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Abstract

We improve both the specification and estimation of firm-specific betas. Time variation

in betas is modeled by combining a parametric specification based on economic theory

with a non-parametric approach based on data-driven filters. We increase the precision

of individual beta estimates by setting up a hierarchical Bayesian panel data model that

imposes a common structure on parameters. We show that these accurate beta estimates

lead to a large increase in the cross-sectional explanatory power of the conditional CAPM.

Using the betas to forecast the covariance matrix of returns also results in a significant

improvement in the out-of-sample performance of minimum variance portfolios.
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Introduction

Precise estimates of firm-specific betas are crucial in many applications of modern finance

theory, including asset pricing, corporate cost-of-capital calculations, and risk management.

For instance, portfolio managers often have to ensure that their risk exposure stays within

predetermined limits and managers need estimates of their company’s beta to make capital

budgeting decisions. Academics and practitioners have taken two approaches to estimating

betas. Under the first one stocks are grouped into portfolios to reduce measurement error,

assuming that all stocks within a given portfolio share the same beta (e.g., Fama and MacBeth

(1973)). The second method consists of estimating separate time series regressions for each firm

to obtain individual betas (e.g, Brennan, Chordia, and Subrahmanyam (1998)).

Apart from this lack of consensus in the literature about the best method to estimate

betas, existing studies also fail to provide clear guidance on the best way to model betas.

Although a large body of empirical evidence suggests that betas vary over time, existing work

uses different specifications to model these changes in betas.1 Many studies use a parametric

approach proposed by Shanken (1990), in which variation in betas is modeled as a linear function

of conditioning variables. An alternative, non-parametric approach to model risk dynamics is

based on purely data-driven filters, including short-window regressions (Lewellen and Nagel

(2006)) and rolling regressions (Fama and French (1997)).2

In this paper we improve both the specification and estimation of firm-specific, time-varying

betas. We improve the specification of betas by combining the parametric and non-parametric

approaches to modeling time variation in betas. Because the key strengths of each approach

are the most important weaknesses of the other, we argue and show that a combination of the

two methods leads to more accurate betas than those obtained from each of the two approaches

separately. We allow the optimal mix of the two methods to vary across stocks, since individual

firms may benefit more or less from either specification, and over time, because the preferred

combination during stable market conditions may be different from that in turbulent time

periods.

1See, for instance, Jagannathan and Wang (1996), Lewellen (1999), Ferson and Harvey (1999), Lettau and
Ludvigson (2001), Andersen, Bollerslev, Diebold, and Wu (2005), Avramov and Chordia (2006a), Ang and Chen
(2007), and Ang and Kristensen (2009).

2An alternative approach has been proposed by Christoffersen, Jacobs, and Vainberg (2007), who calculate
forward-looking betas using the information embedded in option data. A drawback of this method is that it
requires a cross-section of liquid stock options, which is not available for many small firms.
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The parametric specification is appealing from a theoretical perspective because it explic-

itly links time variation in betas to macroeconomic state variables and firm characteristics

(e.g., Gomes, Kogan, and Zhang (2003) and Santos and Veronesi (2004)). However, the main

drawback of this approach is that the investor’s set of conditioning information is unobservable.

Ghysels (1998) shows that misspecifying beta risk may result in serious pricing errors that might

even be larger than those produced by an unconditional asset pricing model. In addition, this

method can produce excessive variation in betas due to sudden spikes in the macroeconomic

variables that are often used as instruments. Finally, many parameters need to be estimated

when a large number of conditioning variables is included, which leads to noisy estimates when

applied to stocks with a limited number of time series observations. An important advantage of

the non-parametric approaches is that they preclude the need to specify conditioning variables,

which makes them more robust to misspecification. However, the time series of betas produced

by a data-driven approach will always lag the true variation in beta, because using a window

of past returns to estimate the beta at a given point in time gives an estimate of the average

beta during this time period. Although reducing the length of the window results in timelier

betas, the estimation precision of these betas will also decrease.

We improve the estimation of individual stock betas by setting up a Bayesian panel data

model that exploits the information in the cross-section of firms to obtain more precise esti-

mates. In particular, we specify hierarchical prior distributions that impose a common structure

on parameters while still allowing for cross-sectional heterogeneity. Bayesian methods are espe-

cially attractive in settings with individual-level heterogeneity in multiple parameters, because

only the parameters of the hierarchical priors where the parameters are assumed to be drawn

from have to be estimated. In contrast, methods that estimate every parameter individually

without linking it to similar parameters, such as estimating separate time series regressions for

every single firm, suffer from poor estimation precision, particularly when the number of time

series observations is limited. Intuitively, the Bayes estimator can be interpreted as a weighted

average of the least squares estimator for a given cross-section unit and the cross-sectional av-

erage coefficient. The Bayes estimator of the firm-specific parameters shrinks the least squares

estimator towards the cross-sectional mean. When the number of observations increases, the

weight gradually shifts from the prior to the data.
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Our panel data approach uses both daily returns and monthly firm-level characteristics to

capture the cross-sectional heterogeneity and time series dynamics in monthly betas. Including

cross-sectional information increases the accuracy of firm-specific betas because previous stud-

ies document a strong cross-sectional relationship between beta and firm characteristics (see,

e.g., Fama and French (1992)). Existing work further shows that the use of high-frequency

returns yields more precise and timelier estimates of beta than using monthly returns (see, e.g.,

Bollerslev and Zhang (2003)). We use daily returns instead of intraday returns because mar-

ket microstructure frictions put an upper limit on the frequency that can be used to estimate

betas in practice. We combine the data sampled at different frequencies by implementing the

mixed data sampling (MIDAS) approach of Ghysels, Santa-Clara, and Valkanov (2005), which

determines the optimal weights given to past data.

We estimate the model using a large panel of individual stocks, which offers several advan-

tages over the alternative of aggregating stocks into portfolios based on characteristics. First,

aggregating stocks into portfolios may conceal important information contained in individual

stock betas. Ang, Liu, and Schwarz (2008) show that risk premia can be estimated more

precisely using individual stocks instead of portfolios, because creating portfolios reduces the

cross-sectional variation in betas. A second important drawback is that due to the strong factor

structure in the 25 size-B/M sorted portfolios that are often used as test assets in asset pricing

studies, traditional cross-sectional tests are flawed and have low power to reject a model, as

shown by Lewellen, Nagel, and Shanken (2008). Third, when stocks are grouped into portfo-

lios based on characteristics that have been identified by previous research as determinants of

average returns instead of being based on economic theory, the evidence against asset pricing

models may be overstated because of data-snooping biases (Lo and MacKinlay (1990)).

Despite the benefits of using individual stocks, most asset pricing studies use characteristics

sorted portfolios because it is difficult to estimate firm-level parameters with a reasonable degree

of precision when the number of observations is limited. Notable exceptions are Brennan,

Chordia, and Subrahmanyam (1998) and Avramov and Chordia (2006a), who use a two stage

approach to study the impact of characteristics on risk-adjusted returns. However, both studies

estimate separate time series regressions for every single firm, which leads to imprecise beta

estimates, particularly for firms with a short return history. Fama and French (2008) even
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conclude that “given the imprecision of beta estimates for individual stocks, little is lost in

omitting them from the cross-section regressions”.

Our main empirical findings are as follows. First, we show that modeling time-varying betas

as a function of both conditioning variables and past returns dominates traditional specifica-

tions in which betas depend on only one of those components. Combining these specifications

produces superior beta estimates because they capture different aspects of beta dynamics. We

also find that the optimal mix of these specifications varies both over time and across stocks.

Second, we show that our panel data approach produces more accurate estimates of firm-specific

betas than those obtained from the traditional approach of estimating a separate time series

regression for every firm. Specifically, for the average firm the posterior standard deviation

of beta is significantly larger in time series regressions than in the panel model. Third, we

document strong cross-sectional heterogeneity in firm betas within the 25 size-B/M portfolios

that are commonly used to test asset pricing models. This confirms that aggregating stocks

into portfolios conceals important information contained in individual stocks and shrinks the

cross-sectional variation in betas.

We demonstrate that a more precise estimation and better specification of firm betas has

important benefits for asset pricing tests and portfolio choice. In particular, we show that

the betas generated by our model have significant explanatory power for the cross-section of

returns. Using stocks as test assets and estimating betas in a panel model results in more

efficient parameter estimates in cross-sectional asset pricing tests than using portfolios. The

estimate of the market premium is positive and statistically significant, even after controlling

for firm characteristics. We illustrate the value of our beta specification and estimation method

for portfolio choice by using the betas to forecast the covariance matrix of stock returns. We

find that the global minimum variance portfolio that is formed using this covariance matrix

outperforms minimum variance portfolios based on other strategies, including the naive 1/N

rule, the sample covariance matrix, and a static factor model for estimating covariances.

The paper proceeds as follows. In section I we introduce our specification for time-varying

betas in a panel data framework. Section II explains the Bayesian approach to inference and

section III describes the data. We report our empirical results in section IV and discuss the

asset pricing and portfolio choice applications in section V. Section VI concludes.
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I The Model

In this section we describe our model for individual betas. For simplicity, we discuss our ap-

proach in a conditional CAPM setting but it is straightforward to extend our work to multifactor

models. Our goal is to show how to improve the specification and estimation of firm-specific,

time-varying betas in any factor model. We start from the following panel data model for excess

returns on individual stocks,

rit = αi + βit−1rMt + ǫit, (1)

where rit is the excess return on stock i in month t, αi is the risk-adjusted return, βit−1 is the

conditional market beta, rMt is the excess market return, and ǫit is a zero-mean, normally dis-

tributed idiosyncratic return shock. Following Avramov and Chordia (2006b), we assume that

the covariance matrix of these shocks is diagonal and that idiosyncratic volatility is constant.

Our specification for the conditional beta consists of two components: one part is the realized

beta, bit, and the other part is the fundamental beta, β∗it,

βit = φitbit + (1 − φit)β
∗

it, (2)

where φit and (1 − φit) measure the proportion of the beta of firm i that is explained by the

realized beta and fundamental beta, respectively. Hereafter we refer to this mixture of realized

and fundamental betas as the mixed beta. We allow the optimal combination of fundamental

and realized betas to vary not only across firms but also over time. Time variation in φit is

modeled as a linear function of market volatility, because the best mix of fundamental and

realized betas in turbulent market conditions can be very different from that in stable periods,

φit = φ0i + φ1VMt, (3)

where VMt is the realized market variance, which we calculate by summing the squared daily

market returns over the past year. We take the logarithm of the market variance to reduce the

impact of outliers and then subtract its time series average and divide by its standard deviation,

so that it has mean zero and standard deviation equal to one.
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bit is the realized beta that we estimate using daily data according to the Mixed Data

Sampling (MIDAS) approach introduced by Ghysels, Santa-Clara, and Valkanov (2005). We

choose to estimate realized betas using daily returns because these provide a reasonable balance

between efficiency and robustness to microstructure noise (see, Campbell, Lo, and MacKinlay

(1997)). However, even at a daily frequency the betas of less liquid stocks might be biased

downward. Following Scholes and Williams (1977), we therefore control for nonsynchronous

trading effects by adding the covariance of the stock’s return with the one-day lagged market

return.3

The MIDAS approach differs from traditional rolling window estimators of betas by selecting

the optimal window for estimating betas using a flexible weighting function. Ghysels, Santa-

Clara, and Valkanov (2005) use the MIDAS approach to estimate the market’s conditional

variance and find that it is superior to traditional GARCH and rolling window methods. In

particular, our MIDAS estimator of realized betas is given by:

bit =

∑τmax

τ=1 wt−τr
(d)
it−τr

(d)
Mt−τ

∑τmax

τ=1 wt−τr
(d)
Mt−τr

(d)
Mt−τ

+

∑τmax

τ=1 wt−τr
(d)
it−τr

(d)
Mt−τ−1

∑τmax

τ=1 wt−τr
(d)
Mt−τ−1r

(d)
Mt−τ−1

, (4)

where t refers to a particular month, τ to a particular trading day, and wt−τ to the weight given

to the product of the return on stock i and the market return, r
(d)
it−τr

(d)
Mt−τ , and to the squared

market return, r
(d)
Mt−τr

(d)
Mt−τ , on day t− τ . We set the maximum window length τmax equal to

250 days, which is approximately one year of trading days.

We parameterize the weights as a beta function:

wt−τ =
f
(

τ
τmax

, κ1;κ2

)

∑τmax
τ=1 f

(

τ
τmax

, κ1;κ2

) , (5)

where f( τ
τmax

, κ1;κ2) is the density of a beta distribution. As pointed out by Ghysels, Santa-

Clara, and Valkanov (2005), the specification based on the beta function has several advantages.

First, it ensures that the weights are positive and sum to one. Second, it is parsimonious because

only two parameters need to be estimated. Third, it is flexible as it can take various shapes for

different values of the two parameters. We impose a downward sloping pattern on the weights

by setting κ1 equal to 1, which further reduces the number of parameters that need to be

3Scholes and Williams (1977) also include a lead term to capture the impact of non-synchronous trading on
the market return. We only include a lag term because otherwise the model cannot be used to forecast betas.
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estimated. κ1 = κ2 = 1 implies equal weights, which corresponds to a rolling window estimator

of beta on daily data. κ1 = 1 and κ2 > 1 correspond to the case of decaying weights. In general,

the higher κ2, the faster the rate of decay and the quicker beta responds to new information.

β∗it is the fundamental beta, parameterized as a function of conditioning variables,

β∗it = δ0 + δ′1[Zit ⊗BCt], (6)

where Zit is a vector that contains L firm characteristics and BCt is a vector that contains a

constant and M business cycle variables. This specification allows the relation between beta and

firm characteristics to vary over the business cycle. Modeling beta dynamics as a linear function

of a set of predetermined instruments goes back to Shanken (1990) and is consistent with the

economic motivation for conditional asset pricing models, in which the stochastic discount factor

is a function of macroeconomic state variables and factor premia.

We include both firm-specific and macroeconomic variables as instruments for fundamental

betas because of their documented predictive power for returns (Fama and French (1989) and

Lewellen (1999)). Empirical evidence that systematic risk is related to firm characteristics and

business cycle variables is provided by, among others, Jagannathan and Wang (1996), Lettau and

Ludvigson (2001), Avramov and Chordia (2006a), and Goetzmann, Watanabe, and Watanabe

(2008). The theoretical motivation for choosing firm characteristics as instruments is given by

Berk, Green, and Naik (1999) and Gomes, Kogan, and Zhang (2003), who show that the ability

of size and book-to-market to explain the cross-section of returns is due to their correlation

with the true conditional market beta. They decompose firm value into the value of assets

in place and the value of growth options and demonstrate that size captures the component

of a firm’s systematic risk related to its growth options whereas the book-to-market ratio is a

measure of the risk of the firm’s assets in place. Zhang (2005) extends this work and argues

that because of costly reversibility of capital value firms have countercyclical betas while betas

of growth stocks are procyclical. Because the price of risk is also countercyclical his model can

explain the value premium within a rational framework. In addition to size and B/M, we also

select firm-specific momentum as a conditioning variable to examine whether the momentum

effect is related to beta dynamics. Theoretical support for including macroeconomic variables

is provided by Santos and Veronesi (2004), who show within a general equilibrium model that
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market betas vary substantially with the business cycle. Our choice of business cycle variables

is motivated by previous work (e.g., Ferson and Harvey (1999)) and includes the default spread,

dividend yield, one-month T-bill rate, and term spread.

Substituting equations (2) and (6) into equation (1) leads to the following specification:

rit = αi + φitbit−1rMt + (1 − φit)(δ0 + δ′1[Zit−1 ⊗BCt−1])rMt + ǫit. (7)

A key objective in this paper is to determine whether the time series dynamics and cross-

sectional variation in betas is better described by lagged firm characteristics and macroeconomic

state variables, by past realized betas, or by a linear combination of both. Therefore, we are

primarily interested in the parameter φit and compare three different specifications: (1) mixed

beta (φit unrestricted) (2) fundamental beta (φit = 0) (3) realized beta (φit = 1).

II Methodology

A Bayesian Methods

We estimate the model parameters using Bayesian methods.4 The main advantage of Bayesian

inference in our setting is that it allows a very flexible specification for describing the dynamics in

beta by imposing a common structure on the model parameters. Updating beliefs according to

Bayes’ theorem implies that the joint posterior density of the parameters, p(θ|y), is proportional

to the likelihood times the prior density.

p(θ|y) ∝ p(y|θ)p(θ) (8)

where θ is the set of all parameters and y is the full set of data.

The likelihood function for the model in equation (7) is given by

p(y|θ) =

N
∏

i=1

∏

t∈Ti

(

σ2
ǫi

)−
1
2 exp

[

− 1

2σ2
ǫi

(rit − αi − rMtβit−1)
2

]

, (9)

4Bayesian methods have been used in a number of asset pricing studies, including Shanken (1987), Harvey
and Zhou (1990), Kandel, McCulloch, and Stambaugh (1995), and Cremers (2006). All these studies focus
on portfolios and assume that betas are constant. Ang and Chen (2007) and Jostova and Philipov (2005) use
Bayesian techniques to obtain time-varying portfolio betas, which they model as latent autoregressive processes.
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where σ2
ǫi

is the idiosyncratic return variance, βit−1 is defined as in equation (2), N is the

number of stocks, and Ti is the number of monthly return observations for firm i.

B Prior Distributions

We specify conditionally conjugate, hierarchical priors that impose a common structure on the

model parameters while still allowing parameters to vary across firms. Thus, our setup combines

the benefits of a portfolio approach to estimating betas (e.g., Fama and MacBeth (1973)) and an

approach in which separate regressions are estimated for each firm (e.g., Avramov and Chordia

(2006a)). Specifically, our choice of prior distributions is as follows:

αi ∼ N(0, σ2
α) with σ2

α ∼ IG (0.001, 0.001) ,

φ0i ∼ N(0.5, σ2
φ0

) with σ2
φ0

∼ IG (0.001, 0.001) ,

φ1 ∼ N(0, σ2
φ1

) with σ2
φ1

∼ IG (0.001, 0.001) ,

δ0 ∼ N(0, σ2
δ0

) with σ2
δ0

∼ IG (0.001, 0.001) ,

δ1 ∼ N(0,Ωδ1) with Ω−1
δ1

∼Wish
(

[(L+ LM)I]−1, (L+ LM)
)

,

σ2
ǫi
∼ IG(0.001, 0.001).

We use diffuse priors to minimize their influence on the posterior densities. Following Jostova

and Philipov (2005), we specify noninformative prior distributions for the variance parameters

σ2
α, σ2

δ0
, σ2

φ0
, σ2

φ1
and the idiosyncratic variance σ2

ǫi
, by setting the scale and shape parameters

A and B of their inverse gamma (IG) prior distributions equal to 0.001. We set the degrees

of freedom parameter ψ of the Wishart prior for Ω−1
δ1

equal to the dimension of this matrix,

(L + LM), because this value gives the lowest possible weight to the prior information (see

Gelman, Carlin, Stern, and Rubin (2004)). We set the scale matrix of the Wishart prior equal

to [(L+LM)I]−1, so that the prior mean of Ω−1
δ1

is equal to the identity matrix. We give equal

prior weight to the fundamental beta and the realized beta by setting the prior mean of φ0i, i.e.

µφ0 , equal to 0.5 and the prior mean of φ1 equal to 0.5 We parameterize the MIDAS weights

as a beta function and set κ1 equal to 1. To rule out cases where more recent returns receive

less weight than observations in the more distant past, i.e., when κ2 < 1, we constrain κ2 to the

5We also considered specifications with µφ0
set equal to 0 or 1. These results are available upon request and

show that our findings are robust to the choice of this prior distribution.
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interval [1,26]. When κ2 = 1 all 250 days receive equal weight in the estimation and when κ2 =

26 the cumulative weight given to the 40 most recent days is 99%. We implement this restriction

by a change of variable, κ2 = 1 + 25κ∗2. For κ∗2 we choose a uniform prior, κ∗2 ∼ U [0, 1].

C Bayesian Inference

We employ Markov Chain Monte Carlo (MCMC) methods to sample from the joint posterior

distribution of the parameter vector θ. The main idea is to construct a Markov chain such that

the chain converges to a unique stationary distribution that is the posterior density, p(θ|y).

We use the Gibbs sampler, which involves the sequential drawing from the full conditional

posterior densities, to obtain draws from the joint posterior density. In particular, first the

parameter vector θ is partitioned into B blocks (θ(1), θ(2), ..., θ(B)). At each iteration of the

Gibbs sampler each block is sampled from its posterior distribution conditional on all other

blocks and the data. Because the conditional posterior density of κ2 has a nonstandard form,

we cannot directly sample from it. Therefore, we use the Metropolis-Hastings algorithm, in

which candidate parameter values are drawn from a proposal density and accepted with a

certain probability that is highest in areas of the parameter space where the posterior density

is highest (see Chib and Greenberg (1995)). Details on the derivation of the joint posterior

density and the conditional posterior distributions are provided in the appendix.

Iterations of the chain converge to draws from the joint posterior. We check convergence by

inspecting the standardized cumsum statistics, suggested by Bauwens, Lubrano, and Richard

(1999), applying the partial means test based on numerical standard errors, explained by Geweke

(2005), and calculating the Gelman-Rubin statistic that compares the variation in output be-

tween and within chains, described by Gelman, Carlin, Stern, and Rubin (2004). These diagnos-

tics indicate that the parameter chains have converged after 1,000 iterations. In our empirical

analysis we therefore run 5,000 iterations and discard the first 1,000 iterations as burn-in period.

The remaining draws are used to summarize the posterior density and to conduct inference.

III Data

The firm data comes from CRSP and Compustat and consist of the monthly return, size, and

book-to-market value for a sample of NYSE- and AMEX-listed stocks. To calculate realized
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betas we further retrieve daily returns from CRSP for these stocks. The sample covers the

period from July 1964 to December 2006. Following Avramov and Chordia (2006a), we include

a stock in the analysis for a given month t if it satisfies the following criteria. First, its return in

the current month t and in the previous 36 months has to be available. Second, data should be

available in month t-1 for size as measured by market capitalization and for the book-to-market

ratio. We calculate the book-to-market ratio using accounting data from Compustat as of

December of the previous year. Finally, in line with Fama and French (1993), we exclude firms

with negative book-to-market equity. Imposing these restrictions leaves a total 5,017 stocks

over the full sample period and an average of 1,815 stocks per month.

Table I presents summary statistics for the data set. Panel A reports the mean, median,

standard deviation and 5th, 25th, 75th, and 95th percentile values of excess stock returns and

firm characteristics across all data points. The average monthly excess stock return is 0.69%

while the median is -0.16%. The mean (median) firm size is $1.59 (0.16) billion. Because the

book-to-market ratio contains some extreme values, we trim all book-to-market outliers to the

0.5th and 99.5th percentile values of the distribution. After trimming, the average (median)

book-to-market ratio equals 0.96 (0.75). The cumulative return over the twelve months prior

to the current month, which we use as a proxy for momentum, has a mean of 14.65% and a

median of 8.60%. Because the distributions of firm size and book-to-market display considerable

skewness, we use the logarithmic transformations of these variables in the analysis. Furthermore,

we normalize the characteristics by expressing them as deviations from their cross-sectional

means to remove any time trend in the average value of the characteristics.

We further retrieve data for the four macroeconomic variables that we use as instruments

for the fundamental beta, i.e., the default spread, dividend yield, one-month Treasury bill rate,

and term spread. We define the default spread as the yield differential between bonds rated

BAA by Moody’s and bonds with a Moody’s rating of AAA. The dividend yield is calculated as

the sum of the dividends paid on the value-weighted CRSP index over the previous 12 months

divided by the current level of the index. The term spread is defined as the yield difference

between ten-year and one-year Treasury bonds. Panel B shows descriptive statistics for the

macroeconomic variables. The average default spread is 1.02%, the mean dividend yield equals

3.01%, the average one-month T-bill rate is 5.69%, and the average term spread is 0.85%.
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[Table I about here.]

IV Empirical Results

In section A we study whether betas are driven by lagged conditioning variables or past realized

betas. Section B compares the efficiency of the beta estimates produced by the panel model

to that of those obtained from time series regressions. In section C we illustrate the loss of

information from aggregating stocks into portfolios by showing the cross-sectional variation

in firm-level betas within the 25 size-B/M portfolios that are often used to test asset pricing

models.

A Beta Specification

A key objective in this paper is to improve the specification of time-varying betas. We investigate

whether the time series and cross-sectional variation in betas is best explained by lagged firm

characteristics and macroeconomic variables, by past realized betas, or by a linear combination

of both. We address this question by estimating the model in equation (7) and examining the

distribution of φit, which measures the proportion of beta explained by past realized beta. We

first calculate φit based on equation (3) for each draw of the Gibbs sampler. We then calculate

for each firm the time series average φi and its posterior mean.

Figure 1 shows the cross-sectional distribution of these posterior means of φi. The cross-

sectional average is 0.51, which implies that for the average firm the estimate of beta is the

average of the fundamental and realized beta estimates. The spread in the distribution shows

that for some firms past realized betas are more important determinants of mixed betas while

for others lagged fundamental betas have a stronger impact.

[Figure 1 about here.]

Figure 2 plots the evolution of the cross-sectional average of φ through time. Interestingly, φ

increases during periods of high market volatility, such as recessions and the stock market crash

in 1987. This implies that more weight should be given to past realized betas and less weight

to fundamental betas during turbulent conditions. Because the fundamental beta specification

is a function of macroeconomic and firm-specific variables, it captures long-run movements in
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beta driven by structural changes in the economic environment and in firm- or industry-specific

conditions. In contrast, because the realized beta specification is based on high-frequency

returns, it picks up short-run fluctuations in beta in periods of high market volatility.6

[Figure 2 about here.]

Since we find that conditioning variables motivated by economic theory are important de-

terminants of beta, we now consider the posterior distributions of the parameters underlying

the fundamental beta. Table II presents summary statistics of the posterior distribution of

the δ0 and δ1 parameters in equation (6). The constant term δ0, which can be interpreted as

the average fundamental beta because all conditioning variables are cross-sectionally demeaned,

has a posterior mean of 1.01. The results show that all three firm characteristics are important

determinants of fundamental betas. Some of the interaction terms between the firm characteris-

tics and macroeconomic variables also capture important variation in market betas, particularly

those involving the default spread and one-month T-Bill rate.

[Table II about here.]

As explained in section I, we use the MIDAS approach of Ghysels, Santa-Clara, and Valkanov

(2005) to estimate realized betas based on daily return data. This approach incorporates a

flexible weighting function that makes it possible to choose the optimal weights given to past

data in the estimation. The optimal window strikes a balance between giving equal weight to

observations to obtain more precise beta estimates and giving more weight to recent data to

obtain betas that are timelier and therefore more relevant. As shown in equation (5), we use

a beta weighting function whose shape is determined by two parameters. We set κ1 equal to

1 and estimate κ2. We find that in our realized beta specification the posterior mean of κ2 is

equal to 1.16. Figure 3 compares the optimal weighting scheme implied by the posterior mean

of κ2 to the equal weighting scheme used by rolling window estimators. The plot shows that in

the optimal scheme the most recent 150 days receive more weight than in the equal weighting

scheme because these are most informative for estimating realized betas.

[Figure 3 about here.]

6Related to this, Engle and Rangel (2008) model low-frequency patterns in market volatility as a function of
macroeconomic and financial variables and Hoberg and Welch (2007) compute long- and short-run betas based
on different windows of past returns.

13



We now turn to the mixed betas generated by our model. First, we calculate βit based on

equation (2) at each iteration of the Gibbs sampler. Subsequently, we compute for every firm

the time series average of the mixed beta and its posterior mean. Figure 4 shows the cross-

sectional distribution of these posterior means of βi. As expected, the distribution is centered

around one and has a standard deviation of 0.34. A 95% confidence interval for beta ranges from

0.46 to 1.60, which implies that firms differ substantially in their sensitivity to broad market

movements.

[Figure 4 about here.]

In Table III we report summary statistics of the posterior means of all three beta specifica-

tions. Because for each t the cross-sectional average of β̄it is close to one, the more interesting

aspect is the dispersion in betas, both over time and in the cross-section. The left panel in

Table III reports properties of the cross-section of betas and the right panel shows time series

characteristics of beta. The diagonal elements in these panels show that on average, realized

betas display the largest spread, both over time and across firms, while fundamental betas show

the least variation. This is consistent with the notion that realized betas capture high-frequency

movements in beta and fundamental betas pick up long-run beta fluctuations. Another expla-

nation is that measurement error in the realized beta estimates leads to spurious dispersion or

that in addition to firm size, book-to-market, and momentum, other firm characteristics drive

variation in beta. The time series and cross-sectional behavior of the mixed betas is a combina-

tion of the dynamics of the realized and fundamental betas. Thus, it combines the benefits of

both specifications, responding fast to changes in market conditions without producing excessive

variation in beta. The off-diagonal elements in Table III are the correlations between the betas

generated by the three specifications. Fundamental and realized betas are strongly correlated,

both over time and across stocks. Correlation is far from perfect though, as a regression of

one on the other has an R2 of only 0.68. This illustrates that realized and fundamental betas

exhibit different cross-sectional characteristics and time series dynamics. Hence, a combination

of these two specifications captures different aspects of market beta dynamics.

[Table III about here.]
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B Beta Estimation

In this section we compare the precision of beta estimates from the hierarchical Bayesian panel

data model to that of estimates from a separate Bayesian time series regression for every firm.

We study the estimation efficiency of the two methods for the fundamental beta specification,

where φit is fixed at zero. Since this specification requires the estimation of many parameters

when a large number of conditioning variables is included, the efficiency gain from using the

panel model can be substantial. We measure estimation precision by computing the standard

deviation and the 5% and 95% percentile values of the posterior distribution of beta at each

point in time.

Figure 5 plots the posterior mean and 5% and 95% percentile values of the posterior dis-

tribution of the fundamental beta of IBM from August 1964 through December 2006. The

upper graph is based on the estimation output of the panel data model and the lower graph is

constructed using the output of a time series regression. The shaded areas in the plot indicate

NBER recession periods. The plots show that the confidence interval for beta obtained from

the panel regression is much narrower than the interval produced by the time series regression.

Noisy estimates of the δ1 parameters, which measure the influence of the conditioning variables

on fundamental betas, lead to wide intervals for beta in the time series model.

[Figure 5 about here.]

The large efficiency gain in the panel model is due to two reasons. First, the δ parameters

are pooled across stocks in the panel specification. The panel model therefore exploits the

information in the cross-section of stocks to obtain more precise estimates. Second, because we

specify hierarchical priors for the firm-specific parameters in the model, only the parameters

of the common distribution where the parameters are assumed to be drawn from have to be

estimated. The Bayes estimator of the firm-specific parameters in the panel model shrinks

the least squares estimator towards the cross-sectional mean. In contrast, in the time series

regressions every parameter is estimated individually, which results in poor estimation precision

when many parameters need to be estimated and the number of time series observations is small.

Because in our panel approach parameters can be estimated more precisely, it can include

more conditioning variables than the traditional approach of estimating a time series regres-

sion for every firm used by Avramov and Chordia (2006a). While we include 15 conditioning
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variables to accurately model beta dynamics, they note that “attention must be restricted to

a small number of such variables to ensure some precision in the estimation procedure”. To

compare the relative efficiency of the panel and time series approaches when a more parsimo-

nious specification for fundamental betas is used, we also estimate the panel model and time

series regressions with a set of conditioning variables that is similar to that used by Avramov

and Chordia (2006a). In particular, we choose firm size, book-to-market, and two interactions

terms between these characteristics and the default spread as instruments.

The confidence intervals for the fundamental beta of IBM based on this reduced set of

conditioning variables are displayed in figure 6. As expected, the intervals for beta generated

by the panel model and the time series regressions have both narrowed compared to those

based on the complete set of conditioning variables. However, the plots show that even when

less parameters need to be estimated the panel approach leads to more precise estimates of

firm-specific betas than the time series approach.

[Figure 6 about here.]

Because IBM is present in our data set during the entire sample period, many observations

are available for beta estimation (509 months). As explained before, we expect the efficiency

gain from the hierarchical Bayesian panel data approach to be even larger for firms with a short

return history. To summarize the estimation precision for the betas of all firms, we compute the

cross-sectional average of the posterior standard deviations of all betas in every month. Figure

7 plots these standard deviations for the panel model and time series regressions. Clearly, the

posterior standard deviation of betas estimated using the time series regressions is larger than

the standard deviation of betas estimated using the panel regression.

[Figure 7 about here.]

C Portfolio Heterogeneity

The previous section has shown that firm-specific betas are noisy when estimated using time

series regressions. To reduce the measurement error in betas, Fama and MacBeth (1973) pro-

pose to aggregate stocks into portfolios and run a time series regression for every portfolio to

obtain the portfolio’s beta. Fama and French (1992) follow this suggestion and assign each
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stock the beta of the portfolio it belongs to. As pointed out by Ferson and Harvey (1999), such

an approach is often used in studies of initial public offerings (IPOs), when no return data is

available to estimate beta. They note that this approach only works when the characteristics

used for portfolio formation are good proxies for risk, because an important assumption un-

derlying the portfolio approach is that the stocks in a particular portfolio share the same risk

characteristics. In case of the widely used 25 portfolios sorted on firm size and book-to-market,

it is assumed that firms are homogeneous in their exposure to risk after controlling for size and

B/M. When the stocks in a given portfolio have different exposures to other determinants of

risk, this method can lead to serious errors. In this section we therefore examine whether firms

that are grouped together in a portfolio have similar risk characteristics.

We construct the 25 size-B/M portfolios following the procedure of Fama and French (1993).

Subsequently, we calculate for every portfolio j in every month t the cross-sectional average and

standard deviation of the excess returns and posterior means of the alphas, betas, and phis of

the stocks in that portfolio. The left part of Table IV reports for each portfolio the time series

means of these cross-sectional averages. Consistent with prior studies (e.g., Fama and French

(1996)), the small-growth portfolio has the lowest average return and a large, negative pricing

error. In general, the average portfolio returns display a strong value premium but weak size

effect. Importantly, sorting on firm size and B/M does not produce a wide spread in average

market betas across portfolios, as most portfolio betas are close to one.7 The table further shows

that the phi parameters of large cap portfolios are higher than those of small cap portfolios.

This implies that realized betas are the most important determinants of the mixed betas of

large firms while fundamental betas have a stronger effect on the mixed betas of small firms.

Table IV also shows the dispersion of the risk and return characteristics across stocks in

each portfolio. For all characteristics we observe strong heterogeneity within portfolios. In

some portfolios the cross-sectional standard deviation of firm-specific alphas is more than 1%.

Especially firms that are grouped together in small cap portfolios have significantly different

pricing errors. The cross-sectional variation in betas of firms in each portfolio is around 0.30,

which implies that the assumption that stocks in the same portfolio have similar risk character-

istics is violated. Table IV also reports substantial heterogeneity in phi within portfolios. This

7However, unreported results show that value and growth portfolios exhibit very different risk dynamics.
Confirming the results of Ang and Chen (2007) and Franzoni (2007), we find that the beta of value firms shows
a declining trend and is lower than the beta of growth stocks since the 1980s.
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means that for some firms in a given portfolio mixed betas are mainly driven by realized betas

whereas for others fundamental betas are more important.

[Table IV about here.]

V Applications of Firm-Specific Betas

This section discusses two important applications of the firm-level betas generated by our

Bayesian panel data model. In section A we compare the explanatory power of different beta

specifications and estimation methods for the cross-section of individual stock returns. Section

B uses the beta forecasts to estimate the covariance matrix of stock returns, which we then use

to construct minimum variance portfolios.

A Cross-Sectional Tests of the Conditional CAPM

The previous section has shown that aggregating individual stocks into portfolios leads to a

substantial loss of information and shrinks the cross-sectional variation in betas. Ang, Liu,

and Schwarz (2008) demonstrate that this loss of information can lead to large efficiency losses

in cross-sectional tests of asset pricing models. In particular, they show that while creating

portfolios reduces estimation error in betas, standard errors of risk premia estimates are higher

due to the smaller spread in betas. Consequently, using individual stocks instead of portfolios

as base assets allows for more powerful tests of asset pricing models.

Another important reason for using individual stocks in cross-sectional tests of asset pricing

models is given by Lewellen, Nagel, and Shanken (2008). They show analytically that due to

the strong factor structure in the 25 size-B/M sorted portfolios often used as test assets in asset

pricing studies, traditional cross-sectional tests have low power to reject a model. In particular,

when theoretical restrictions on cross-sectional slopes are ignored, any factor that is only weakly

correlated with the true factors can generate high cross-sectional R2s and small pricing errors.

Lewellen and Nagel (2006) show that the empirical support for several recently proposed asset

pricing models weakens considerably when this issue is taken into account. Because individual

stock returns do not have a strong factor structure, they are not affected by this problem.

In their analysis, Ang, Liu, and Schwarz (2008) assume constant stock betas, which they

estimate by running time series regressions. We extend their work in two directions. First, we
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improve the specification of betas by allowing for time variation. Second, we use a formal panel

data approach to increase the precision of firm-specific beta estimates. We do not claim that

the CAPM is the “best” asset pricing model. Our objective is to show the effect of better beta

specification and estimation on the pricing ability of the CAPM.

We first estimate betas for all stocks in our sample and for the 25 size-B/M portfolios. We

consider four beta specifications (mixed, fundamental, realized, and static) and estimate the

models using hierarchical Bayesian panel regressions. These betas are then used as independent

variables in second stage monthly cross-sectional regressions of excess returns on betas,

rit = λ0t + λ1tβit−1 + λ′2txit−1 + υit, (10)

where λ0t is the intercept, λ1t the risk premium, and where xit−1 is a vector of control variables.

We run the cross-sectional regressions for every draw of the Gibbs sampler and calculate the

time series average of the cross-sectional coefficients. We then calculate the posterior mean and

variance of the Fama-MacBeth estimators. In appendix B we demonstrate that this procedure

accounts for measurement error in beta by using the entire posterior distribution of the βit in

the estimation.

Columns 1-3 in Table V report the Fama-MacBeth coefficient estimates when individual

stocks are the test assets and no control variables are included in the regression (xit−1 = 0). We

find that for the mixed beta specification the intercept is close to zero and insignificant while

the risk premium estimate is significantly positive. The λ1t estimate is 0.56%, which is close

to the average monthly excess market return during the sample period (0.47%). This implies

that the conditional CAPM with mixed betas satisfies the theoretical restriction emphasized

by Lewellen and Nagel (2006) that the risk premium should equal the expected excess factor

return. For the other three beta specifications the intercepts are significantly different from zero.

The risk premium estimates in the realized beta and fundamental beta models are positive and

significant but deviate more from the average market return than the premium estimated in the

mixed beta model. In terms of explanatory power the mixed beta specification also outperforms

the competing approaches to modeling beta. The static CAPM performs worst, because in this

model the cross-sectional variation in market betas does not respond to business cycle variations.

Columns 4-6 in Table V show that when portfolios are used as test assets, all beta specifica-
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tions generate economically large intercepts. Nevertheless, the mixed beta specification again

has the highest explanatory power and the static CAPM does worst. We stress that the R2

should only be compared across beta specifications and should not be used to compare individ-

ual stocks and portfolios as test assets, because the dependent variables in the cross-sectional

regressions are different. Table V further shows that the standard errors of the parameter es-

timates are much larger when portfolios are used as test assets than when individual stocks

are used, which confirms that sorting stocks into portfolios can lead to large efficiency losses

because it reduces the dispersion of betas. In fact, standard errors from using portfolios are

more than twice as large as those from using individual stocks.

The last three columns in Table V report estimation results for individual stocks when

control variables are added to the cross-sectional regressions. In particular, the vector xit−1

contains the firm characteristics size, book-to-market, and momentum. Fama and French (1992)

find that the cross-sectional relation between between market beta and average return is flat

when tests control for size. We find that while adding these firm characteristics leads to an

increase in explanatory power, the risk premium estimate for the mixed beta specification

remains significantly positive. Thus, when individual stocks are used as test assets and betas

are well-specified and precisely estimated, the positive relation between beta and return no

longer disappears when controlling for firm characteristics.

[Table V about here.]

B Beta Forecasts and Minimum Variance Portfolios

An important application of betas is to estimate the covariance matrix of returns, which is used

to construct mean-variance efficient portfolios. Traditional implementations of the portfolio

theory developed by Markowitz (1952) use sample moments. When the number of assets is large,

however, it is difficult to precisely estimate the expected returns and covariances. As a result,

asset weights are often extreme and portfolios behave poorly out-of-sample. Many strategies

have been proposed to improve the out-of-sample performance of mean-variance portfolios,

including shrinkage estimators, imposing short-selling constraints, using asset pricing models to

estimate expected returns, and imposing a factor structure on the covariance matrix.8

8See, e.g., Chan, Karceski, and Lakonishok (1999), Jagannathan and Ma (2003), and Ledoit and Wolf (2003)).
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In a recent study, DeMiguel, Garlappi, and Uppal (2007) compare the out-of-sample perfor-

mance of these approaches to the 1/N rule that gives equal weight to all available assets. They

conclude that none of the more sophisticated methods consistently outperforms the naive 1/N

benchmark in terms of Sharpe ratio or certainty equivalent return. Of the alternative models

considered, the minimum variance portfolio with short-selling constraints proposed by Jagan-

nathan and Ma (2003) has the highest Sharpe ratio but is not superior to the 1/N strategy.

The global minimum variance portfolio does well, because it is the only efficient portfolio that

does not require estimates of expected returns, which contain large estimation errors. Chan,

Karceski, and Lakonishok (1999) compare the out-of-sample performance of minimum variance

portfolios based on forecasts of future covariances produced by factor models. They find that

there is one major factor, the market, that dominates all other factors. Hence, the one-factor

model is adequate for forming the global minimum variance portfolio.

Motivated by these findings, we use the mixed beta forecasts produced by our Bayesian panel

data model to forecast the covariance matrix of stock returns and construct the global minimum

variance portfolio. We expect our method to outperform competing approaches because it

delivers more efficient estimates of firm-specific betas and because it allows for time variation

in beta. DeMiguel, Garlappi, and Uppal (2007) admit that their assumption of constant risk is

a limitation, but argue that models that allow for time-varying moments are likely to perform

poorly out-of-sample because many parameters need to be estimated. However, one of the

key advantages of our method is that it can estimate many parameters with high precision.

We compare the out-of-sample performance of our approach to that of the traditional sample

covariance matrix, the static one-factor structure considered by Chan, Karceski, and Lakonishok

(1999), and the 1/N rule advocated by DeMiguel, Garlappi, and Uppal (2007).9 Engle and

Colacito (2006) stress the importance of isolating the effect of covariance information from

expected returns when the objective is to evaluate different covariance estimators. Because

expected returns do not enter the optimization when constructing minimum variance portfolios,

differences in the portfolio weights only reflect the effect of different covariance forecasts.

9Brandt, Santa-Clara, and Valkanov (2009) propose a new approach to portfolio optimization, in which
portfolio weights are modeled as a function of firm characteristics to exploit cross-sectional patterns in stock
returns. They show that this parametric portfolio policy performs well for expected return maximizing portfolios
but note that it works less well when the objective is to construct risk minimizing portfolios.
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The first estimator of the covariance matrix is the sample covariance matrix,

SS
t =

1

T − 1

T
∑

t=1

(Rt − R̄)(Rt − R̄), (11)

where Rt is the vector of monthly stock returns and R̄ contains the sample mean returns. Our

second covariance estimator is based on the one-factor model. In the first step, we estimate

mixed betas using our panel approach and static betas using time series regressions. We use

these betas to estimate the covariance matrix in each month according to the one-factor model,

SF
t = s2MtBtB

′

t +D, (12)

where Bt is the Nt × 1 vector of betas, s2Mt is the sample variance of the market premium, and

D is a diagonal matrix that contains the variances of the residuals.

Subsequently, we use the various estimates of the covariance matrix to construct the mini-

mum variance portfolio, by choosing the portfolio weights that solve the following problem:

min w′

tStwt, (13)

s.t.
∑

i

wit = 1. (14)

The constraint implies that the portfolio is fully invested. Following Chan, Karceski, and

Lakonishok (1999) and Jagannathan and Ma (2003), we also consider an extension in which we

add a short-selling constraint,

wit ≥ 0, i = 1, 2, ...N. (15)

We form the minimum variance portfolio at the end of each month, based on the forecast

of the covariance matrix for the next month. The first portfolio is formed using the first half

of the sample period to forecast the covariance matrix of returns according to the methods

explained above. Because the sample covariance matrix cannot be positive definite unless the

number of return observations per stock is larger than the number of stocks, we only apply this

method to a subset of the investment universe. We record the performance of the minimum

variance portfolio in the next month and rebalance the portfolio using the new forecast of the
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covariance matrix. This method produces a time series of monthly returns for global minimum

variance portfolios constructed using different covariance estimators. As a benchmark we also

form an equally weighted portfolio at the end of each month. Since the objective is to minimize

the portfolio variance, we evaluate the performance of the different methods by calculating the

realized volatility of the portfolio returns.

Table VI reports annualized risk and return characteristics of the minimum variance port-

folios constructed using various forecasts of the covariance matrix. Panel A shows the out-of-

sample performance when all stocks in the sample are used in the optimization and short-selling

is allowed. The mixed beta specification estimated using the panel data approach outperforms

all other methods and produces a portfolio with an annualized standard deviation of 8.12%.

The 1/N strategy leads to a standard deviation that is almost twice as large (15.40%). The

static beta model ranks second and generates an out-of-sample standard deviation of 8.50%.

Although our objective is to minimize portfolio variance, we find that the mixed beta approach

also leads to the best risk-return tradeoff, as it produces the highest Sharpe ratio of all four ap-

proaches, equal to 0.69. Since the minimum variance portfolio constructed using the mixed beta

approach does not involve taking short positions, it can also be easily implemented in practice.

No short positions are taken because the mixed beta forecasts for all stocks are positive.

In panel B we report the performance for portfolios constructed from a random sample of

250 stocks, which is the same number of stocks considered by Chan, Karceski, and Lakonishok

(1999). For this subset of stocks the 1/N rule leads to the highest out-of-sample standard

deviation (15.93%), followed by the sample covariance matrix, which generates a standard

deviation of 15.19% and involves taking large short positions. The mixed beta panel approach

again beats all other methods and produces a portfolio with a standard deviation of 8.41%.

Thus, the performance of this approach when applied to the smaller sample of stocks is similar

to that when all stocks are used in the optimization. An important reason for the relatively

poor performance of the naive 1/N strategy is that we allocate wealth across individual stocks.

In contrast, DeMiguel, Garlappi, and Uppal (2007) apply this policy to allocate wealth across

portfolios of stocks. They point out that the loss from naive as opposed to optimal diversification

is much larger when allocating wealth across individual assets, because individual stocks have

higher idiosyncratic volatility than portfolios.
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Jagannathan and Ma (2003) document that the out-of-sample performance of the sample

covariance matrix can be improved by imposing no-short-sale constraints, because these reduce

sampling error. Panel C reports the risk and return characteristics of the portfolios generated

by the four methods when the nonnegativity constraint is imposed on the weights. The random

sample of 250 stocks used to form the portfolios is the same as that used in panel B. We find

that the standard deviation of the minimum variance portfolio constructed using the sample

covariance matrix is indeed lower when no-short-sale restrictions are in place. In fact, this

method yields a lower standard deviation than the equally weighted (1/N) portfolio or the one-

factor model with static betas. We also confirm the finding of Jagannathan and Ma (2003) that

imposing no-short-sale constraints reduces the performance of the static factor model. Because

the portfolio produced by the mixed beta approach in panel B does not take short positions, it

is not affected by the nonnegativity constraint and still has the smallest out-of-sample standard

deviation.

[Table VI about here.]

VI Conclusion

Many applications of modern finance theory require precise beta estimates for individual stocks.

However, as noted by Campbell, Lettau, Malkiel, and Xu (2001), “firm-specific betas are difficult

to estimate and may well be unstable over time”. Academics and practitioners have taken two

approaches to estimating firm-level betas. The first method sorts stocks into portfolios based

on characteristics to reduce measurement error and assigns each firm the beta of the portfolio

it belongs to. However, when stocks in the same portfolio have different exposures to other

determinants of risk than the characteristics they are sorted on, this approach can lead to serious

errors. The second method estimates a separate time series regression for every stock. Although

this approach allows each firm to have a different risk exposure, the resulting beta estimates

can be very noisy. The literature also uses different specifications to model time variation in

betas. Many studies use a parametric approach in which variation in beta is modeled as a

linear function of conditioning variables. An alternative, non-parametric approach to model

risk dynamics is based on purely data-driven filters. However, both methods have important

drawbacks and involve a trade-off between precision and timeliness of beta estimates.
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In this paper we therefore improve both the specification and estimation of firm-specific,

time-varying betas. We combine the parametric and non-parametric approaches for modeling

changes in betas. The precision of firm-level beta estimates is increased by setting up a Bayesian

panel data model that exploits the information contained in the cross-section of stocks and

imposes a common structure on parameters while still allowing for cross-sectional heterogeneity.

We find that modeling time-varying betas as a function of both conditioning variables and

past return data is preferred over traditional beta specifications that are based on only one of

these components. Because fundamental and realized betas exhibit different time series dynam-

ics and cross-sectional characteristics, a combination of these specifications captures different

aspects of beta. We show that the optimal mixture of these two betas varies across firms and

over time. We further demonstrate that our panel data approach yields more precise estimates

of firm-level betas than the traditional approach of estimating betas by running a time series

regression for every firm. Moreover, we document strong cross-sectional variation in betas of

firms that are grouped together in portfolios sorted on size and book-to-market. Consequently,

aggregating stocks into portfolios conceals important information contained in individual stock

betas and reduces the cross-sectional variation in betas.

We demonstrate that the mixed betas generated by our panel data model lead to a sharpe

increase in the pricing ability of the conditional CAPM. The estimate of the market risk premium

remains significantly positive when controlling for firm characteristics. The results support the

finding of Ang, Liu, and Schwarz (2008) that the use of individual stocks as tests assets instead

of portfolios leads to more efficient estimates in cross-sectional tests of asset pricing models.

We extend their work by showing that a better specification and more precise estimation of

stock-specific betas increases the explanatory power of the CAPM.

Accurate estimates of firm-specific betas are also important for portfolio optimization. Based

on the mixed beta estimates produced by our panel model we forecast the covariance matrix

of stock returns, which is then used to form minimum variance portfolios. The portfolio con-

structed using mixed betas from the Bayesian panel approach outperforms portfolios of other

strategies, such as the traditional sample covariance matrix and the naive 1/N rule, in terms of

out-of-sample standard deviation. The mixed beta specification is also superior to competing

approaches when short-selling constraints on portfolio weights are imposed.
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Since our framework is flexible, it can be readily extended to include multiple risk factors,

a different set of conditioning variables for fundamental betas, or another window length for

estimating realized betas. In addition, while we have demonstrated the advantages of our

approach for asset pricing and portfolio management, it also has important benefits in corporate

finance applications. Specifically, because it quickly captures changes in beta and generates

precise beta estimates even when little return data is available, our method is well suited for

calculating risk-adjusted returns in studies of IPOs and M&As.
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A Posterior Distributions

A Joint Posterior Distribution

The joint posterior density is proportional to the product of the likelihood function and the

prior distributions of all parameters θ: p(θ|y) ∝ p(y|θ)p(θ). Defining βit as in equation (2),

stacking the time series observations for every firm i into vectors, and substituting the prior

densities specified in section II produces the following joint posterior distribution10:
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σ−2
α

)Aα+1
exp

[

−σ−2
α Bα

]

×
N
∏

i=1

(σ2
φ0

)−
1
2 exp

[

−(φ0i − µφ0)
2

2σ2
φ0

]

×
(

σ−2
φ0

)Aφ0
+1

exp
[

−σ−2
φ0
Bφ0

]

× (σ2
φ1

)−
1
2 exp

[

− φ2
1

2σ2
φ1

]

×
(

σ−2
φ1

)Aφ1
+1

exp
[

−σ−2
φ1
Bφ1

]

× (σ2
δ0

)−
1
2 exp

[

− δ20
2σ2

δ0

]

×
(

σ−2
δ0

)Aδ0+1
exp

[

−σ−2
δ0
Bδ0

]

× |Ω−1
δ1

| 12 exp

[

−1

2
δ′1Ω

−1
δ1
δ1

]

× |Ω−1
δ1

|
ψδ1

−(L+LM)−1

2 exp

[

−1

2
tr
(

[ψδ1Sδ1 ] Ω
−1
δ1

)

]

×
N
∏

i=1

(

σ−2
ǫi

)Aǫ+1
exp

[

−σ−2
ǫi
Bǫ

]

.

10We use the following parametrization of the inverse gamma distribution,

p(y|A, B) =
BA

Γ(A)

(

1

yA+1

)A+1

exp

(

−B

y

)

,

where Γ(A) denotes the Gamma function, A is the shape parameter, and B is the scale parameter. For the
Wishart distribution we use the parameterization,

p(H|R, ν) ∝
|H|(ν−k−1)/2

|R|ν/2
exp

[

1

2
tr(R−1

H)

]

,

where k denotes the dimension of the matrix H, ν is the degrees of freedom parameter, and R is the scale matrix.
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B Conditional Posterior Distributions

In order to implement the Gibbs sampler we need to derive the full conditional posterior densities

for each block of parameters. The conditional densities can be derived from the joint posterior

density by ignoring all terms that do not depend on the parameters of interest and then treating

the parameters considered to be known as constants. We then obtain the conditional density

for the parameters of interest by rearranging the remaining terms into the kernel of a known

distribution. We partition the parameter vector θ into the following blocks:

θ(1): MIDAS weight parameter: (κ2)

θ(2): Alpha parameters: (αi)

θ(3): Fundamental beta parameters: (δ0, δ1)

θ(4): Firm-specific mixed beta parameters: (φ0i)

θ(5): Pooled mixed beta parameter: (φ1)

θ(6): Variance and covariance parameters: (σ2
α, σ

2
δ0
,Ω−1

δ1
, σ2

φ0
, σ2

φ1
, σ2

ǫi
)

To generate samples from the conditional posterior of θ(1) we use the Metropolis-Hastings

algorithm. The conditional posteriors for all other blocks have convenient functional forms.

Therefore, we use the Gibbs sampler to iteratively draw from the conditional densities of θ(2),

θ(3), θ(4), θ(5), θ(6). To simplify notation we rewrite the model in matrix form as

ri = αiιTi + φ0irMbi + φ1rMVMbi + rMWiδ − φ0irMWiδ − φ1rMVMWiδ + ǫi, (16)

where ri is an T × 1 vector of excess returns, rM an T × T diagonal matrix of excess market

returns, VM an T ×T diagonal matrix of lagged market volatility, bi an T × 1 vector of realized

betas, and ǫi an T×1 vector of idiosyncratic shocks. Since the δ0 and δ1 parameters in block θ(3)

have independent priors, we have simplified the notation further by rewriting δ0ιT +ZBCiδ1 as

Wiδ,where Wi is the T × (1 +L+LM) matrix of the constant term and conditioning variables.

We combine the corresponding precisions σ−2
δ0

and Ω−1
δ1

into the matrix Ω−1
δ .

B.1 Metropolis-Hastings algorithm to draw κ2

Since we implement a change of variable, κ2 = 1+25κ̃2, we need to draw values for κ̃2. Because

the conditional posterior density for κ̃2 does not take a standard form, we cannot use the Gibbs

sampler. Instead, we employ the Metropolis-Hastings algorithm, which is a general accept-reject
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algorithm. In fact, Gelman, Carlin, Stern, and Rubin (2004) show that the Gibbs sampler is

a special case of Metropolis-Hastings in which proposed parameter values are accepted with

probability one. The M-H algorithm proceeds as follows.

First, a candidate value κ̃∗2 is drawn from a proposal density q(κ̃2). We apply the Indepen-

dence Chain M-H algorithm, in which the proposal density is independent across draws. We

choose a Beta(1,3) proposal density, which has a mean of 0.25 and standard deviation equal to

0.19. Because the proposal density is not identical to the posterior density, the M-H algorithm

does not accept all proposal draws. When a proposal is rejected the parameter value is set equal

to the current value. Draws are accepted according to the following probability

π(κ̃
(g−1)
2 , κ̃∗2) = min

{

1,
p(κ̃∗2|y)q(κ̃

(g−1)
2 )

p(κ̃
(g−1)
2 |y)q(κ̃∗2)

}

. (17)

This approach ensures that candidate draws with a high posterior density have a higher prob-

ability of being accepted than draws with a low posterior density. Repeating this procedure

produces the required sequence of draws from the posterior distribution.

B.2 Conditional posterior αi

Using Bayes’ theorem, we can write:

p (αi|y) ∝ p (y|αi) p (αi)

∝ exp

[

−1

2
Q∗

]

,

where Q∗ = (ri − αi − rMβi)
′ Ω−1

ǫi
(ri − αi − rMβi) +

α2
i

σ2
α

= (Xαi − αiιTi)
′ Ω−1

ǫi
(Xαi − αiιTi) +

α2
i

σ2
α

= Q∗

1 +Q∗

2,

with Q∗

1 =
(αi − ᾱi)

2

σ̄2
αi

,

and Q∗

2 = X ′

αi
Ω−1

ǫi
Xαi −

ᾱ2
i

σ̄2
αi

,

and where Xαi = ri − φ0irMbi − φ1rMVMbi − rMWiδ + φ0irMWiδ + φ1rMVMWiδ.
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In the derivation of p
(

αi|θ−(αi), y
)

all parameters in Q∗

2 are known, so we can treat Q∗

2 as a

constant. Thus, p
(

αi|θ−(αi), y
)

is proportional to exp[−1
2Q

∗

1], which is the kernel of a normal

density. Therefore,

αi|θ−(αi), y ∼ N
(

ᾱi, σ̄
2
αi

)

,

with ᾱi =

[

ι′TiΩ
−1
ǫi
ιTi +

1

σ2
α

]

−1
[

ι′TiΩ
−1
ǫi
Xαi

]

,

and σ̄2
αi

=

[

ι′TiΩ
−1
ǫi
ιTi +

1

σ2
α

]

−1

.

B.3 Conditional posterior δ

δ|θ−(δ), y ∼ N
(

δ̄, Ω̄δ

)

,

with δ̄ =

[

N
∑

i=1

((1 − φ0i) rMWi − φ1rMVMWi)
′ Ω−1

ǫi
((1 − φ0i) rMWi − φ1rMVMWi) + Ω−1

δ

]−1

×
[

N
∑

i=1

X ′

δiΩ
−1
ǫi

((1 − φ0i) rMWi − φ1rMVMWi)

]

,

and Ω̄δ =

[

N
∑

i=1

((1 − φ0i) rMWi − φ1rMVMWi)
′ Ω−1

ǫi
((1 − φ0i) rMWi − φ1rMVMWi) + Ω−1

δ

]−1

,

and where Xδi = ri − αiιTi − φ0irMbi − φ1rMVMbi.

B.4 Conditional posterior φ0i

φ0i|θ−(φ0i), y ∼ N
(

φ̄0i, σ̄
2
φ0i

)

,

with φ̄0i =

[

(bi −Wiδ)
′rMΩ−1

ǫi
rM (bi −Wiδ) +

1

σ2
φ0

]

−1 [

(bi −Wiδ)
′rMΩ−1

ǫi
Xφ0i

+
µφ0

σ2
φ0

]

,

and σ̄2
φ0i

=

[

(bi −Wiδ)
′rMΩ−1

ǫi
rM (bi −Wiδ) +

1

σ2
φ0

]

−1

,

and where Xφ0i
= ri − αiιTi − rMWiδ − φ1rMVM (bi −Wiδ).
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B.5 Conditional posterior φ1

φ1|θ−(φ1), y ∼ N
(

φ̄1, σ̄
2
φ1

)

,

with φ̄1 =

[

N
∑

i=1

(bi −Wiδ)
′ rMVMΩ−1

ǫi
rMVM (bi −Wiδ) +

1

σ2
φ1

]−1 [ N
∑

i=1

X ′

φ1i
Ω−1

ǫi
rMVM (bi −Wiδ)

]

,

and σ̄2
φ1

=

[

N
∑

i=1

(bi −Wiδ)
′ rMVMΩ−1

ǫi
rMVM (bi −Wiδ) +

1

σ2
φ1

]−1

,

and where Xφ1i
= ri − αiιTi − φ0irM (bi −Wiδ) − rMWiδ.

B.6 Conditional posteriors σ2
α,Ω

−1
δ , σ2

φ0
, σ2

φ1
, σ2

ǫi

σ2
α|θ−(6), y ∼ IG

(

N + 2Aα

2
,

∑N
i=1 α

2
i + 2Bα

2

)

,

Ω−1
δ |θ−(6), y ∼Wish

(

[

δδ′ + (ψδSδ)
]

−1
, ψδ + 1

)

,

σ2
φ0
|θ−(6), y ∼ IG

(

N + 2Aφ0

2
,

∑N
i=1(φ0i − µφ0)

2 + 2Bφ0

2

)

,

σ2
φ1
|θ−(6), y ∼ IG

(

1 + 2Aφ1

2
,
φ2

1 + 2Bφ1

2

)

,

σ2
ǫi
|θ−(6), y ∼ IG

(

Ti + 2Aǫ

2
,
(ri − αi − rMβi)

′ (ri − αi − rMβi) + 2Bǫ

2

)

.
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B Cross-Sectional Asset Pricing Tests

In this appendix we show how we account for measurement error in betas in the cross-sectional

asset pricing tests. We consider the cross-sectional regression model described in section V,

rit = λ0t + λ1tβit−1 + λ′2txit−1 + υit. (18)

Conditional on βit−1 we can estimate the parameters λt, either Bayesian or classical, using the

Fama-MacBeth approach. Let Wit = (1 βit x
′

it)
′ and let λ̂t denote the cross-sectional OLS

estimator of λt. The Fama-MacBeth estimator of the average λ is

λ̂ =
1

T

∑

t

λ̂t =
1

T
(W ′

t−1Wt−1)
−1W ′

t−1rt, (19)

with covariance matrix

S ≡ V ar
(√

T (λ̂− λ)
)

=
1

T

∑

t

(λ̂t − λ̂)(λ̂t − λ̂)′. (20)

The Fama-MacBeth procedure overstates the precision of parameter estimates in the cross-

sectional regressions because it ignores estimation errors in the βit.

As explained in section II, the Gibbs sampler has produced a series of L draws from the

posterior density p(β|y), where β contains the entire collection of all βit and y is a shorthand

for all data used in estimating the betas. Given the β
(ℓ)
it from the ℓth iteration of the Gibbs

sampler we can form the regressor matrix W
(ℓ)
t and using W

(ℓ)
t construct the conditional mean

λ̂(ℓ) and covariance matrix S(ℓ). From these we form the unconditional estimators

λ̄ =
1

L

∑

ℓ

λ̂(ℓ) (21)

and

S̄ =
1

L

∑

ℓ

S(ℓ) +
1

L

∑

ℓ

(λ̂(ℓ) − λ̄)(λ̂(ℓ) − λ̄)′. (22)

The estimates λ̄ and S̄ can be interpreted as the posterior mean and variance of the average λt

if we assume that the prior on λt is uniform and λ does not affect the posterior density of βit.
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Table I: Summary Statistics for Firm Characteristics and Macroeconomic Variables

This table presents descriptive statistics for stock returns, firm characteristics, and macroeconomic variables for
510 months from July 1964 through December 2006. Panel A reports the mean, median, standard deviation and
5th, 25th, 75th, and 95th percentile values of firm characteristics for a total of 5,017 stocks over the full sample
period and an average of 1,815 stocks per month. We include a stock in the sample for a given month t if it
satisfies the following criteria. First, its return in the current month, t, and over the past 36 months has to be
available. Second, data should be available in month t-1 for size as measured by market capitalization and for
the book-to-market ratio. We exclude firms with negative book-to-market equity. XRET is the return in excess
of the risk-free rate, MV represents the market capitalization in billions of dollars, and BM is the book-to-market
ratio, for which values smaller than the 0.5th percentile and values greater than the 99.5th percentile are set
equal to the 0.5th percentile and 99.5th percentile values, respectively. MOM is the cumulative return over the
twelve months prior to the current month. Panel B shows the mean, median, standard deviation and 5th, 25th,
75th, and 95th percentile values of macroeconomic variables. DEF is the default spread, defined as the yield
differential between bonds rated BAA by Moody’s and bonds with a Moody’s rating of AAA. DY is the dividend
yield on the value-weighted CRSP index. The dividend yield is calculated as the sum of the dividends paid on
the index in the previous year divided by the current level of the index. TBILL is the one-month Treasury bill
rate. TERM is the term spread, defined as the yield difference between ten-year and one-year Treasury bonds.

Mean Std. dev. 5th 25th Median 75th 95th

Panel A: Firm characteristics
XRET (%) 0.69 12.31 -17.48 -5.99 -0.16 6.42 21.29
MV ($ billions) 1.59 5.60 0.01 0.03 0.16 0.81 6.67
BM 0.96 0.82 0.18 0.44 0.75 1.22 2.45
MOM (%) 14.65 49.29 -49.12 -14.24 8.60 34.46 96.30

Panel B: Macroeconomic variables
DEF (%) 1.02 0.43 0.55 0.73 0.90 1.21 1.92
DY (%) 3.01 1.10 1.30 2.02 2.96 3.77 4.84
TBILL (%) 5.69 2.70 1.56 4.08 5.16 6.96 10.57
TERM (%) 0.85 1.14 -1.14 0.08 0.78 1.69 2.83
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Table II: Posterior Distribution of Fundamental Beta Parameters

This table reports the Bayesian posterior distribution of the determinants of the fundamental beta, which is
parameterized as a linear function of firm characteristics and business cycle variables,

β
∗

it = δ0 + δ
′

1[Zit ⊗ BCt],

where Zit is a vector that contains L firm characteristics and BCt is a vector that contains a constant and M

business cycle variables. MV is the log of firm size, BM is the log of the book-to-market ratio, and MOM is the

cumulative return over the twelve months prior to the current month. These firm characteristics are expressed

as deviations from their cross-sectional mean in every period. DEF is the default spread, DY is the dividend

yield, TBILL is the one-month Treasury bill rate, and TERM is the term spread. The table presents the mean,

median, standard deviation and 5th, 25th, 75th, and 95th percentile values of the posterior distribution of the

delta parameters, based on 5,000 iterations of the Gibbs sampler and a burn-in period of 1,000 iterations. All δ1

parameters are multiplied by 100.

Mean Std. dev. 5th 25th Median 75th 95th

Constant (δ0) 1.01 0.01 0.98 0.99 1.00 1.01 1.02

MV -3.62 0.68 -4.77 -4.05 -3.66 -3.20 -2.47
BM -5.30 1.32 -7.38 -6.18 -5.44 -4.34 -3.10
MOM -10.02 2.99 -14.97 -12.05 -9.99 -8.18 -5.28

MV*TBILL 0.65 0.29 0.16 0.45 0.65 0.84 1.14
MV*TERM 1.57 0.28 1.08 1.40 1.58 1.74 2.03
MV*DEF 0.55 0.52 -0.33 0.20 0.53 0.93 1.38
MV*DY -1.41 0.08 -1.55 -1.47 -1.40 -1.35 -1.27
BM*TBILL -3.11 0.58 -3.98 -3.52 -3.09 -2.74 -2.20
BM*TERM 0.35 0.73 -0.84 -0.13 0.39 0.83 1.49
BM*DEF 13.15 0.95 11.62 12.53 13.18 13.74 14.64
BM*DY -0.05 0.14 -0.30 -0.14 -0.04 0.05 0.17
MOM*TBILL 3.05 1.02 1.43 2.29 3.06 3.81 4.67
MOM*TERM -1.11 0.89 -2.55 -1.67 -1.08 -0.54 0.34
MOM*DEF -28.91 1.70 -31.65 -30.02 -29.00 -27.76 -26.02
MOM*DY 8.18 0.23 7.81 8.03 8.18 8.32 8.56
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Table III: Beta Summary Statistics

This table reports summary statistics on the dispersion of betas and the correlation between mixed, fundamental,
and realized betas. The left panel reports the properties of the cross-section of betas based on the time series
average of the cross-sectional covariances

Scross,t =
1

Nt

∑

i

(

β̄
(j)
it − ¯̄β

(j)
t

) (

β̄
(k)
it − ¯̄β

(k)
t

)

,

where the indices j and k refer to the model (Mixed, Realized, Fundamental), betas are evaluated at their

posterior means β̄it, and where ¯̄βt is the average beta at time t. The right panel considers the cross-sectional
average of the time series covariances

Stime,i =
1

Ti

∑

t

(

β̄
(j)
it − ¯̄β

(j)
i

) (

β̄
(k)
it − ¯̄β

(k)
i

)

,

where ¯̄βi is the average beta of firm i. The diagonal elements in both panels have been transformed into standard

deviations. The off-diagonal elements of both the cross-sectional and time series covariance matrices have been

rescaled to correlations (italics).

Cross-sectional (Scross) Time Series (Stime)

Mixed Realized Fund’l Mixed Realized Fund’l
Mixed beta 0.33 0.24
Realized beta 0.95 0.61 0.94 0.46
Fundamental beta 0.94 0.83 0.10 0.93 0.82 0.09
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Table IV: Heterogeneity within 25 Size-B/M Portfolios

This table presents the time series average of characteristics of 25 size-B/M sorted portfolios and the cross-

sectional spread in these characteristics. The portfolios are constructed annually by sorting stocks independently

into size and B/M quintiles at the end of June. The 25 portfolios are then formed as the intersections of these

five size and B/M quintiles. Subsequently, we calculate for every portfolio j at every time t the equally weighted

cross-sectional average of the posterior means of the firm-specific alphas, betas, and phis, and of the excess

returns of the stocks in the portfolio. We also calculate for every portfolio j at every time t the cross-sectional

standard deviation of the posterior means of the firm-specific alphas, betas, and phis, and of the excess returns

of the stocks in the portfolio. The table shows for every portfolio the time series means of these cross-sectional

averages and standard deviations.

Size Book-to-Market equity (B/M) quintiles
quintiles Low 2 3 4 High Low 2 3 4 High

Average Return Return Variation
Small 0.18 0.54 0.67 0.97 0.93 15.56 13.84 13.11 12.50 13.83
2 0.72 0.83 0.80 0.83 0.85 12.98 11.16 10.40 10.13 11.34
3 0.67 0.69 0.76 0.95 0.87 11.03 9.83 9.04 8.89 9.82
4 0.65 0.62 0.72 0.84 0.94 9.26 8.26 7.83 7.51 8.33
Big 0.48 0.46 0.59 0.72 0.84 7.27 6.93 6.57 6.35 6.56

Average Alpha Alpha Variation
Small -0.40 -0.06 0.03 0.03 -0.24 1.50 1.27 1.21 1.12 1.28
2 0.21 0.32 0.29 0.23 -0.04 1.32 1.07 0.95 0.95 1.13
3 0.43 0.41 0.37 0.31 0.10 1.09 0.88 0.77 0.76 0.91
4 0.48 0.41 0.32 0.23 0.14 0.79 0.61 0.56 0.53 0.59
Big 0.45 0.35 0.29 0.21 0.12 0.49 0.40 0.37 0.36 0.40

Average Beta Beta Variation
Small 1.21 1.15 1.10 1.04 1.03 0.35 0.31 0.31 0.31 0.32
2 1.24 1.14 1.08 1.04 1.06 0.32 0.30 0.29 0.29 0.29
3 1.23 1.11 1.03 1.00 1.06 0.33 0.30 0.29 0.29 0.29
4 1.13 1.05 0.99 0.95 1.00 0.31 0.29 0.29 0.29 0.29
Big 1.04 1.00 0.95 0.91 0.94 0.27 0.25 0.26 0.25 0.24

Average Phi Phi Variation
Small 0.45 0.45 0.46 0.47 0.47 0.09 0.10 0.11 0.11 0.11
2 0.47 0.48 0.49 0.49 0.49 0.10 0.11 0.12 0.12 0.11
3 0.49 0.49 0.50 0.52 0.53 0.10 0.11 0.13 0.14 0.12
4 0.50 0.51 0.53 0.55 0.55 0.11 0.12 0.13 0.13 0.11
Big 0.51 0.53 0.54 0.54 0.56 0.13 0.12 0.11 0.11 0.10
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Table V: Cross-Sectional Asset Pricing Tests

This table reports Fama-MacBeth coefficient estimates for 5,017 NYSE-AMEX stocks (columns 1-3 and 7-9) and for 25 size-B/M portfolios (columns 4-6). The sample

period is August 1964 through December 2006 (509 months). In the first stage betas are estimated using the Bayesian panel data approach outlined in section I. These

betas are then used as independent variables in second stage cross-sectional regressions of returns on betas,

rit = λ0t + λ1tβit−1 + λ′2txit−1 + υit.

In columns 1-6 no control variables are included (xit−1 = 0). In columns 7-9 the vector xit−1 includes the firm characteristics size, book-to-market, and momentum.

We use the entire posterior distribution of beta in the estimation to account for measurement error in beta. The table shows the estimated intercept (λ0) and risk

premium (λ1) for four different beta specifications. Standard errors are in parentheses and corresponding t-stats are reported in brackets.

Stocks - No controls Portfolios - No controls Stocks - With controls
λ0 λ1 Adj. R2 (%) λ0 λ1 Adj. R2 (%) λ0 λ1 Adj. R2 (%)

Panel A: Mixed Beta
Estimate -0.04 0.56 4.21 0.61 0.08 18.30 0.04 0.63 6.70
SE (0.17) (0.26) (0.42) (0.48) (0.17) (0.30)
t-stat [-0.24] [2.15] [1.45] [0.16] [0.22] [2.09]

Panel B: Realized Beta
Estimate 0.35 0.35 3.47 0.61 0.13 16.66 0.31 0.41 6.26
SE (0.13) (0.16) (0.29) (0.29) (0.12) (0.16)
t-stat [2.73] [2.24] [2.07] [0.44] [2.51] [2.48]

Panel C: Fundamental Beta
Estimate 0.64 0.67 2.05 1.14 -0.42 16.24 0.72 0.72 4.55
SE (0.30) (0.34) (0.76) (0.78) (0.24) (0.40)
t-stat [2.13] [1.97] [1.50] [-0.54] [3.04] [1.80]

Panel D: Static Beta
Estimate 0.63 0.09 0.65 1.22 -0.45 9.39 0.87 -0.15 3.78
SE (0.28) (0.20) (0.47) (0.49) (0.29) (0.22)
t-stat [2.25] [0.45] [2.60] [-0.92] [2.98] [-0.70]
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Table VI: Risk and Return Characteristics of Global Minimum Variance Portfolios

This table reports the out-of-sample performance of global minimum variance portfolios that are formed at the

end of each month from December 1985 through December 2006 out of a universe of NYSE-AMEX stocks. The

optimization procedure uses forecasts of the covariance matrix of returns produced by different models. Panel A

reports the out-of-sample performance of these minimum variance portfolios when all stocks in the sample are

used in the optimization and without any constraints imposed on the weights. Panel B reports results for this

unconstrained optimization when a random sample of 250 stocks is used to construct the portfolios. Panel C

reports results for this reduced investment universe when a nonnegativity constraint is imposed on the portfolio

weights (no short-selling). The mean return and standard deviation are those of excess returns. Mean return,

standard deviation, and Sharpe ratio are annualized. Short interest is in percentages.

Model Mean Std. Dev. Sharpe Ratio Short Interest

Panel A: Unconstrained (all stocks)
Equally weighted (1/N) 8.57 15.40 0.56 0.00
Static beta (TS model) 5.24 8.50 0.61 -64.64
Mixed beta (Panel model) 5.60 8.12 0.69 0.00

Panel B: Unconstrained (250 stocks)
Sample covariance matrix 4.30 15.19 0.28 -144.79
Equally weighted (1/N) 9.46 15.93 0.59 0.00
Static beta (TS model) 7.81 13.32 0.59 -60.35
Mixed beta (Panel model) 5.70 8.41 0.68 0.00

Panel C: Nonnegativity Constrained (250 stocks)
Sample covariance matrix 3.02 11.74 0.26 0.00
Equally weighted (1/N) 9.46 15.93 0.59 0.00
Static beta (TS model) 7.55 15.60 0.48 0.00
Mixed beta (Panel model) 5.70 8.41 0.68 0.00
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Figure 1: Cross-Sectional Distribution of Phi

This figure shows the cross-sectional distribution of the time series average of the parameter φi, which measures
the proportion of beta explained by past realized beta,

βit = φitbit + (1 − φit)β
∗

it,

where bit is the realized beta of firm i, β∗

it is the fundamental beta, and where φit is given by

φit = φ0i + φ1VMt,

where VMt is the realized market variance. We first calculate φit based on equation (3) for each draw of the

Gibbs sampler. We then calculate for each firm the time series average φi and its posterior mean. This figure

shows the cross-sectional distribution of these posterior means.
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Figure 2: Evolution of Phi through Time

This figure plots the evolution through time of the cross-sectional average of φit. We first calculate at each

iteration of the Gibbs sampler φit based on equation (3). We then compute its posterior mean and the cross-

sectional average of these posterior means in each month from July 1964 through December 2006. Shaded areas

indicate NBER recession periods.
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Figure 3: Optimal versus Equal Weighting Scheme for Estimating Realized Beta

This figure compares the equal weights in the traditional rolling window estimator of realized betas to the weights

implied by the MIDAS weighting function in equation (5) for the realized beta estimator in equation (4). We set

the maximum window length equal to 250 trading days.
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Figure 4: Cross-Sectional Distribution of Firm Betas

This figure shows the cross-sectional distribution of average firm betas. We first calculate at each iteration of the

Gibbs sampler the beta for firm i at time t based on the model in equation (7). Subsequently, we compute the

time series averages of these conditional betas. We then calculate for each firm the posterior mean of its time

series average beta. This figure shows the cross-sectional distribution of these posterior means.

−0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Average Firm Beta

D
e

n
s
it
y

46



Figure 5: Confidence Interval for IBM Beta: Panel versus Time Series Regression

This figure plots the mean and 5% and 95% percentile values of the posterior distribution of the fundamental

beta of IBM in each month from August 1964 through December 2006. The fundamental beta is modeled as

a linear function of firm characteristics and macroeconomic state variables. The upper graph is based on the

estimation output of the hierarchical panel data model presented in section I of the paper and the lower graph is

constructed using the output of a time series regression. Shaded areas indicate NBER recession periods.
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Figure 6: Confidence Interval for Reduced Fundamental Beta of IBM

This figure plots the mean and 5% and 95% percentile values of the posterior distribution of the fundamental

beta of IBM in each month from August 1964 through December 2006. The fundamental beta is modeled as a

linear function of a reduced set of firm characteristics and macroeconomic state variables. The upper graph is

based on the estimation output of the hierarchical panel data model presented in section I of the paper and the

lower graph is constructed using the output of a time series regression. Shaded areas indicate NBER recession

periods.
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Figure 7: Average Posterior Standard Deviation of Fundamental Betas

This figure plots the cross-sectional average of the posterior standard deviations of the fundamental betas of all

firms in the sample from August 1964 through December 2006. In the upper graph the fundamental beta is

modeled as a linear function of firm characteristics and macroeconomic state variables and in the lower graph

fundamental betas depend on a reduced set of conditioning variables. Posterior standard deviations are based on

the estimation output of the hierarchical panel data model and the output of time series regressions estimated

for every firm. Shaded areas indicate NBER recession periods.
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