replications in which the null

hypothesis of a unit root is rejected for 5% level. The number of factors is either set to 1

(the true number)or estimated using the information criteria suggested by Bai and Ng

(2002). The last two columns provide the mean number of estimated factors. For Power,

entries represent the percentage of replications in which the null hypothesis of a unit root

is rejected.
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Table 2: Estimations results

Samples: CFA OECD GLOBAL

Estimated λ̂∗

0.8962 0.9815 1.0000

Stoch. conver. test (H0 : λ = 1)

t∗a -4.4704*** -1.4906* 2.0033

[0.0000] [0.0680] [0.9978]

t∗b -2.3658*** -1.3779* 2.8484

[0.0090] [0.0841] [0.9978]

β-convergence analyse

t∗λn
116.77 219.7

Critical t∗λn
(5%) 16.372 24.305

implied β̂ -0.0295 -0.0140

convergence rate θ̂ 11% 1.88%

half-life τ̂ 23 49

Common factors

r̂ 6 6 7

rmax 6 8 8

Notes: β̂ =

[

(

λ̂∗
)T

− 1

]

/T . Following Bai and Ng (2002) the maximum number

of factors is set rmax = 8int
[

(min {N,T} /100)1/4
]

. The values in brackets

correspond p-values. * (resp. **, ***)denote statistically significant at the 10%

(resp. 5%, 1%) significance level.

15



Table 3: Breaks and dates, sample CFA

yit yit − ȳt

countries breaks dates breaks dates

Benin

Burkina Faso

Cameroun + 1988

Congo

Ivory Coast

Niger

Senegal

Togo

Notes : numbers and dates of breaks are estimated

following the procedure of Bai and Perron (1998).

We consider the case of a single break.

The sign (+) indicates presence of beak.
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Table 4: Breaks and dates, sample OECD

yit yit − ȳt

countries breaks dates breaks dates

Austria

Belgium

Canada

Denmark

Finland

France

Germany

Greece + 2002

Hungary

Ireland

Italy + 2003 + 1994

Japan + 1993 + 1995

Netherlands

New Zealand

Norway

Portugal

Spain + 1987

Sweden

United Kingdom

United States

Notes: see notes of table 2
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Table 5: Cross-section Dependence (CD)

CD Statistics

yit yit − ȳt

ADF (p) regressions p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

CFA 5.78 4.63 4.65 -3.32 -2.95 -2.63

OECD 25.10 23.89 23.45 -2.88 -2.87 -2.63

GLOBAL 19.72 17.43 17.48 0.53 1.92 2.24

Notes: CD corresponds to the Pesaran’s (2004) statistic. The test statistic is based

on the average of pair-wise Pearson’s correlation coefficients of the estimated

residuals from the ADF-type regression equations. We consider different orders

p of the ADF regression. The statistic is compared to the standard normal

distribution. The null hypothesis of cross-section independence is rejected if

|CD| � 1.96 .
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