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Abstract

This paper presents a theoretical model to investigate the incentive of private producer and policy-
maker to reduce seasonality in a given market, where consumers derive different utilities from the con-
sumption of the good in different seasons. The (seasonal) product differentiation is modeled along the
lines of the contributions of Gabszewicz and Thisse (1979) and Shaked and Sutton (1982). We take
into consideration that investments are possible to reduce the degree of seasonality. We show that, for
a wide set of parameter configuration, the policy maker finds it optimal to make more effort to reduce
seasonality as compared to private producers. The theoretical conclusion is consistent with empirical
and anecdotical evidence, especially in the field of tourism markets.

JEL classification: D29; L.12; L83
Keywords: Seasonality; Tourism; Public Spending

1 Introduction

Seasonality is a major concern in several markets of very different sectors (tourism, transport, energy,
agricultural and food items, arts and movies, till to financial products). A large body of literature, in each of
the different fields, deals with causes and effects of seasonality. Even if some causes for seasonality are truly
exogenous, there is no doubt that the seasonal pattern of markets can be affected largely by the institutional
(or cultural) framework, and also by the choices of firms producing the goods. How strong is the incentive,
for firms selling a goods, to reduce the demand seasonality, if possible, is an open question.

Pros and cons, indeed, are associated with seasonal pattern of quantity and price. For sure, seasonality
is associated with private costs and benefits for sellers and for consumers; and social costs and benefits are
also present in most cases, diverging from private costs and benefits (see different contributions in Baum
and Lundtorp (2001), and specifically Butler (2001); or Soo Cheong (2004) and Cuccia and Rizzo (2010),
for a short discussion concerning the tourism sector). Private costs include the volatility of revenues for
producers; the higher prices of the item and its complements in the peak season for consumers. The social
costs include possibly the congestion, the carrying capacity of productive system, among other other factors.

In industries with fixed capacity (let us think of the cases of tourism sector, e.g., beds in hotels, or seats
in airplanes) it is a common-place that sellers have strong incentive to reduce demand seasonality, and a
consistent incentive also holds for policy-makers for reducing seasonality and avoiding peaks with congestion
or underutilization of capacity. In the field of tourism, for instance, a large set of interventions may be taken
to reduce seasonality: institutional measures, ranging from school time-table to holiday design; or public
actions at national level (organization of national or international living events) or events at local level (in
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the cultural field, in sport, and so on), till to private promotion (e.g., special offers from single hotels or travel
agencies). Several times, private subjects complain about the lack of public initiatives aiming at reducing
seasonality of demand. They claim that they are unable to do business because of the lack of adequate
public initiatives attracting consumers. On the other hand, in several occasions, public initiatives do not
find consistent answers by part of private firms. Some shocking cases can be reported. In mountain resorts,
several hotels remain closed at the beginning of December and in April, even if sky stations are open. In
minor islands or in specific seaside destinations, hotels and resort remain closed in May or September, even
if connections are open and other public initiatives and interventions are operative.

In this paper we show that a conflict does arise between social and private incentive to invest for reducing
seasonality, even we do not consider social costs emerging from externality effects. We consider the case
in which consumers derive different utility levels from the consumption of a good in high or low season;
the preference for consumption in high (low) season vary across consumers. The proposed model can be
interpreted as an extension of the Gabszewicz and Thisse (1979) seminal model to the case of seasonal
differentiation (see also Gabszewicz, 2009). We assume that costly investments are possible to reduce the
demand seasonality.

We consider the alternative cases of private or public investments aimed at reducing seasonality. We
find that only in some parameter regions private and public incentive to reduce seasonality coincide; in the
other regions the policy-makers find it optimal to make more efforts to reduce seasonality as compared to
private sellers. More specifically, it can happen that a policy maker (caring for the utility of consumers and
profits of the firms) finds it optimal to have the market served over both seasons, while private suppliers
find it optimal to serve the market only in high season; or, policy maker finds it optimal a larger amount
of investment, leading to complete market coverage, whereas private firms make smaller efforts and leave
the market partially uncovered, even if they operate over both seasons. Eventually, it can happen that
both the social planner and the private firms find it optimal to serve the market in both seasons (though
partially uncovered) but the optimal effort for reducing seasonality from a private perspective is smaller as
compared to the social choice. The reason for the conflict between public and private incentive to reduce
seasonality rests on the fact that policy-makers take into account also the utility of consumers, whereas
firms are interested in their own profits only. No further considerations concerning (negative) externality
of high season and congestion (that is, social costs of seasonality) are taken into account; thus, we believe
that our conclusions are very strong and robust to more complicate (and realistic) hypothesis design, where
additional reasons may exist to suggest a policy maker to reduce congestion in high season.

The structure of the paper is as follows. Section 2 introduces the basics of the model, and explains that
it can be considered an extension of well-known models of product differentiation to the case of seasonal
demand. Section 3 takes into account the possibility of investment for reducing seasonality, by part of private
firms selling the goods. Section 4 takes the social welfare perspective, maintaining that the planner cares of
producers and consumers only. Section 5 compares the private and social perspectives, and concludes. For
the sake of simplicity we limit ourselves to the analysis of a monopolistic market. Extensions to oligopoly
or other market forms are left to further analysis.

2 The model

Consider a monopolistic firm operating in a market characterized by seasonality, i.e. in which consumers get
different utility levels depending on whether they consume in high season or low season.

Consumers are heterogeneous with respect to the evaluation of seasonal characteristic, and 6 € [0, 0]
measures the differential in utilities they get consuming in high season versus low season. Each consumer
can choose between buying one unit of the good (either in high or low season) or not buying at all.

We define consumer 6’s utility function as:

Uop + Oup, — pp,  if buys in high season
U(0,u;) = ¢ Ug+6u; — p;  if buys in low season (1)
0 does not buy at all
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Figure 1: Utility in high and low season depending on 0 (case (5)).

where Uy is the utility derived from consuming the good, whatever the season, and py,, p; are the set prices
for each season.

Solving for 6 the equation Uy + Qup — pp, = Uy + 0u; — py, it is possible to identify the consumer indifferent
between h and [, that is:

Ph D1
= 2
9h7l Au ( )

where Au = up — u; .
In the same way, solving for 8 the equation Uy + 6u; — p; = 0, we find the consumer indifferent between
[ and not consuming:

pi—Uo
o= (3)
Solving for 6 the equation Uy + Oup — pp, = 0, we find the consumer indifferent between h and not
consuming:
o = 210 (1)
Uh
It is easy to show that
On1 > O0nho & Oho > 010

while:
Ont < Oho & Oho=<00

so that one of the following inequality must be true:

On,1 > 0nho > 010 (5)
Ong < Ono <00 (6)

Figure 1, in which the abscissa is the set of consumers ordered by 6 and the ordinate is the utility level in
high and low season, graphically shows case (5), where consumer indifferent between h and [ is at the right
of the consumer indifferent between [ and not consume. In this case the demand functions in high and low
season (both positive) are:

_ 0—0n, O0Au—py+p

D = — 7
" 9 9Au @
0, —0 UoAu + wpy, — u
D, = h,l - 1o _ Yo i 1Ph hDL (8)
0 Ou; Au
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Figure 2: Utility in high and low season depending on 6 (case (6)).

Figure 2, instead, represents case (6), where the consumer indifferent between h and [ is at the left of the
consumer indifferent between ! and not consume. In this case the demand functions in high and low season
are:

579}%0 _ Uo +§uh7ph

Dy, = — 9
" 9 un ©)
D=0 (10)
The profit function of the firm is:
7(pn, p1) = Dr(pn, 1) (P — cm) + Di(pn, pr)(pr — ¢m) (11)

where ¢, is the marginal cost of production.
Maximizing the profits wrt high and low season prices, we get the equilibrium prices:

.  Cm+Uy+0u

ph = St (12
Uy + 0

pr = Cm + 20+ U (13)

Substituting the equilibrium prices in the equations (2),(3) and (4), we get the following lemmas:

Lemma 2.1. If the marginal cost of production is low (¢, < Uy), inequalities (5) are true and the firm
operates in both seasons. The equilibrium prices are given by (12) and (13) and the profit is:

_ 240 O, —
o (Up —em)* + QUZEZUO + Qup, — 2¢,,) (14)
49“1

Lemma 2.2. If the marginal cost of production is high (cn, > Up), inequalities (6) are true and the firm
operates only in high season. The high season equilibrium price is given by (12) and the profit is:

Uo + Oup, — cm)?
ry = (ot fun — cn) (15)
40uh




Moreover if: 3
cm < Uy — Oy (16)

then the market is covered (0,9 < 0). If B
Cry > UQ —+ QU}L (17)

then the firm does not operate, not even in high season (6, > 6).
(For a different modelling approach to seasonal pricing applied to the case of hotels, see Baum and
Mudambi (1995)).

3 Deseasonalization effort

Consider now the case in which the firm, before setting the equilibrium prices, can choose to make an effort
e in order to deseasonalize the demand. Effort e, by part of firm, is defined in a way such that consumer 0’s
utility function is:
Uy + Ouy, — pp, if in high season
U(0,u;) =< Uy + 0u; — p; + e if in low season (18)

0 if not consume

In figures 1 and 2 the effort e shifts up the low season utility, moving 6}, ; rightward and 6, o leftward.
In this case the equations (2) and (3) are substituted, respectively, by the following:

:Ph—pz+€
Up — U
:pl—e—Uo

O

)

(19)

010

)

- (20)
whereas 6, 9 does not change, since it is independent of e. As before, we can show that one between (5)
and (6) must be true. We will show below that effort e entails a quadratic cost for the firm. Just to give
an example, one can imagine that e represents the supply of additional service in the general case of a good
with seasonal pattern, like the organization of entertainment events during the low season in the case of
tourism markets.

In case (5), where the firm operates in both seasons, this implies a reduction of D}, to the good of D; (6,
moves rightward), and an higher market coverage, still to the good of D; (6; moves leftward). Therefore,
the demand functions become:

_OAu—pytp—c

D = 21

" 0Au @)

D, = UoAu + Wpn — UnPL + Une (22)
Ou;Au

In case (6), where the firm operates only in high season, if the deseasonalization effort is sufficiently high,
the firm starts operating in low season, otherwise the investment does not affect demand and prices, and the
demand functions remain (9) and (10).

3.1 Equilibrium
The firm profit function is:

7(pn,21) = Di(ph, p1)(Pr — €m) + Di(pr, o) (p1 — €m) — c€ (23)

where ¢ captures the cost of deseasonalization.



Substituting the demand functions in the profit function and maximizing wrt the prices, we get the
following equilibrium prices:

N em + Uy + Oup,
ph:f

. cm+ U+ Ou; + e
by = 9 (25)

(24)

Lemmas 2.1 and 2.2 are still valid for e = 0. As e increases, we have some particular cases:
1. If e > e = Ou; + ¢, — Uy then the market is covered.
2. If e > ' = AAu then the firm operates only in low season.

In what follow we assume that e¢ < €' (i.e. ¢, < Uy + 0(Au — w;)), which means that investing in
deseasonalization, first the firm covers the market and then the high season is erased.

This implies that the firm has incentive to invest in e only in order to increase D; by an increase of the
market coverage and not by a reduction of Dy, since this would imply a reduction of profits, because the
high season price is always higher than the low season price (e < ¢); therefore the firm will never invest
e > e.

3.2 Case 1: Low production cost

Proposition 3.1 (Low production cost (Lemma 2.1)). If the marginal cost of production is low (¢, < Up)
then:

o u, )
(1) if ¢ > T A then there are two cases:

_ (Up — cm)Au

Cm > Yr(c) => e =" = =
Yl(c) 40cu; Au — uy,

c

Cm < Yr(c)=>e" =e

where . is a decreasing convex function defined in appendix;

(i) if ¢ < 452”‘Au then the firm finds optimal to invest in deseasonalization up to the complete coverage of
1

the market e* = e°.
Proof. In appendix A.1 |

By lemma 2.1, if marginal cost is low, the firm tends to operate in both seasons, but in general without
completely covering the market.

If the investment cost is lower than a certain threshold, the profit function is convex and divergent in e.
Hence the firm has incentive to invest up to the complete coverage of the market.

If, on the contrary, the investment cost is high then the profit function has a maximum in e™: therefore
the firm will invest in deseasonalization, but not necessarely completely covering the market. In particular,
if ¢, < 9r(c) then ™ > e°, and the firm will cover the market completely.

3.3 Case 2: High production cost

Proposition 3.2 (High production cost (Lemma 2.2)). If the marginal cost of production is high (¢, > Up)
then:

(i) if ¢ > 4§ZhAu then the firm finds optimal not to invest in deseasonalization (e* =0);
1
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Figure 3: Deseasonalization effort e in the space (¢, ¢;,)

o u, '
(i) if ¢ < o A then there are two cases:
Cm > ¢r(c) =€ =0

Cm < Pr(c) =>€e" =e

c

where ¢, is a conver decreasing function defined in appendiz.
Proof. In appendix A.2 |

By lemma 2.2, if the production cost is high, the firm will tend to operate only in high season.

However, if the investment cost is lower than a certain threshold, the profit function is convex and
divergent in e, with a first decreasing part. Therefore if the marginal cost is not excessively high with
respect to the investment cost (¢, < ¢r(c)), the firm may find convenient to invest in deseasonalization up
to the complete coverage of the market.

In particular, if the firm can invest in deseasonalization at least a threshold level (namely, e defined in
appendix), it will reach profits at least equal to those obtainable without deseasonalization (7).

If, on the contrary, the deseasonalization cost is high, the firm will not be able to recover such cost
through the low season activity, hence will continue to operate only in high season.

Figure 3 illustrates the optimal behaviour of the firm, depending on the levels of production cost ¢, and
deseasonalization cost ¢. Under the curve defined by functions ¢, and v, the firm will completely cover
the market with deseasonalization investments (if the market was not already covered from the beginning);
above such curve, instead, the market will remain partially uncovered and, if the production cost is high
(¢m > Up), the firm will continue to operate only in high season, without deseasonalization investment.

4 Welfare

Suppose now that in the first stage it is a policy-maker to choose how much to invest in deseasonalization,
and that such policy-maker wants to maximize total welfare, defined as the sum of firm profits and consumer
surplus minus the investment cost in deseasonalization. The welfare function is:

1 Oh,l 0
w(e) =2 [/ (Uo + Ouy + €)df + / (U + euh)del — e (Dp + Dp) — ce? (26)
01,0 On,1

With an almost identical analysis to the previous one, we get what follows:
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Figure 4: Deseasonalization effort e by the policy-maker in the space (c, ¢;,)

Proposition 4.1 (Low production cost (Lemma 2.1)). If the marginal cost of production is low (¢, < Up)
then:

N 3uy, .
(i) if ¢ > - then there are two cases:

3(Ug — em)Au

> = ¥ = ePm S uEEE—
em > Yule) > € ‘ 80cu; Au — 3uy,

C

Cm < Yyp(c) = e" =e
where 1y, is a convexr decreasing function defined in appendiz;

(ii) if ¢ < @i’:ﬁ then the policy-maker finds optimal to invest in deseasonalization up to the complete
1

coverage of the market e* = €.
Proof. In appendix A.3 ]

Proposition 4.2 (High production cost (Lemma 2.2)). If the marginal cost of production is high (¢, > Up)
then:

(i) if ¢ > 85%;27; then the policy-maker finds optimal not to invest in deseasonalization (e* =0);

Sy 3uy, .
(ii) if ¢ < o then there are two cases:

Cm > (bw(c) = 6* = O
Cm < dp(c) =>e" =e

where ¢, is a convex decreasing function defined in appendiz.
Proof. In appendix A .4 [ ]

Figure 4 (analogous to the 3) illustrates the optimal choices by the policy-maker, depending on the cost
levels (¢, ¢).

It can be shown that ¢.(c) > ¢,(c) and ¥ (c) > ¥, (c), hence in the space (c,c¢,,) the area in which
the market is covered is larger in the case of a public investor; moreover it turns out that e?™ > e™, hence
the policy-maker always invests at least as much as the monopolistic firm, since he takes into account the
increase in the consumer surplus.
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Figure 5: Public vs. private deseasonalization investment in the space (c, ¢,,)

Figure 5 puts together the optimal behaviour of the firm and the policy-maker.

In figure 5, in the area included between curves ¢,, and ¢, and above Uy (area 1), the policy-maker
would invest up to the complete coverage of the market, whereas the monopolistic firm would not invest in
deseasonalization and would continue to operate only in high season.

In the area included between curves v, and ¥, and below Uy (area 2), the policy-maker would invest
up to the complete coverage of the market, whereas the firm would invest in deseasonalization e, therefore
covering the market just partially (and operating in both seasons).

In the area included between Uy and v, (area 3) the market would remain partially covered in both
cases, however the policy-maker would invest more than the firm (eP™ > e™).

In the area above ¢, and Uy (area 4) no investment effort is judged optimal (either by private or public
subjects) while in area 5 the socially optimal choice coincides with the private choice.

It is clear that the cases of areas 1, 2 and 3 in figure 5 are our points of interest, where a conflict emerges
between private and social incentives for reducing seasonality: there are different parameter configurations
where the public subject finds it optimal to make effort for reducing seasonality larger than the private
actors. In some cases the public actor finds it optimal to have a complete coverage of the market over both
seasons while the private suppliers prefer to serve only in the high season. In a second case both public and
private subjects find optimal to serve in both seasons, but the public finds it optimal to cover the market
while the private leaves the market partially covered. Eventually for some values of the parameters both the
public planner and private actors find optimal to leave the market partially covered, but the public effort is
larger than the private one.

Our conclusions have nothing to do with negative externalities due to congestion — in the case of
tourism, upon local residents — which can represent a further reason to reduce seasonality, from a social
welfare perspective. The consideration of this point would simply strengthen our conclusion that public
incentive to mitigate seasonality is stronger than the private incentive.

5 Conclusions

In this paper we have proposed to use the Gabszewicz and Thisse (1979)-Shaked and Sutton (1982) theoretical
framework to model market behaviours in the case of a good for which seasonality is relevant. The application
to markets of tourism items, which we have provided in the paper, is straightforward but not unique.

Our content has been that a planner taking a social welfare perspective finds it optimal to reduce sea-
sonality to a larger extent as compared to private firms supplying the item. In fact, the elaboration of the



present theoretical model has been suggested by the observation that, in the field of tourism, in some cases
local authorities take actions to sustain demand in low seasons but private firms do not follow this actions;
this observation suggests that the incentive of public sector to mitigate seasonality is higher than the in-
centive of private firms. An obvious reason could be that the congestion in high season generates negative
externality to the local population. This point has not been considered in the model. We have simply shown
that, apart from the negative externality upon residents, the social incentive to reduce seasonality is stronger
than the private incentive.

The theoretical model is very simple and a more complicate — and more realistic — modelling is perhaps
necessary to grasp all the relevant aspects of markets for seasonal items. However, we believe that our model,
though very simple, is robust to further modifications, and can provide an explanation of the smaller private
incentive to reduce seasonality as compared to the social welfare perspective.

Appendices

A  Proofs

A.1 Proof of proposition 3.1

If the production cost is low, for e = 0 lemma 2.1 is valid, therefore the firm operates in both seasons.
If the market is covered (eq. (16)), the firm does not have incentive to deseasonalize and e* = 0, otherwise
the profit function in e is:

up, — 4§uchu62 n (U — ¢m)(Ug + 2€ — ¢ + 0uy (2Ug + Oup, — 2¢,,)

T (e) = — - 27
(€) 40u Au 46w, 27
for which the derivatives are:

* - A

dr* _ Une T (EJO Cm) At — 2ce (28)
de 20u; Au
d27r2* _ un ffﬁuchu (29)
de 20u; Au
Setting the equation (28) equal to zero, we find an extremum in:
- A

m _ Lom = Uo)Bu (30)

uy, — 40cu;Au

The profit is concave (resp. convex) in e if the following inequality (resp. the opposite inequality) is

valid:
up

> —_—
40u; Au
If the (31) is false then e™ < 0, and it is a minimum. In this case the profit function diverges in e and the
firm will completely cover the market, investing e* = e®. And this proves the second point of the proposition.
If the (31) is true then €™ > 0, and it is a maximum. The firm tends to invest ™, however if €™ > e° it
will not invest more than e, having already completely covered the market.
So we can define a (decreasing convex) function 1, which solves the equation ™ = e®:

0Au
4c0Au — 1

c (31)

Yy (e) = Uy — Ouy + (32)

and it is such that:

m

Cm > Ur(c) =™ <ee" =e
Cm < Pr(c) =™ >e%e" =€ M

10



A.2 Proof of proposition 3.2

If the production cost is high, for e = 0 lemma 2.2 is true, therefore the firm operates in high season only
and gets a profit 7, defined by (15).

The firm can operate also in low season only if §; o < 0,1, i.e. ife > e® = M: under such threshold,
the firm does not deseasonalize because it would not be able to take advantage of such investment. Over
this threshold, the profit function is the (27), whose first and second derivatives were calculated above.

If the (31) is valid, then ™ < 0 and it is a maximum, therefore profits are decreasing in e and the firm
does not invest in deseasonalization (e* = 0). And this proves the first point of the proposition.

If the (31) is not valid, then e™ > e® > 0, but it is a minimum. In this case, profits are decreasing up
to € and increasing afterwards, hence the firm has to choose between either not investing in e, getting 7§
operating in high season only, or investing in e > €™ > e®, operating in both seasons and getting 7*(e) which
diverges in e.

Clearly the firm does invest in deseasonalization only if 7*(e) > 7{j, i.e. if:

e>e’ = Au(em — Uo) > e™ (33)

up, — V AcOupu Au

Therefore e is the least necessary investment so that the firm chooses to operate in low season as well. Once
e’ is invested, profits are increasing in e.

If e < e°, the firm aims to completely cover the market, investing e¢* = e
coverage of the market implies profits lower than 7§, then e* = 0.

So we can define a (decreasing convex) function ¢, which solves the equation e” = e¢:

V 4§cuhu1Au(U0 - éul) - ul(Uo - ?uh)
VAOcupu Au — uy

¢; otherwise the complete

odr(c) =

and it is such that:

Cm > ¢r(c) =€’ >ee" =0
tm < Pr(c) =>e” <e%e" =€ N

A.3 Proof of proposition 4.1

If the production cost is low, for e = 0 lemma 2.1 is valid, therefore the firm operates in both seasons.
If the market is covered (eq. (16)), the policy-maker does not have incentive to deseasonalize and e* = 0,
otherwise the welfare function in e is:

w*(e) = 3(Up — em)[Uo — em —t 2(e + 0uy)] + 3§2uhul n 62(3uh; 80ujcAu) (35)
80, 80u; Au

for which the derivatives are:

dw* 33Uy —cm) | 3up — 80u;cAu

= _ — 36
de 40w 40u; Au (36)
d2u;* _ 3uy, i8§uchu (37)

de 40u; Au

Setting the equation (36) equal to zero, we find an extremum in:
m — A
pm _ 3(C FO) u (38)
3up, — 80cu; Au

11



The welfare function is concave (resp. convex) in e if the following inequality (resp. the opposite
inequality) is true:
3uh
>
80u; Au
If the (39) is false then eP™ < 0, and it is a minimum. In this case the welfare function diverges in e and
the policy-maker will aim to the complete coverage of the market, investing e* = e®. And this proves the
second point of the proposition.
If the (31) is true then eP™ > 0, and it is a maximum. The policy-maker tends to invest e’ however if
eP™ > ¢ it will not invest more than e®, having already completely covered the market.
So we can define a (decreasing convex) function ,, which solves the equation eP™ = e°:

(39)

— 0Au
c)=Uy—0u + ————— 40
o) = Uo —Tu + (40)
and it is such that:
Cm > Yw(c) = P < e e = eP™
Cm < Py(c) = eP™ >e%e =e¢ I

A.4 Proof of proposition 4.2

If the production cost is high, for e = 0 lemma 2.2 is true, therefore the firm operates in high season only
and gets a profit 7§, defined by (15). Moreover, in this case, we define the welfare as:

1 /° Oup, — Cp)?
w = (Uo + Oup)dd — c,n Dy, = 3o + Oun = cm)
9 On.0 80uh

(41)

The firm can operate also in low season only if 8,9 < Op, ie. if e > e’ = M: under such

threshold, the policy-maker does not deseasonalize because the firm would continue to operate in high
season only. Over this threshold, the welfare function is the (35), whose first and second derivatives were
calculated above.

If the (39) is valid, then e’™ < 0 and it is a maximum, therefore welfare is decreasing in e and the policy-
maker does not invest in deseasonalization (e* = 0). And this proves the first point of the proposition.

If the (39) is not valid, then eP™ > e® > 0, but it is a minimum. In this case, welfare is decreasing up
to eP™ and increasing afterwards, hence the policy-maker has to choose between either not investing in e,
getting w with high season only, or investing in e > eP™ > e°, with both seasons and getting w*(e) which
diverges in e.

Clearly the policy-maker does invest in deseasonalization only if w*(e) > wg, i.e. if:

Au(em — Uy)

up — \/gcguhulAu

Therefore eP? is the least necessary investment so that the policy-maker chooses to invest in deseason-
alization, allowing the firm to operate in low season as well. Once eP? is invested, welfare is increasing in
e.

e>el = > eP™ (42)

If eP? < €€, the policy-maker aims to the complete coverage of the market, investing e* = e¢; otherwise
the complete coverage of the market implies welfare lower than w§, then e* = 0.
So we can define a (decreasing convex) function ¢,, which solves the equation eP? = e¢:

v/ ggcuhulAu(Uo — Oup) — uy(Ug — Ouy,)
. %5cuhulAu —
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Pu(c)

1l
—

N

w
~—




and it is such that:

Cm > Ou(c) = €P7 >e%e* =0
Cm < Pu(c) = €7 <efe" =€ N
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