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1 Introduction

The generalized method of moments (GMM) is widely used in di¤erent �elds of eco-

nomics, including macroeconomics and �nance. Among other things, its popularity

presumably follows from the development of more and more complicated theoretical

models which would in practice be impossible to take to data by alternative meth-

ods, such as the method of maximum likelihdood (ML). Even if ML estimation were

possible, the GMM may be considered more robust in that it allows the researcher to

concentrate on the central implications of the theory without the need to specify an

empirical model in detail. In their survey, Hansen and West (2002) list the three most

common uses of the GMM in economics: estimation of a �rst-order condition or a

decision rule from dynamic optimization problem, examination of forecasting ability

of survey data or of a �nancial variable, and setups with e¢ciency gains from the use

of many moments. The �rst two of these are ubiquitous in the empirical analysis of

asset pricing models, while all of them pertain to macroeconomic applications.

For instrumental variable methods to be applicable, a su¢ciently large number of

instruments are needed that satisfy the relevance and exogeneity requirements. The

former has received more attention in the burgeoning weak instrument literature (see,

e.g., Stock, Wright and Yogo, 2002), while it has been thought that the exogeneity

of candidate instruments can reliably be determined by tests such as Hansen�s (1982)

J -test of overidentifying restrictions. Moreover, in applications using time series data,

lagged values of economic variables, especially those included in the model, have been

considered natural instruments that should be predetermined by construction. Pro-

vided the dynamics of such instruments can be described by causal autoregressive

(AR) processes, the exogeneity requirement is indeed satis�ed. However, while eco-

nomic variables typically can be adequately modeled as AR processes, noncausality

seems to be quite common among them (see Section 2.3) and, as we argue in this

paper, in that case lags are not, in general, valid instruments. The di¤erence between

these two types of AR procesess is that a causal AR process only depends on the
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past, whereas a noncausal AR process allows for dependence on the future.

Our theoretical (asymptotic) results pertain to the simple special case of univariate

linear regression with a conditionally homoskedastic error term. In addition, we

report results on simulation experiments to illustrate the �nite-sample behavior of the

GMM estimator and the J -test in the presence of noncausal instruments. The GMM

estimator is shown to be inconsistent in our simple setup, and the simulations show

that the biases of the ordinary least squares (OLS) estimator and the GMM estimator

are very close to each other, especially in the case where the instruments follow purely

noncausal AR processes. We also show that Hansen�s J -test can be inconsistent in

some cases and, therefore, futile in checking the exogeneity of the instruments when

noncausality is present. Even in cases where the test is not inconsistent, it may have

low �nite-sample power, as suggested by our simulation results. Although our �ndings

explicitly concern relatively simple special cases, it is easy to see that lagged values

of variables following noncausal AR processes are, in general, never valid instuments.

The plan of the paper is as follows. In Section 2, the noncausal AR process is in-

troduced and checking for its presence is discussed. In Subsection 2.3, we also present

evidence that economic time series are quite often better described as noncausal than

causal AR processes. Section 3 contains our main results concerning the asymptotic

and �nite-sample properties of the GMM estimator and the J -test. Finally, Section

4 concludes.

2 Noncausal autoregression

In this section, we brie�y discuss noncausal AR processes as a prelude to the results

concerning the GMM estimation in Section 3. In addition to presenting one parame-

trization of the noncausal autoregression to be used throughout the paper, we pick

up on various aspects of model selection. Finally, we show evidence based on an ex-

tensive data set consisting of 343 macroeconomic and �nancial time series in favor of

the prevalence of noncausality, attesting to the practical signi�cance of the concerns
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put forth in this paper.

2.1 Model

The literature on noncausal AR models is not voluminous, and their economic appli-

cations are almost nonexistent. For a brief survey covering most of this literature,

see Lanne and Saikkonen (2008), who introduced a new formulation of the model,

developed the related likelihood-based theory of estimation and statistical inference,

and devised a model selection procedure. In particular, they considered a stochastic

process xt (t = 0;�1;�2; :::) generated by

'
�
B�1

�
� (B) xt = �t; (1)

where � (B) = 1� �
1
B � � � � � �rB

r, ' (B�1) = 1�'
1
B�1� � � � �'sB

�s, and �t is a

sequence of independent, identically distributed (continuous) random variables with

mean zero and variance �2 or, brie�y, �t � i:i:d: (0; �2). Moreover, B is the usual

backward shift operator, that is, Bkyt = yt�k (k = 0;�1; :::), and the polynomials

� (z) and ' (z) have their zeros outside the unit circle so that

� (z) 6= 0 for jzj � 1 and ' (z) 6= 0 for jzj � 1: (2)

We use the abbreviation AR(r; s) for the model de�ned by (1) and sometimes

write AR(r) for AR(r; 0). If '
1
= � � � = 's = 0, model (1) reduces to the conventional

causal AR(r) process with yt depending on its past but not future values. The more

interesting cases from the viewpoint of this paper arise, when this restriction does

not hold. If �
1
= � � � = �r = 0, we have the purely noncausal AR(0; s) model with

dependence on future values only. In the mixed AR(r; s) case where neither restriction

holds, yt depends on its past as well as future values. Our simulation results suggest

that the problems due to the endogeneity of the instruments are severest when the

instruments follow a purely noncausal AR process, but they can be substantial also

in the case of a mixed process. However, to some extent these problems are mitigated

as the causal part becomes more dominant.
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The conditions in (2) imply that xt has the two-sided moving average representa-

tion

xt =
1X

j=�1

 j�t�j; (3)

where  j is the coe¢cient of z
j in the Laurent series expansion of � (z)�1 ' (z�1)

�1 def
=

 (z). This expansion exists in some annulus b < jzj < b�1 with 0 < b < 1 and with

 jjj converging to zero exponentially fast as jjj ! 1. It is well-known that xt also

has a causal AR(p) representation with p = r + s and the autoregressive polynomial

given by a (B) = 1� a1B�� � �� apB
p = ' (B)� (B) (see Brockwell and Davis (1987,

p. 124�125) and Lanne and Saikkonen (2009)). Thus, we can write

a (B) xt = �t; (4)

where the (stationary) error term �t is uncorrelated but, in general, not independent

with mean zero and variance �2.

2.2 Checking for noncausality

It is well-known that causal and noncausal AR processes cannot be distinguished by

autocorrelation functions. This means that they are not identi�ed by Gaussian like-

lihood, so non-Gaussian distributions must be considered in ML estimation. There-

fore, the �rst step in modeling a potentially noncausal time series is to search for

signs of nonnormality. To this end, Lanne and Saikkonen (2008) suggest estimating

an adequate Gaussian AR(p) model and checking its residuals for nonnormality. For

economic and �nancial time series, the residuals are often leptokurtic, indicating that

Student�s t-distribution might be suitable. In their application to the U.S. in�ation

series as well as for a large number of series discussed below, this indeed seems to be

the case.

Once nonnormality has been established, the next step is to select among the

alternative AR(r; s) speci�cations. As the AR(p) model has been found to adequately

capture the autocorrelation in the series, it seems reasonable to restrict oneself to

4



models with r + s = p. Following Breidt et al. (1991), Lanne and Saikkonen (2008)

suggested selecting among these the model that produces the greatest value of the

likelihood function. Finally, the adequacy of the selected speci�cation is checked

diagnostically and the model is augmented if needed. In addition to examining the �t

of the t-distribution, Lanne and Saikkonen (2008) checked the residuals for remaining

autocorrelation and conditional heteroskedasticity.

The purpose of �tting a Gaussian AR model in the �rst step is only to help

in determining the correct lag length and checking for nonnormality. Sometimes it

may not be possible to come up with a satisfactory Gaussian AR model, in which

case an adequate model might still be found among di¤erent non-Gaussian AR(r; s)

speci�cations.

2.3 Prevalence of noncausality

In order to assess the signi�cance of the problems caused by noncausal instruments

in practice, we checked a large number of macroeconomic and �nancial variables

for noncausality using the algorithm discussed in Subsection 2.2. In particular, we

considered 343 time series from the seven-country data set of Stock and Watson

(2004).1

Using a Gaussian likelihood, we were able to �nd a causal AR model adequate

in the sense of capturing all autocorrelation for 260 of the considered series. In 202

cases, it is a noncausal speci�cation that maximizes the likelihood function, and 136

of the selected models satisfy the diagnostic checks mentioned in Subsection 2.2 at

1This data set contains various asset prices, measures of activity (such as the real GDP, unem-

ployment and consumer price index), wages, commodity prices, and money measures from Canada,

France, Germany, Italy, Japan, UK and US. The data are monthly or quarterly and for the most

part cover the years 1959�1999 although some series are available only for a shorter period. For

most series we used various transformations, such as logs or di¤erences, and we consider these as

di¤erent time series in counting the total number of series. For details on the data, see Stock and

Watson (2004).
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the 5% level. In the remaining cases, there were signs of some unmodeled conditional

heteroskedasticity and fat tails not satisfactorily captured by the t-distribution. Of

the 83 series for which an adequate causal AR model could not be found as a starting

point, in 40 cases a noncausal AR model turned out to be diagnostically satisfactory

such that this model also maximizes the likelihood function among all AR speci�ca-

tions of the same order. All in all, we then have quite strong evidence in favor of

noncausality in economic time series: of the 343 time series considered, 300 series

show clear signs of noncausality and for 176 series an adequate noncausal AR model

can be speci�ed. These �ndings indicate that the possibility of noncausality should

be kept in mind when using instrumental variables methods.

To take an example from the empirical literature employing the GMM estimator,

we checked the instruments used by Campbell and Mankiw (1990) for noncausality.

These authors tested the permanent income hypothesis by testing for the signi�cance

of the slope coe¢cient in a regression of the change in US aggregate consumption

on the change in disposable income (quarterly data from 1953:1 to 1985:4). whether

the slope coe¢cient equals zero. As instruments they used lagged di¤erences of ag-

gregate consumption, disposable income and interest rates, in various combinations.

By the algorithm discussed in Section 2.2, all of these variables can be described as

noncausal AR processes. Therefore, as will be explained in Section 3 below, it is not

suprising that their two-stage least squares (2SLS) estimates do not di¤er much from

the OLS estimate. Moreover, the test of overidentifying restrictions failed to reject

at conventional signi�cance levels for any combination of the instruments.

3 GMM with noncausal instruments

3.1 Model

In order to illustrate our main points we consider the simple time series regression

model.

yt = �xt + "1t; (5)
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where the error term "1t is independent and identically distributed (i:i:d:) with zero

mean. Despite its simplicity, this model serves to make our main points, and, as a

matter of fact, even this simple regression model has been used quite frequently in

empirical analysis. Typical examples include testing the permanent income hypothesis

(e.g., Campbell and Mankiw, 1990) and consumption-based asset pricing models (see,

Campbell et al. (1997, 311�313, and the references therein). The regressor xt is

supposed to follow the noncausal autoregression (1), rewritten here for convenience,

'
�
B�1

�
� (B) xt = "2t; (6)

where "2t is a zero mean i:i:d: error term. Because we are interested in the case where

the regressor and error term in (5) are correlated we let "t = ["1t "2t]
0 be a general i:i:d:

error vector. Thus, de�ning the covariance matrix � = [�ij]i;j=1;2 with �ii = �2i we

assume "t � i:i:d: (0;�) where, unless otherwise stated, �12 is nonzero. For simplicity,

we have omitted intercept terms from (5) and (6). Their inclusion would only mean

using mean corrected data and, by standard arguments, it can be seen that mean

correction has no e¤ect on our asymptotic derivations. In our simulations intercept

terms are included, however.

3.2 GMM estimation

When regressors are correlated with the error term, OLS estimation is inconsistent,

and, therefore, GMM estimation is typically employed. That correlation between

the regressor and error term results in (5) can be seen from (3) and the assumption

�12 6= 0. In a case like this it is quite common to use lagged values of the regressor

as instruments in GMM estimation. However, in the noncausal case these are not

valid instruments. This is immediately seen by using (3) to obtain Cor (xt�i; "1t) =

E (xt�i; "1t) = �12 �i, i > 0, where  �i is generally nonzero when the regressor is

noncausal. One might think that in practice an application of the standard J -test

(see Hansen, 1982) would reveal the problem. However, the J -test is known to have

low power or even to be inconsistent against some alternatives (see Newey, 1985), and
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this can actually happen when noncausal instruments are employed.

Our subsequent derivations assume that the vector of instruments is given by

zt�1 = [xt�1 � � � xt�p]
0. At the end of this section we discus how to modify the results

when other choices of instruments are employed. Note that using p lagged values

of the regressor as instruments is appropriate because the regressor has a causal

AR(p) representation (see (4)). Given this, and the fact that the errors in (5) are

i:i:d:, means that our results indicate how badly things can go wrong even in a fairly

favorable situation.

In our simple set up the GMM estimation boils down to classical 2SLS estimation.

Suppose we have data for t = �p+1; :::; 0; 1; :::; T with the �rst p observations of the

regressor used as initial values in the LS estimation of the parameters a1; :::; ap in (4).

It will be convenient to introduce the parameter vector a = [a1 � � � ap]
0. The 2SLS

estimator is de�ned as

~� =

 
TX

t=1

x̂txt

!�1 TX

t=1

x̂tyt;

where x̂t = â0zt�1 with

â =

 
TX

t=1

zt�1z
0
t�1

!�1 TX

t=1

zt�1xt;

the OLS estimator of a. The inconsistency of ~� in the noncausal case was already

made clear but we nevertheless derive its probability limit, as the result is needed

later.

Stationarity and standard arguments show that â
p
!
�
E
�
zt�1z

0
t�1

���1
E (zt�1xt) =

a and, furthermore,

~� = � +

 
â0T�1

TX

t=1

zt�1xt

!�1
â0T�1

TX

t=1

zt�1"1t

p
! � + (a0E (zt�1xt))

�1
a0E (zt�1"1t) :

Let 
k = E (xt�kxt) be the autocovariance function of xt and �k = 
k=
0 the corre-

sponding autocorrelation function. Then, if � =
�
�
1
� � � �p

�0
and  =

�
 �1 � � �  �p

�0
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we can write E (zt�1xt) = 

0
� and, using (3), E (zt�1"1t) = �12 . With this notation

the preceding result reads as

~�
p
! � +

�12a
0 



0
a0�

: (7)

Thus, the 2SLS estimator is inconsistent when the numerator of the latter term on

the right hand side is nonzero.

Now consider the J -test which is based on the covariance between the instruments

and the 2SLS residual ~"1t = yt � ~�xt (t = 1; :::; T ). The test statistic or in this case

Sargan�s statistic can be written as

J =
T

~�2
1

 
T�1

TX

t=1

zt�1~"1t

!0 
T�1

TX

t=1

zt�1z
0
t�1

!�1 
T�1

TX

t=1

zt�1~"1t

!
; (8)

where ~�2
1
= T�1

PT

t=1 ~"
2

1t. The test assumes that the number of instruments is larger

than the number of regressors or, in our case, that p > 1. In practice one applies the

test by comparing the observed value of J to quantiles of the �2p�1 distribution.

On the right hand side of (8) we have

T�1
TX

t=1

zt�1~"1t = T�1
TX

t=1

zt�1"1t � (~� � �)T�1
TX

t=1

zt�1xt;

and, furthermore, (see (7) and the derivations preceding it)

T�1
TX

t=1

zt�1~"1t
p
! �12 �

�12a
0 

a0�
�: (9)

The limit on the right hand side is zero when �12 is zero. Then the regressor is

strictly exogenous, which is not the case of our interest. However, the limit in (9)

can also be zero when �12 is nonzero. This happens when � = c for some nonzero

real number c. This in turn happens in the purely noncausal case where r = 0 in (6)

(and s = p) if only one of the parameters '
1
; :::; 'p is nonzero. To see this, suppose

that, for example, '
1
6= 0 and '

2
= � � � = 'p = 0. Then we also have 'i = ai

(i = 1; :::; p) and from (3) and (4) it follows that  �j = 'j
1
= �j (j � 1). Thus,  = �,

demonstrating the preceding statement. It is straightforward to check that in this
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case the probability limit of the OLS estimator of � is � + �12=
0, and a comparison

with (7) reveals that this equals the probability limit of the 2SLS estimator. Thus,

in this special case, the 2SLS estimator can be expected to be equally biased as the

OLS estimator. Our simulation results con�rm this and show that the bias of the

2SLS can be substantial also in other cases.

When the right hand side of (9) is zero, arguments similar to those already used

show that J = Op (1), implying that the J-test is inconsistent. Thus, one might

suspect that the power of the J -test is poor also when the limit in (9) is nonzero but

�small�. According to our simulations this indeed seems to be the case.

The preceding derivations can straightforwardly be modi�ed to the case of general

instruments. To illustrate this, de�ne the noncausal AR(r; s) process wt by substi-

tuting wt for xt in (6). Then (3) and (4) also hold with wt in place of xt and de�ning

zt�1 = [wt�1 � � � wt�p]
0 the previous expressions for the OLS estimator â and its prob-

ability limit a apply. Furthermore, (7) holds with the ith component of the vector



0
� given by Cov (wt�i; xt) (i = 1; :::; p) whereas  is as before except that its com-

ponents are obtained from (3) with wt in place of xt. It follows that (9) holds with

 as de�ned above and the ith component of the vector � given by Cor (wt�i; xt),

the cross correlation between wt�i and xt (i = 1; :::; p). The condition where the right

hand side of (9) becomes zero is as before but giving concrete examples of this is more

di¢cult than in the case where the instruments are lags of the regressor.

3.3 Simulation results

In this section, we report results of some simulation experiments to demonstrate the

relevance of the asymptotic results of Section 3.2 in �nite samples. Speci�cally, we

simulate 10,000 realizations from model (5)�(6) with r + s = 2 using a number of

combinations of '
1
and �

1
. In all experiments, � = 1:0 and also an intercept, whose

true value equals zero, is estimated. The errors are drawn from a bivariate normal

distribution with �2
1
= �2

2
= 1:0 and �12 = 0:8. Qualitatively the conclusions are
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not a¤ected by the values of these parameters. From each simulated bivariate time

series, the parameters of the simple regression model are estimated by both OLS and

2SLS, and the value of the J -test statistic is computed. We consider two sample sizes,

200 and 500, but the results do not seem to be much a¤ected by the length of the

simulated realization.

In Table 1 we present a subset of our simulation results to highlight the main

�ndings. The biases of the OLS and 2SLS estimates are reported as averages over

all replications and the rejection rate of the J -test with nominal size 5%. Let us

�rst consider the cases in the uppermost panel, where the instruments follow a purely

noncausal AR process (�
1
= 0). It is seen that instrumental variables estimation does

not correct for the bias, which for a given value of '
1
is of the same magnitude for both

estimators. In accordance with our theoretical results in Section 3.2, the di¤erences

between the biases get smaller as the sample size increases. The rejection rates of the

J -test never exceed the nominal size of the test, re�ecting the inconsistency of the

test shown above.

As to the cases with the instruments following mixed noncausal AR process, the

results are similar for small values of �
1
. Although the 2SLS estimator seems to

produce a somewhat less biased estimates, the bias, reducing as �
1
increases, can

still be substantial. The rejection rates of the J -test are somewhat higher than in the

purely noncausal case, but the test only has reasonable power when both �
1
and '

1
are

large. This suggests that even in relatively realistic cases the J -test is rather useless

in detecting the endogeneity of the instruments. As far as the bias is concerned, the

e¤ect of an increase in the sample size is minor also in the case of a mixed noncausal

process.

4 Conclusion

In this paper, we have pointed out a potential pitfall in using lags of time series as

instruments in GMM estimation. Lagged values are thought to be predermined by

11



construction and, therefore, valid instruments. However, if the variable whose lags

are used as instruments, is generated by a noncausal AR process, its lags may be

endogenous and, hence, unsuitable as instruments, yielding an inconsistent GMM

estimator. In a simple special case with lags of the explanatory variable used as

instruments, we have shown that the OLS and 2SLS estimators even converge in

probability to the same limit. Moreover, the J -test typically used to test for the

exogeneity of the instruments, may be inconsistent, and, in general, has low power

against endogenous instruments. In other words, the J -test cannot be relied on to

reveal the endogeneity problem. Our �nite-sample simulation experiments con�rm

these �ndings.

Although our results pertain to a relatively simple setup, it is not di¢cult to see

that similar problems arise in more general contexts. As our empirical results indi-

cate that noncausality is quite common among economic and �nancial time series,

care should be taken when the GMM is employed. Based on our �ndings, we recom-

mend that the candidate instrumental variables be checked for noncausality prior to

using their lags as instruments and any instruments exhibiting noncausal dynamics

be discarded. To that end, we have presented an algorithm, originally suggested in

Lanne and Saikkonen (2008).
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Table 1: Simulation results.
T = 200 T = 500

�
1

'
1

Bias(b�OLS) Bias(b�
2SLS) Rej(J) Bias(b�OLS) Bias(b�

2SLS) Rej(J)
0.0 0.2 0.149 0.115 0.049 0.152 0.135 0.051

0.4 0.264 0.256 0.045 0.268 0.265 0.047
0.6 0.306 0.305 0.047 0.307 0.307 0.047
0.8 0.237 0.238 0.050 0.233 0.234 0.048

0.2 0.2 0.136 0.056 0.057 0.139 0.066 0.053
0.4 0.234 0.163 0.049 0.237 0.170 0.053
0.6 0.263 0.220 0.043 0.263 0.222 0.050
0.8 0.197 0.183 0.041 0.193 0.180 0.043

0.4 0.2 0.112 0.030 0.056 0.116 0.039 0.061
0.4 0.190 0.109 0.064 0.192 0.114 0.085
0.6 0.208 0.157 0.075 0.208 0.159 0.130
0.8 0.152 0.135 0.055 0.149 0.133 0.105

0.6 0.2 0.080 0.014 0.065 0.085 0.022 0.073
0.4 0.135 0.068 0.118 0.137 0.072 0.209
0.6 0.145 0.104 0.206 0.145 0.105 0.469
0.8 0.104 0.091 0.181 0.104 0.102 0.461

0.8 0.2 0.040 2.0e�4 0.071 0.045 0.008 0.092
0.4 0.071 0.031 0.216 0.072 0.034 0.465
0.6 0.076 0.053 0.549 0.075 0.054 0.912
0.8 0.054 0.048 0.633 0.052 0.046 0.973

The �gures are based on 10,000 realizations of length T from model (5)�(6) where r + s = 2, the errors
follow a bivariate normal distribution with � = 1:0, �2

1
= �2

2
= 1:0 and �12 = 0:8. The �rst two lags of

xt are used as instruments in the 2SLS estimation. The reported biases are obtained as averages over all
replications.The column �Rej(J)� gives the fraction of replications where the J-test rejects at the 5% level of
signi�cance.
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