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1 Introduction

The vector autoregressive (VAR) model is widely applied in various fields of application

to summarize the joint dynamics of a number of time series and to obtain forecasts. Espe-

cially in economics and finance the model is also employed in structural analyses, and it

often provides a suitable framework for conducting tests of theoretical interest. Typically,

the error term of a VAR model is interpreted as a forecast error that should be an inde-

pendent white noise process for the model to capture all relevant dynamic dependencies.

Hence, the model is deemed adequate if its errors are not serially correlated. However,

unless the errors are Gaussian, this is not sufficient to guarantee independence and, even

in the absence of serial correlation, it may be possible to predict the error term by lagged

values of the considered variables. This is a relevant point because diagnostic checks in

empirical analyses often suggest non-Gaussian residuals and the use of a Gaussian likeli-

hood has been justified by properties of quasi maximum likelihood (ML) estimation. A

further point is that, to the best of our knowledge, only causal VAR models have previ-

ously been considered although noncausal autoregressions, which explicitly allow for the

aforementioned predictability of the error term, might provide a correct VAR specification

(for noncausal (univariate) autoregressions, see, e.g., Brockwell and Davis (1987, Chap-

ter 3) or Rosenblatt (2000)). These two issues are actually connected as distinguishing

between causality and noncausality is not possible under Gaussianity. Hence, in order to

assess the nature of causality, allowance must be made for deviations from Gaussianity

when they are backed up by the data. If noncausality indeed is present, confining to

(misspecified) causal VAR models may lead to suboptimal forecasts and false conclusions.

The statistical literature on noncausal univariate time series models is relatively small,

and, to our knowledge, noncausal VARmodels have not been considered at all prior to this

study (for available work on noncausal autoregressions and their applications, see Rosen-

blatt (2000), Andrews, Davis, and Breidt (2006), Lanne and Saikkonen (2008), and the

references therein). In this paper, the previous statistical theory of univariate noncausal

autoregressive models is extended to the vector case. Our formulation of the noncausal

VAR model is a direct extension of that used by Lanne and Saikkonen (2008) in the uni-

variate case. To obtain a feasible approximation for the non-Gaussian likelihood function,
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the distribution of the error term is assumed to belong to a fairly general class of ellip-

tical distributions. Using this assumption, we can show the consistency and asymptotic

normality of an approximate (local) ML estimator, and justify the applicability of usual

likelihood based tests.

As already indicated, the noncausal VAR model can be used to check the validity

of statistical analyses based on a causal VAR model. This is important, for instance,

in economic applications where VAR models are commonly applied to test for economic

theories. Typically such tests assume the existence of a causal VAR representation whose

errors are not predictable by lagged values of the considered time series. If this is not the

case, the employed tests based on a causal VAR model are not valid and the resulting

conclusions may be misleading. We provide an illustration of this with interest rate data.

The remainder of the paper is structured as follows. Section 2 introduces the noncausal

VAR model. Section 3 derives an approximation for the likelihood function and properties

of the related approximate ML estimator. Section 4 provides our empirical illustration.

Section 5 concludes. An appendix contains proofs and some technical derivations.

The following notation is used throughout. The expectation operator and the covari-

ance operator are denoted by E (·) and C (·) or C (·, ·), respectively, whereas x
d
= y means

that the random quantities x and y have the same distribution. By vec(A) we denote a

column vector obtained by stacking the columns of the matrix A one below another. If

A is a square matrix then vech(A) is a column vector obtained by stacking the columns

of A from the principal diagonal downwards (including elements on the diagonal). The

usual notation A ⊗ B is used for the Kronecker product of the matrices A and B. The

mn×mn commutation matrix and the n2 × n (n+ 1) /2 duplication matrix are denoted

by Kmn and Dn, respectively. Both of them are of full column rank. The former is defined

by the relation Kmnvec(A) = vec(A′) , where A is any m × n matrix, and the latter by

the relation vec(B) = Dnvech(B) , where B is any symmetric n× n matrix.
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2 Model

2.1 Definition and basic properties

Consider the n-dimensional stochastic process yt (t = 0,±1,±2, ...) generated by

Π (B) Φ
(
B−1

)
yt = εt, (1)

where Π (B) = In −Π1B − · · · −ΠrB
r (n× n) and Φ (B−1) = In −Φ1B

−1 − · · · −ΦsB
−s

(n× n) are matrix polynomials in the backward shift operator B, and εt (n× 1) is a

sequence of independent, identically distributed (continuous) random vectors with zero

mean and finite positive definite covariance matrix. Moreover, the matrix polynomials

Π (z) and Φ (z) (z ∈ C) have their zeros outside the unit disc so that

detΠ (z) 6= 0, |z| ≤ 1, and detΦ (z) 6= 0, |z| ≤ 1. (2)

If Φj 6= 0 for some j ∈ {1, .., s}, equation (1) defines a noncausal vector autoregression

referred to as purely noncausal when Π1 = · · · = Πr = 0. The corresponding conventional

causal model is obtained when Φ1 = · · · = Φs = 0. Then the former condition in (2)

guarantees the stationarity of the model. In the general set up of equation (1) the same

is true for the process

ut = Φ
(
B−1

)
yt.

Specifically, there exists a δ1 > 0 such that Π (z)
−1 has a well defined power series rep-

resentation Π (z)−1 =
∑∞

j=0Mjz
j = M (z) for |z| < 1 + δ1. Consequently, the process ut

has the causal moving average representation

ut =M (B) εt =
∞∑

j=0

Mjεt−j. (3)

Notice that M0 = In and that the coefficient matrices Mj decay to zero at a geometric

rate as j →∞. When convenient, Mj = 0, j < 0, will be assumed.

Write Π (z)−1 = (detΠ (z))−1 Ξ (z) = M (z), where Ξ (z) is the adjoint polynomial

matrix of Π (z) with degree at most (n− 1) r. Then, detΠ (B) ut = Ξ (B) εt and, by the

definition of ut,

Φ
(
B−1

)
wt = Ξ (B) εt,
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where wt = (detΠ (B))yt. By the latter condition in (2) one can find a 0 < δ2 < 1

such that Φ (z−1)
−1
Ξ (z) has a well defined power series representation Φ (z−1)

−1
Ξ (z) =

∑∞

j=−(n−1)rNjz
−j = N (z−1) for |z| > 1− δ2. Thus, the process wt has the representation

wt =
∞∑

j=−(n−1)r

Njεt+j, (4)

where the coefficient matrices Nj decay to zero at a geometric rate as j →∞.

From (2) it follows that the process yt itself has the representation

yt =

∞∑

j=−∞

Ψjεt−j, (5)

where Ψj (n× n) is the coefficient matrix of z
j in the Laurent series expansion of Ψ(z)

def
=

Φ(z−1)
−1
Π (z)−1 which exists for 1 − δ2 < |z| < 1 + δ1 with Ψj decaying to zero at a

geometric rate as |j| → ∞. The representation (5) implies that yt is a stationary and

ergodic process with finite second moments. We use the abbreviation VAR(r, s) for the

model defined by (1). In the causal case s = 0, the conventional abbreviation VAR(r) is

also used.

Denote by Et (·) the conditional expectation operator with respect to the information

set {yt, yt−1, ...} and conclude from (1) and (5) that

yt =
s−1∑

j=−∞

ΨjEt (εt−j) +
∞∑

j=s

Ψjεt−j.

In the conventional causal case, s = 0 and Et (εt−j) = 0, j ≤ −1, so that the right hand

side reduces to the moving average representation (3). However, in the noncausal case

this does not happen. Then Ψj 6= 0 for some j < 0, which in conjunction with the

representation (5) shows that yt and εt−j are correlated. Consequently, Et (εt−j) 6= 0 for

some j < 0, implying that future errors can be predicted by past values of the process yt.

A possible interpretation of this predictability is that the errors contain factors which are

not included in the model and can be predicted by the time series selected in the model.

This seems quite plausible, for instance, in economic applications where time series are

typically interrelated and only a few time series out of a larger selection are used in the

analysis. The reason why some variables are excluded may be that data are not available
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or the underlying economic model only contains the variables for which hypotheses of

interest are formulated.

A practical complication with noncausal autoregressive models is that they cannot be

identified by second order properties or Gaussian likelihood. In the univariate case this

is explained, for example, in Brockwell and Davis (1987, p. 124-125)). To demonstrate

the same in the multivariate case described above, note first that, by well-known results

on linear filters (cf. Hannan (1970, p. 67)), the spectral density matrix of the process yt

defined by (1) is given by

(2π)−1Φ
(
e−iω

)−1
Π
(
eiω
)−1

C (εt) Π
(
e−iω

)′−1
Φ
(
eiω
)′−1

= (2π)−1
[
Φ
(
eiω
)′
Π
(
e−iω

)′
C (εt)

−1Π
(
eiω
)
Φ
(
e−iω

)]−1
.

In the latter expression, the matrix in the brackets is 2π times the spectral density matrix

of a second order stationary process whose autocovariances are zero at lags larger than

r + s. As is well known, this process can be represented as an invertible moving average

of order r+ s. Specifically, by a slight modification of Theorem 10’ of Hannan (1970), we

get the unique representation

Φ
(
eiω
)′
Π
(
e−iω

)′
C (εt)

−1Π
(
eiω
)
Φ
(
e−iω

)
=

(
r+s∑

j=0

Cje
−iω

)′ (
r+s∑

j=0

Cje
iω

)

,

where the n × n matrixes C0, ..., Cr+s are real with C0 positive definite, and the zeros of

det
(∑r+s

j=0 Cje
iω
)
lie outside the unique disc.1 Thus, the spectral density matrix of yt

has the representation (2π)−1
(∑r+s

j=0 Cje
ijω
)−1 (∑r+s

j=0 Cje
−ijω

)′−1
, which is the spectral

density matrix of a causal VAR(r + s) process.

The preceding discussion means that, even if yt is noncausal, its spectral density and,

hence, autocovariance function cannot be distinguished from those of a causal VAR(r+s)

process. If yt or, equivalently, the error term εt is Gaussian this means that causal and

noncausal representations of (1) are statistically indistinguishable and nothing is lost by

using a conventional causal representation. However, if the errors are non-Gaussian using

1A direct application of Hannan’s (1970) Theorem 10’ would give a representation with ω replaced

by −ω. That this modification is possible can be seen from the proof of the mentioned theorem (see the

discussion starting in the middle of p. 64 of Hannan (1970)).
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a causal representation of a true noncausal process means using a VAR model whose

errors can be predicted by past values of the considered series and potentially better fit

and forecasts could be obtained by using the correctly specified noncausal model.

2.2 Assumptions

In this section, we introduce assumptions that enable us to derive the likelihood function

and its derivatives. Further assumptions, needed for the asymptotic analysis of the ML

estimator and related tests, will be introduced in subsequent sections.

As already discussed, meaningful application of the noncausal VAR model requires

that the distribution of εt is non-Gaussian. In the following assumption the distribution

of εt is restricted to a general elliptical form. As is well known, the normal distribution

belongs to the class of elliptical distributions but we will not rule out it at this point. Other

examples of elliptical distributions are discussed in Fang, Kotz, and Ng (1990, Chapter

3). Perhaps the best known non-Gaussian example is the multivariate t-distribution.

Assumption 1. The error process εt in (1) is independent and identically distributed

with zero mean, finite and positive definite covariance matrix, and an elliptical distribution

possessing a density.

Results on elliptical distributions needed in our subsequent developments can be found

in Fang et al. (1990, Chapter 2) on which the following discussion is based. To simplify

notation in subsequent derivations, we define εt = Σ
−1/2εt where Σ (n× n) is a positive

definite parameter matrix. By Assumption 1, we have the representations

εt
d
= ρtΣ

1/2υt and εt
d
= ρtυt, (6)

where (ρt, υt) is an independent and identically distributed sequence such that ρt (scalar)

and υt (n× 1) are independent, ρt is nonnegative, and υt is uniformly distributed on the

unit ball (and hence υ′tυt = 1).

The density of εt is of the form

fΣ (x;λ) =
1

√
det (Σ)

f
(
x′Σ−1x;λ

)
(7)
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for some nonnegative function f (·;λ) of a scalar variable. In addition to the positive

definite parameter matrix Σ the distribution of εt is allowed to depend on the parameter

vector λ (d× 1). The parameter matrix Σ is closely related to the covariance matrix of

εt. Specifically, because E (υt) = 0 and C (υt) = n
−1In (see Fang et al. (1990, Theorem

2.7)) one obtains from (6) that

C (εt) =
E (ρ2t )

n
Σ. (8)

Note that the finiteness of the covariance matrix C (εt) is equivalent to E (ρ
2
t ) <∞.

A convenient feature of elliptical distributions is that we can often work with the scalar

random variable ρt instead of the random vector εt. For subsequent purposes we therefore

note that the density of ρ2t , denoted by ϕρ2 (·;λ), is related to the function f (·;λ) in (7)

via

ϕρ2 (ζ;λ) =
πn/2

Γ (n/2)
ζn/2−1f (ζ;λ) , ζ ≥ 0, (9)

where Γ (·) is the gamma function (see Fang et al. (1990, p. 36)). Assumptions to be

imposed on the density of εt can be expressed by using the function f (ζ;λ) (ζ ≥ 0). These

assumptions are similar to those previously used by Andrews et al. (2006) and Lanne and

Saikkonen (2008) in so-called all-pass models and univariate noncausal autoregressive

models, respectively.

We denote by Λ the permissible parameter space of λ and use f ′ (ζ;λ) to signify the

partial derivative ∂f (ζ, λ) /∂ζ with a similar definition for f ′′ (ζ;λ). Also, we include a

subscript (typically λ) in the expectation operator or covariance operator when it seems

reasonable to emphasize the parameter value assumed in the calculations. Our second

assumption is as follows.

Assumption 2. (i) The parameter space Λ is an open subset of Rd and that of the

parameter matrix Σ is the set of positive definite n× n matrices.

(ii) The function f (ζ;λ) is positive and twice continuously differentiable on (0,∞) × Λ.

Furthermore, for all λ ∈ Λ, limζ→∞ ζ
n/2f (ζ;λ) = 0, and a finite and positive right limit

limζ→0+ f (ζ;λ) exists.

(iii) For all λ ∈ Λ,

∫ ∞

0

ζn/2+1f (ζ;λ) dζ <∞ and

∫ ∞

0

ζn/2 (1 + ζ)
(f ′ (ζ;λ))2

f (ζ;λ)
dζ <∞.
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Assuming that the parameter space Λ is open is not restrictive and facilitates exposi-

tion. The former part of Assumption 2(ii) is similar to condition (A1) in Andrews et al.

(2006) and Lanne and Saikkonen (2008) although in these papers the domain of the first

argument of the function f is the whole real line. The latter part of Assumption 2(ii) is

technical and needed in some proofs. The first condition in Assumption 2(iii) implies that

Eλ (ρ
4
t ) is finite (see (9)) and altogether this assumption guarantees finiteness of some ex-

pectations needed in subsequent developments. In particular, the latter condition implies

finiteness of the quantities

j (λ) =
4πn/2

nΓ (n/2)

∫ ∞

0

ζn/2
(f ′ (ζ;λ))2

f (ζ;λ)
dζ =

4

n
Eλ

[

ρ2t

(
f ′ (ρ2t ;λ)

f (ρ2t ;λ)

)2]

(10)

and

i (λ) =
πn/2

Γ (n/2)

∫ ∞

0

ζn/2+1
(f ′ (ζ;λ))2

f (ζ;λ)
dζ = Eλ

[

ρ4t

(
f ′ (ρ2t ;λ)

f (ρ2t ;λ)

)2]

, (11)

where the latter equalities are obtained by using the density of ρ2t (see (9)). The quan-

tities j (λ) and i (λ) can be used to characterize non-Gaussianity of the error term εt.

Specifically we can prove the following.

Lemma 1. . Suppose that Assumptions 1-3 hold. Then, j (λ) ≥ n/Eλ (ρ
2
t ) and i (λ) ≥

(n+ 2)2 [Eλ (ρ
2
t )]

2
/4Eλ (ρ

4
t ) where equalities hold if and only if εt is Gaussian. If εt is

Gaussian, j (λ) = 1 and i (λ) = n (n+ 2) /4.

Lemma 1 shows that assuming j (λ) > n/Eλ (ρ
2
t ) gives a counterpart of condition

(A5) in Andrews et al. (2006) and Lanne and Saikkonen (2008). A difference is, however,

that in these papers the variance of the error term is scaled so that the lower part of the

inequality does not involve a counterpart of the expectation Eλ (ρ
2
t ). For later purposes

it is convenient to introduce a scaled version of j (λ) given by

τ (λ) = j (λ)Eλ
(
ρ2t
)
/n. (12)

Clearly, τ (λ) ≥ 1 with equality if and only if εt is Gaussian.

It appears useful to generalize the model defined in equation (1) by allowing the

coefficient matrices Πj (j = 1, ..., r) and Φj (j = 1, ..., s) to depend on smaller dimensional

parameter vectors. We make the following assumption.

8



Assumption 3. The parameter matrices Πj = Πj (ϑ1) (j = 1, ..., r) and Φj (ϑ2) (j =

1, ..., s) are twice continuously differentiable functions of the parameter vectors ϑ1 ∈ Θ1 ⊆

R
m1 and ϑ2 ∈ Θ2 ⊆ R

m2, where the permissible parameter spaces Θ1 and Θ2 are open

and such that condition (2) holds for all ϑ = (ϑ1, ϑ2) ∈ Θ1 ×Θ2.

This is a standard assumption which guarantees that the likelihood function is twice

continuously differentiable. We will continue to use the notation Πj and Φj when there

is no need to make the dependence on the underlying parameter vectors explicit.

3 Parameter estimation

3.1 Likelihood function

ML estimation of the parameters of a univariate noncausal autoregression was studied by

Breidt et al. (1991) by using a parametrization different from that in (1). The parame-

trization (1) was employed by Lanne and Saikkonen (2008) whose results we here extend.

Unless otherwise stated, Assumptions 1-3 are supposed to hold.

Suppose we have an observed time series y1, ..., yT . Denote

detΠ (z) = a (z) = 1− a1z − · · · − anrz
nr.

Then, wt = a (B) yt which in conjunction with the definition ut = Φ(B
−1) yt yields






u1
...

uT−s

wT−s+1
...

wT






=






y1 − Φ1y2 − · · · − Φsys+1
...

yT−s − Φ1yT−s+1 − · · · − ΦsyT

yT−s+1 − a1yT−s − · · · − anryT−s−nr+1
...

yT − a1yT−1 − · · · − anryT−nr






=H1






y1
...

yT−s

yT−s+1
...

yT






or briefly

x =H1y.
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The definition of ut and (1) yield Π (B) ut = εt so that, by the preceding equality,






u1
...

ur

εr+1
...

εT−s

wT−s+1
...

wT






=






u1
...

ur

ur+1 − Π1ur − · · · − Πru1
...

uT−s − Π1uT−s−1 − · · · − ΠruT−s−r

wT−s+1
...

wT






=H2






u1
...

ur

ur+1
...

uT−s

wT−s+1
...

wT






or

z =H2x.

Hence, we get the equation

z =H2H1y,

where the (nonstochastic) matrices H1 and H2 are nonsingular. The nonsingularity

of H2 follows from the fact that det (H2) = 1, as can be easily checked. Justifying

the nonsingularity of H1 is somewhat more complicated, and will be demonstrated in

Appendix B.

From (3) and (4) it can be seen that the components of z given by z1 = (u1, ..., ur),

z2 =
(
εr+1, ..., εT−s−(n−1)r

)
, and z3 = (εT−s−(n−1)r+1, ..., εT−s, wT−s+1, ..., wT ) are indepen-

dent. Thus, (under true parameter values) the joint density function of z can be expressed

as

hz1 (z1)




T−s−(n−1)r∏

t=r+1

fΣ (εt;λ)



hz3(z3),

where hz1 (·) and hz3 (·) signify the joint density functions of z1 and z3, respectively.

Using (1) and the fact that the determinant of H2 is unity we can write the joint density

function of the data vector y as

hz1 (z1 (ϑ))




T−s−(n−1)r∏

t=r+1

fΣ
(
Π (B) Φ

(
B−1

)
yt;λ

)


hz3(z3 (ϑ)) |det (H1)| ,
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where the arguments z1 (ϑ) and z3 (ϑ) are defined by replacing ut, εt, and wt in the

definitions of z1 and z3 by Φ (B
−1) yt, Π (B) Φ (B

−1) yt, and a (B) yt, respectively.

It is easy to check that the determinant of the (T − s)n× (T − s)n block in the upper

left hand corner ofH1 is unity and, using the well-known formula for the determinant of a

partitioned matrix, it can furthermore be seen that the determinant ofH1 is independent

of the sample size T . This suggests approximating the joint density of y by the second

factor in the preceding expression, giving rise to the approximate log-likelihood function

lT (θ) =

T−s−(n−1)r∑

t=r+1

gt (θ) , (13)

where the parameter vector θ contains the unknown parameters and (cf. (7))

gt (θ) = log f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
−
1

2
log det (Σ) , (14)

with

εt (ϑ) = ut (ϑ2)−

r∑

j=1

Πj (ϑ1) ut−j (ϑ2) (15)

and ut (ϑ2) = In −Φ1 (ϑ2) yt+1 − · · · −Φs (ϑ2) yt+s. In addition to ϑ and λ the parameter

vector θ also contains the different elements of the matrix Σ, that is, the vector σ =

vech(Σ). For simplicity, we shall usually drop the word ‘approximate’ and speak about

likelihood function. The same convention is used for related quantities such as the ML

estimator of the parameter θ or its score and Hessian.

Maximizing lT (θ) over permissible values of θ (see Assumptions 2(i) and 3) gives an

approximate ML estimator of θ. Note that here, as well as in the next section, the orders

r and s are assumed known. Procedures to specify these quantities will be discussed later.

3.2 Score vector

At this point we introduce the notation θ0 for the true value of the parameter θ and

similarly for its components. Note that our assumptions imply that θ0 is an interior point

of the parameter space of θ. To simplify notation we write εt (ϑ0) = εt and ut (ϑ20) = u0t

when convenient. The subscript ‘0’ will similarly be included in the coefficient matrices

of the infinite moving average representations (3), (4), and (5) to emphasize that they are
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related to the data generation process (i.e. Mj0, Nj0, and Ψj0). We also denote πj (ϑ1) =

vec(Πj (ϑ1)) (j = 1, ..., r) and φj (ϑ2) = vec(Φj (ϑ2)) (j = 1, ..., s), and set

∇1 (ϑ1) =

[
∂

∂ϑ1
π1 (ϑ1) : · · · :

∂

∂ϑ1
πr (ϑ1)

]′

and

∇2 (ϑ2) =

[
∂

∂ϑ2
φ1 (ϑ2) : · · · :

∂

∂ϑ2
πs (ϑ2)

]′
.

In this section, we consider ∂lT (θ0) /∂θ, the score of θ evaluated at the true parameter

value θ0. Explicit expressions of the components of the score vector are given in Appendix

A. Here we only present the expression of the limit limT→∞ T
−1
C (∂lT (θ0) /∂θ). The

asymptotic distribution of the score is presented in the following proposition for which

additional assumptions and notation are needed. For the treatment of the score of λ we

impose the following assumption.

Assumption 4. (i) There exists a function f1 (ζ) such that
∫∞
0
ζn/2−1f1 (ζ) dζ <∞ and,

in some neighborhood of λ0, |∂f (ζ;λ) /∂λi| ≤ f1 (ζ) for all ζ ≥ 0 and i = 1, ..., d.

(ii)

∣∣∣∣∣

∫ ∞

0

ζn/2−1

f (ζ;λ0)

∂

∂λi
f (ζ;λ0)

∂

∂λj
∂f (ζ;λ0) dζ

∣∣∣∣∣
<∞, i, j = 1, ..., d.

The first condition is a standard dominance condition which guarantees that the score

of λ (evaluated at θ0) has zero mean. The second condition simply assumes that the

covariance matrix of the score of λ (evaluated at θ0) is finite. For other scores the corre-

sponding properties are obtained from the assumptions made in the previous section.

Recall the definition τ (λ) = j (λ)Eλ (ρ
2
t ) /n where j (λ) is defined in (10). In what

follows, we denote j0 = j (λ0) and τ 0 = j0Eλ0 (ρ
2
t ) /n. Define the n× n matrix

C11 (a, b) = τ 0

∞∑

k=0

Mk−a,0Σ0M
′
k−b,0

and set C11 (θ0) =
[
C11 (a, b)⊗ Σ

−1
0

]r
a,b=1

(n2r × n2r) and, furthermore,

Iϑ1ϑ1 (θ0) = ∇1 (ϑ10)
′C11 (θ0)∇1 (ϑ10) .

Notice that j−10 C11 (a, b) = Eλ0
(
u0,t−au

′
0,t−b

)
. As shown in Appendix B, Iϑ1ϑ1 (θ0) is the

standardized covariance matrix of the score of ϑ1 or the (Fisher) information matrix of
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ϑ1 evaluated at θ0. In what follows, the term information matrix will be used to refer to

the covariance matrix of the asymptotic distribution of the score vector ∂lT (θ0) /∂θ.

Presenting the information matrix of ϑ2 is somewhat complicated. First define

J0 = i0E
[
(vech(υtυ

′
t)) (vech(υtυ

′
t))

′]
− 1

4
vech (In) vech (In)

′ ,

a square matrix of order n (n+ 1) /2. An explicit expression of the expectation on the

right hand side can be obtained from Wong and Wang (1992, p. 274). We also denote

Πi0 = Π(ϑ10), i = 1, ..., r, and Π00 = −In, and define the partitioned matrix C22 (θ0) =

[C22 (a, b; θ0)]
s
a,b=1 (n

2s× n2s) where the n× n matrix C22 (a, b; θ0) is

C22 (a, b; θ0) = τ 0

∞∑

k=−∞
k 6=0

r∑

i,j=0

(
Ψk+a−i,0Σ0Ψ

′
k+b−j,0 ⊗ Π

′
i0Σ

−1
0 Πj0

)

+

r∑

i,j=0

(
Ψa−i,0Σ

1/2
0 ⊗ Π′i0Σ

−1/2
0

)
(4DnJ0D

′
n −Knn)

(
Σ
1/2
0 Ψ′b−j,0 ⊗ Σ

−1/2
0 Πj0

)
.

Now set

Iϑ2ϑ2 (θ0) = ∇2 (ϑ20)
′C22 (θ0)∇2 (ϑ20) ,

which is the (limiting) information matrix of ϑ2 (see Appendix B).

To be able to present the information matrix of the whole parameter vector ϑ we define

the n2 × n2 matrix

C12 (a, b; θ0) = −τ 0

∞∑

k=a

r∑

i=0

(
Mk−a,0Σ0Ψ

′
k+b−i,0 ⊗ Σ

−1
0 Πi0

)
+Knn

(
Ψ′b−a,0 ⊗ In

)

and the n2r × n2s matrix C12 (θ0) = [C12 (a, b; θ0)] = C21 (θ0)
′ (a = 1, ..., r, b = 1, ..., s).

Then the off-diagonal blocks of the (limiting) information matrix of ϑ are given by

Iϑ1ϑ2 (θ0) = ∇1 (ϑ10)
′C12 (θ0)∇2 (ϑ20) = Iϑ2ϑ1 (θ0)

′ .

Combining the preceding definitions we now define the matrix

Iϑϑ (θ) =
[
Iϑiϑj (θ)

]
i,j=1,2

.

For the remaining blocks of the information matrix of θ, we first define

Iσσ (θ0) = D
′
n

(
Σ
−1/2
0 ⊗ Σ

−1/2
0

)
DnJ0D

′
n

(
Σ
−1/2
0 ⊗ Σ

−1/2
0

)
Dn

13



and

Iϑ2σ (θ0) = −2

s∑

j=1

∂

∂ϑ2
φj (ϑ2)

r∑

i=0

(
Ψj−i,0Σ

1/2
0 ⊗ Π′i0Σ

−1/2
0

)
DnJ0D

′
n

(
Σ
−1/2
0 ⊗ Σ

−1/2
0

)
Dn

with Iϑ2σ (θ)
′ = Iσϑ2 (θ). Finally, define

Iλλ (θ0) =
πn/2

Γ (n/2)

∫ ∞

0

ζn/2−1

f (ζ;λ0)

(
∂

∂λ
f (ζ;λ0)

)(
∂

∂λ
f (ζ;λ0)

)′
dζ

and

Iσλ (θ0) = −D
′
n

(
Σ
−1/2
0 ⊗ Σ

−1/2
0

)
Dnvech (In)

πn/2

Γ (n/2)

∫ ∞

0

ζn/2
f ′ (ζ;λ0)

f (ζ;λ0)

∂

∂λ′
f (ζ;λ0) dζ

with Iσλ (θ0)
′ = Iλσ (θ0). Here the integrals are finite by Assumptions 2(iii) and 4(ii), and

the Cauchy-Schwarz inequality.

The information matrix of the whole parameter vector θ is given by

Iθθ (θ0) =






Iϑ1ϑ1 (θ0) Iϑ1ϑ2 (θ0) 0 0

Iϑ2ϑ1 (θ0) Iϑ2ϑ2 (θ0) Iϑ2σ (θ0) 0

0 Iσϑ2 (θ0) Iσσ (θ0) Iσλ (θ0)

0 0 Iλσ (θ0) Iλλ (θ0)






.

Note that in the scalar case n = 1 and in the purely noncausal case r = 0 the expressions

of Iϑ2ϑ2 (θ0) and Iϑ1ϑ2 (θ0) simplify and Iϑ2σ (θ0) becomes zero (see equality (B.6) in

Appendix B). The latter fact means that in these special cases the parameters ϑ and

(σ, λ) are orthogonal so that their ML estimators are asymptotically independent.

Before presenting the limiting distribution of the score of θ we introduce conditions

which guarantee the positive definiteness of its covariance matrix. Specifically, we assume

the following.

Assumption 5. (i) The matrices ∇1 (ϑ10) (rn
2 ×m1) and ∇2 (ϑ10) (sn

2 ×m2) are of full

column rank.

(ii) The matrix



 Iσσ (θ0) Iσλ (θ0)

Iλσ (θ0) Iλλ (θ0)



 is positive definite.

Assumption 5(i) imposes conventional rank conditions on the first derivatives of the

functions in Assumption 3. Assumption 5(ii) is analogous to what has been assumed
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in previous univariate models (see Andrews et al. (2006) and Lanne and Saikkonen

(2008)). Note, however, that unlike in the univariate case it is here less obvious that

this assumption is sufficient for the positive definiteness of the whole information matrix

Iθθ (θ0). The reason is that in the univariate case the situation is simpler in that the

parameters λ and σ are orthogonal to the autoregressive parameters (here ϑ1 and ϑ2).

In the present case the orthogonality of σ with respect to ϑ2 generally fails but it is still

possible to do without assuming more than assumed in the univariate case. Note also

that, similarly to the aforementioned univariate cases, Assumption 5(ii) is not needed to

guarantee the positive definiteness of Iσσ (θ0). This follows from the definition of Iσσ (θ0)

and the facts that duplication matrices are of full column rank and the matrix J0 is

positive definite even in the Gaussian case (see Lemma 4 in Appendix B).

Now we can present the limiting distribution of the score.

Proposition 1. Suppose that Assumptions 1—5 hold and that εt is non-Gaussian. Then,

(T − s− nr)−1/2
T−s−(n−1)r∑

t=r+1

gt (θ0)
d
→ N (0, Iθθ (θ0)) ,

where the matrix Iθθ (θ0) is positive definite.

This result generalizes the corresponding univariate result given in Breidt et al. (1991)

and Lanne and Saikkonen (2008). In the following section we generalize the work of these

authors further by deriving the limiting distribution of the (approximate) ML estimator

of θ. Note that for this result it is crucial that εt is non-Gaussian because in the Gaussian

case the information matrix Iθθ (θ0) is singular (see the proof of Proposition 1, Step 2).

3.3 Limiting distribution of the approximate ML estimator

The expressions of the second partial derivatives of the log-likelihood function can be found

in Appendix A. The following lemma shows that the expectations of these derivatives

evaluated at the true parameter value agree with the corresponding elements of −Iθθ (θ0).

For this lemma we need the following assumption.

Assumption 6.(i) The integral
∫∞
0
ζn/2−1f ′ (ζ;λ0) dζ is finite, limζ→∞ ζ

n/2+1f ′ (ζ;λ0)

= 0, and a finite right limit limζ→0+ f
′ (ζ;λ0) exists.
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(ii) There exists a function f2 (ζ) such that
∫∞
0
ζn/2−1f2 (ζ) dζ < ∞ and, in some neigh-

borhood of λ0, ζ |∂f
′ (ζ;λ) /∂λi| ≤ f2 (ζ) and |∂

2f (ζ;λ) /∂λi∂λj| ≤ f2 (ζ) for all ζ ≥ 0

and i, j = 1, ..., d.

Assumption 6(i) is similar to the latter part of Assumption 2(ii) except that it is

formulated for the derivative f ′ (ζ;λ0). Assumption 6(ii) imposes a standard dominance

condition which guarantees that the expectation of ∂gt (θ0) /∂λ∂λ
′ behaves in the desired

fashion. It complements Assumption 4(i) which is formulated similarly to deal with the

expectation of ∂gt (θ0) /∂λ. Now we can formulate the following lemma.

Lemma 2. If Assumptions 1-6 hold then −T−1Eθ0 [∂
2lT (θ0) /∂θ∂θ

′] = Iθθ (θ0) .

Lemma 2 shows that the Hessian of the log-likelihood function evaluated at the true

parameter value is related to the information matrix in the standard way, implying that

∂gt (θ0) /∂θ∂θ
′ obeys a desired law of large numbers. However, to establish the asymptotic

normality of the ML estimator more is needed, namely the applicability of a uniform law

of large numbers in some neighborhood of θ0, and for that additional assumptions are

required. As usual, it suffices to impose appropriate dominance conditions such as those

given in the following assumption.

Assumption 7. For all ζ ≥ 0 and all λ in some neighborhood of λ0, the functions

(
f ′ (ζ;λ)

f (ζ;λ)

)2
,

∣∣∣∣
f ′′ (ζ;λ)

f (ζ;λ)

∣∣∣∣ ,
1

f (ζ;λ)2

(
∂

∂λj
f (ζ;λ)

)2

1

f (ζ;λ)

∣∣∣∣
∂

∂λj
f ′ (ζ;λ)

∣∣∣∣ ,
1

f (ζ;λ)

∣∣∣∣
∂2

∂λj∂λk
f (ζ;λ)

∣∣∣∣ , j, k = 1, ..., d,

are dominated by a1 + a2ζ
a3 with a1, a2, and a3 nonnegative constants and

∫∞
0
ζn/2+1+a3f (ζ;λ0) dζ <∞.

The dominance means that, for example, (f ′ (ζ;λ) /f (ζ;λ))2 ≤ a1+ a2ζ
a3 for ζ and λ

as specified. These dominance conditions are very similar to those required in condition

(A7) of Andrews et al. (2006) and Lanne and Saikkonen (2008).

Now we can state the main result of this section.
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Theorem 1. Suppose that Assumptions 1—7 of hold and that εt is non-Gaussian. Then

there exists a sequence of (local) maximizers θ̂ of lT (θ) in (13) such that

(T − s− nr)1/2 (θ̂ − θ0)
d
→ N

(
0, Iθθ (θ0)

−1) .

Furthermore, Iθθ (θ0) can consistently be estimated by − (T − s− nr)
−1 ∂2lT (θ̂)/∂θ∂θ

′.

Theorem 1 shows that the usual result on asymptotic normality holds for a local max-

imizer of the likelihood function and that the limiting covariance matrix can consistently

be estimated with the Hessian of the log-likelihood function. Based on these results and

arguments used in their proof, conventional likelihood based tests with limiting chi-square

distribution can be obtained. It is worth noting, however, that consistent estimation of the

limiting covariance matrix cannot be based on the outer product of the first derivatives of

the log-likelihood function. Specifically, (T − s− nr)−1
∑T−s−(n−1)r

t=r+1 (∂gt(θ̂)/∂θ)(∂gt(θ̂)/∂θ
′)

is, in general, not a consistent estimator of Iθθ (θ0). The reason is that this estimator does

not take nonzero covariances between ∂gt(θ0)/∂θ and ∂gk(θ0)/∂θ, k 6= t, into account.

Such covariances are, for example, responsible for the term Knn

(
Ψ′b−a ⊗ In

)
in Iϑ1ϑ2 (θ0)

(see the definition of C12 (a, b; θ0) and the related proof of Proposition 1 in Appendix B).

For instance, in the scalar case n = 1 this estimator would be consistent only when the

ML estimators of ϑ1 and ϑ2 are asymptotically independent which only holds in special

cases.

4 Empirical application

We illustrate the use of the noncausal VAR model with an application to U.S. interest

rate data. Specifically, we consider the so-called expectations hypothesis of the term

structure of interest rates, according to which the long-term interest rate is a weighted

sum of present and expected future short-term interest rates. Campbell and Shiller (1987,

1991) suggested testing the expectations hypothesis by testing the restrictions it imposes

on the parameters of a bivariate VAR model for the change in the short-term interest rate

and the spread between the long-term and short-term interest rates. The general idea

is that a causal VAR model captures the dynamics of interest rates, and therefore, its
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forecasts can be considered as investors’ expectations. If these expectations are rational,

i.e., they do not systematically deviate from the observed values, this together with the

expectations hypothesis imposes testable restrictions on the parameters of the VARmodel.

This method, already proposed by Sargent (1979), is straightforward to implement and

widely applied in economics besides this particular application. However, it crucially

depends on the causality of the employed VAR model, suggesting that the validity of

this assumption should be checked to avoid potentially misleading conclusions. If the

selected VAR model turns out to be noncausal, the estimates may yield evidence in favor

of or against the expectations hypothesis. In particular, according to the expectations

hypothesis, the expected changes in the short rate drive the term structure, and therefore,

their coefficients in the Φ matrices should be significant in the equation of the spread.

The specification of a potentially noncausal VAR model is carried out along the same

lines as in the univariate case in Breidt et al. (1991) and Lanne and Saikkonen (2008).

The first step is to fit a conventional causal VAR model by least squares or Gaussian ML

and determine its order by using conventional procedures such as diagnostic checks and

model selection criteria. Once an adequate causal model is found, we check its residuals

for Gaussianity. As already discussed, it makes sense to proceed to noncausal models

only if deviations from Gaussianity are detected. If this happens, a non-Gaussian error

distribution is adopted and all causal and noncausal models of the selected order are

estimated. Of these models the one that maximizes the log-likelihood function is selected

and its adequacy is checked by diagnostic tests.

We use the Ljung-Box and McLeod-Li tests to check for error autocorrelation and

conditional heteroskedasticity, respectively. Note, however, that when the orders of the

model are misspecified, these tests are not exactly valid as they do not take estimation

errors correctly into account. The reason is that a misspecification of the model orders

makes the errors dependent. Nevertheless, p-values of these tests can be seen as convenient

summary measures of the autocorrelation remaining in the residuals and their squares. A

similar remark applies to the Shapiro-Wilk test we use to check the error distribution.

Our data set comprises the (demeaned) change in the six-month interest rate (∆rt)

and the spread between the five-year and six-month interest rates (St) (quarter-end yields
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on U.S. zero-coupon bonds) from the thirty-year period 1967:1—1996:4 (120 observations)

previously used in Duffee (2002). The AIC and BIC select Gaussian VAR(3) and VAR(1)

models, respectively, but only the third-order model produces serially uncorrelated errors.

However, the results in Table 1 show that its residuals are conditionally heteroskedastic

and the Q-Q plots is the upper panel of Figure 1, indicate considerable deviations from

normality. The p-values of the Shapiro-Wilk test for the residuals of the equations of

∆rt and St equal 5.06e—9 and 7.23e—7, respectively. Because the most severe violations

of normality occur at the tails, a more leptokurtic distribution, such as the multivariate

t-distribution, might prove suitable for these data.

The estimation results of all four third-order VAR models with t-distributed errors are

summarized in Table 1. By a wide margin, the specification maximizing the log-likelihood

function is the VAR(2,1)-t model. It also turns out to be the only one of the estimated

models that shows no signs of remaining autocorrelation or conditional heteroskedasticity

in the residuals. The Q-Q plots of the residuals in the lower panel of Figure 1 lend

support to the adequacy of the multivariate t-distribution of the errors. In particular, the

t-distribution seems to capture the tails reasonably well. Moreover, the estimate of the

degrees-of-freedom parameter λ turned out to be small (4.085), suggesting inadequacy of

the Gaussian error distribution. Thus, there is evidence of noncausality.

The estimates of the preferred model are presented in Table 2. The estimated Φ1

matrix seems to have an interpretation that goes contrary to the implications of the

expectations hypothesis discussed above: an expected increase of the short-term rate has

no significant effect on the spread. Furthermore, an expected future increase of the spread

tends to decrease the short-term rate and increase the spread. This might be interpreted

in favor of (expected) time-varying term premia driving the term structure instead of

expectations of future short-term rates as implied by the expectations hypothesis.

The presence of a noncausal VAR representation of ∆rt and St invalidates the test

of the expectations hypothesis suggested by Campbell and Shiller (1987, 1991). If non-

causality prevails more generally in interest rates this might also explain the common

rejections of the expectations hypothesis when testing is based on the assumption of a

causal VAR model.
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5 Conclusion

In this paper, we have proposed a new noncausal VAR model that contains the commonly

used causal VAR model as a special case. Under Gaussianity, causal and noncausal VAR

models cannot be distinguished which underlines the importance of careful specification

of the error distribution of the model. We have derived asymptotic properties of an

approximate (local) ML estimator and related tests in the noncausal VAR model, and

we have successfully employed an extension of the model selection procedure presented

by Breidt et al. (1991) and Lanne and Saikkonen (2008) in the corresponding univariate

case. The methods were illustrated by means of an empirical application to the U.S. term

structure of interest rates. In that case, evidence of noncausality was found, invalidating

the previously employed test of the expectations hypothesis of the term structure of

interest rates explicitly based on a causal VAR model.

While the new model appears useful in providing a more accurate description of time

series dynamics and checking for the validity of a causal VAR representation, it may

also have other uses. For instance, in economic applications noncausal VAR models are

expected to be valuable in checking for so-called nonfundamentalness. In economics, a

model is said to exhibit nonfundamentalness if its solution explicitly depends on the future

so that it does not have a causal VAR representation (for a recent survey of the relevant

literature, see Alessi, Barigozzi, and Capasso (2008)). Hence, nonfundamentalness is

closely related to noncausality, and checking for noncausality can be seen as a way of

testing for nonfundamentalness. Because nonfundamentalness often invalidates the use

of conventional econometric methods, being able to detect it in advance is important.

However, the test procedures suggested in the previous literature are not very convenient

and have not been much applied in practice.

Checking for causality (or fundamentalness) is an important application of our meth-

ods, but it can only be considered as the first step in the empirical analysis of time series

data. Once noncausality has been detected, it would be natural to use the noncausal

VAR model for forecasting and structural analysis. These, however, require methods that

are not readily available. Because the prediction problem in noncausal VAR models is

generally nonlinear (see Rosenblatt (2000, Chapter 5)) methods used in the causal case
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are not applicable and, due the explicit dependence on the future, the same is true for

conventional simulation-based methods. In the univariate case, Lanne, Luoto, and Saikko-

nen (2010) have proposed a forecasting method that could plausibly be extended to the

noncausal VAR model.

Regarding statistical aspects, the theory presented in this paper is confined to the

class of elliptical distributions. Even though the multivariate t-distribution belonging to

this class seemed adequate in our empirical applications, it would be desirable to make

extensions to other relevant classes of distributions. Also, the finite-sample properties

of the proposed model selection procedure could be examined by means of simulation

experiments. We leave all of these issues for future research.

Mathematical Appendix

A Derivatives of the log-likelihood function

It will be sufficient to consider the derivatives of gt (θ) which can be obtained by straight-

forward differentiation. To simplify notation we set h (ζ;λ) = f ′ (ζ;λ) /f (ζ;λ) so that

h′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
=
f ′′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)

f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
) −

(
f ′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)

f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)

)2
. (A.1)

Next, define

et (θ) = h
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
Σ−1/2εt (ϑ) and e0t = et (θ0) . (A.2)

From (6) it is seen that

e0t
d
= ρth

(
ρ2t ;λ0

)
υt = ρth0

(
ρ2t
)
υt, (A.3)

where the latter equality defines the notation h0 (·) = h (·;λ0).

First derivatives of lT (θ). From (14) we first obtain

∂

∂ϑi
gt (θ) = 2h

(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
) ∂

∂ϑi
εt (ϑ) Σ

−1εt (ϑ) , i = 1, 2, (A.4)
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where, from (15),

∂

∂ϑ1
εt (ϑ) = −

r∑

i=1

∂

∂ϑ1
πi (ϑ1) (ut−i (ϑ2)⊗ In) (A.5)

and
∂

∂ϑ2
εt (ϑ) =

r∑

i=0

s∑

j=1

∂

∂ϑ2
φj (ϑ2) (yt+j−i ⊗ Π

′
i) , (A.6)

with Π0 = −In = Π00. We also set Ut−1 (ϑ2) =
[
(ut−1 (ϑ2)⊗ In)

′ · · · (ut−r (ϑ2)⊗ In)
′
]′

and Yt+1 (ϑ1) =
[∑r

i=0 (yt+1−i ⊗ Π
′
i)
′ · · ·

∑r
i=0 (yt+s−i ⊗ Π

′
i)
′
]′
. Then, using the notation

Ut−1 (ϑ20) = U0,t−1 and Yt+1 (ϑ10) = Y0,t+1,

∂

∂ϑ1
gt (θ0) = −2

r∑

i=1

∂

∂ϑ1
πi (ϑ10) (u0,t−i ⊗ In) Σ

−1/2
0 e0t (A.7)

= −2∇1 (ϑ10)
′ U0,t−1Σ

−1/2
0 e0t

and

∂

∂ϑ2
gt (θ0) = 2

s∑

j=1

∂

∂ϑ2
φj (ϑ20)

r∑

i=0

(yt+j−i ⊗ Π
′
i0) Σ

−1/2
0 e0t (A.8)

= 2∇2 (ϑ20)
′ Y0,t+1Σ

−1/2
0 e0t.

As for the parameters σ = vech(Σ) and λ,

∂

∂σ
gt (θ) = −h

(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
D′
n

(
Σ−1 ⊗ Σ−1

)
(εt (ϑ)⊗ εt (ϑ))−

1

2
D′
nvec

(
Σ−1

)

= −D′
n

(
Σ−10 ⊗ Σ−10

)(
εt ⊗ Σ

1/2
0 e0t +

1

2
vec (Σ0)

)
, as θ = θ0, (A.9)

and

∂

∂λ
gt (θ) =

1

f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
) ∂
∂λ
f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)

(A.10)

=
1

f
(
ε′tΣ

−1
0 εt;λ0

) ∂
∂λ
f
(
ε′tΣ

−1
0 εt;λ0

)
as θ = θ0.

Second derivatives of lT (θ). First note that

∂

∂ϑ′i
et (θ) = h

(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
Σ−1/2

∂

∂ϑ′i
εt (ϑ) (A.11)

+2h′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
Σ−1/2εt (ϑ) εt (ϑ)

′Σ−1
∂

∂ϑ′i
εt (ϑ) , i = 1, 2.
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Using these expressions we now have

∂2

∂ϑ1∂ϑ
′
1

gt (θ) = −2

r∑

i=1

(
ut−i (ϑ2)

′ ⊗ et (θ)
′Σ−1/2 ⊗ Im1

) ∂

∂ϑ′1
vec

(
∂

∂ϑ1
πi (ϑ1)

)

−2
r∑

i=1

∂

∂ϑ1
πi (ϑ1) (ut−i (ϑ2)⊗ In) Σ

−1/2 ∂

∂ϑ′1
et (θ) , (A.12)

∂2

∂ϑ2∂ϑ
′
2

gt (θ) = 2

s∑

j=1

r∑

i=0

(
y′t+j−i ⊗ et (θ)

′Σ−1/2Πi ⊗ Im2

) ∂

∂ϑ′2
vec

(
∂

∂ϑ2
φj (ϑ2)

)

+2
s∑

j=1

∂

∂ϑ2
φj (ϑ2)

r∑

i=0

(yt+j−i ⊗ Π
′
i) Σ

−1/2 ∂

∂ϑ′2
et (θ) , (A.13)

and

∂2

∂ϑ1∂ϑ
′
2

gt (θ) = −2
r∑

i=1

∂

∂ϑ1
πi (ϑ1)

(
In ⊗ Σ

−1/2et (θ)
) ∂

∂ϑ′2
ut−i (ϑ2)

−2

r∑

i=1

∂

∂ϑ1
πi (ϑ1) (ut−i (ϑ2)⊗ In) Σ

−1/2 ∂

∂ϑ′2
et (θ) , (A.14)

where ∂ut−i (ϑ2) /∂ϑ
′
2 = −

∑s
j=1(y

′
t+j−i ⊗ In)∂φj (ϑ2) /∂ϑ

′
2.

Next consider ∂2gt (θ) /∂σ∂σ
′ and conclude from (A.9) that

∂2

∂σ∂σ′
gt (θ) = h

(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
) (
εt (ϑ)

′ ⊗ εt (ϑ)
′ ⊗D′

n

)
(In ⊗Knn ⊗ In)

×
[
Σ−1 ⊗ Σ−1 ⊗ vec

(
Σ−1

)
+ vec

(
Σ−1

)
⊗ Σ−1 ⊗ Σ−1

]
Dn

+h′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
D′
n

(
Σ−1 ⊗ Σ−1

) (
εt (ϑ) εt (ϑ)

′ ⊗ εt (ϑ) εt (ϑ)
′
)

×
(
Σ−1 ⊗ Σ−1

)
Dn +

1

2
D′
n

(
Σ−1 ⊗ Σ−1

)
Dn, (A.15)

and furthermore that (see(A.4))

∂2

∂ϑi∂σ′
gt (θ) = −2h

(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)(
εt (ϑ)

′ ⊗
∂

∂ϑi
εt (ϑ)

)
(A.16)

×
(
Σ−1 ⊗ Σ−1

)
Dn

−2h′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
) ∂

∂ϑi
εt (ϑ) Σ

−1εt (ϑ)
(
εt (ϑ)

′ ⊗ εt (ϑ)
′
)

×
(
Σ−1 ⊗ Σ−1

)
Dn, i = 1, 2.
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For ∂2gt (θ) /∂λ∂λ
′ it suffices to note that

∂2

∂λ∂λ′
gt (θ) = −

1

f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)2
∂

∂λ
f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)

×
∂

∂λ′
f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)

+
1

f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
) ∂2

∂λ∂λ′
f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)

(A.17)

whereas

∂2

∂ϑi∂λ
′ gt (θ) = 2

∂

∂ϑi
εt (ϑ) Σ

−1εt (ϑ)
∂

∂λ′
h
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
, i = 1, 2, (A.18)

and

∂2

∂σ∂λ′
gt (θ) = −D

′
n

(
Σ−1 ⊗ Σ−1

)
(εt (ϑ)⊗ εt (ϑ))

∂

∂λ′
h
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
, (A.19)

where

∂

∂λ
h
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
=

1

f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
) ∂
∂λ
f ′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)

−
f ′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)

(
f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
))2

∂

∂λ′
f
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)
.

B Proofs for Sections 2 and 3

Proof of Lemma 1. For the former inequality, first consider the expectation

Eλ

[
ρ2th

(
ρ2t ;λ

)]
=

πn/2

Γ (n/2)

∫ ∞

0

ζn/2f ′ (ζ;λ) dζ = −
n

2
, (B.1)

where the definition of the function h (see the beginning of Appendix A), density of ρ2t

(see (9)), and Assumption 2(ii) have been used (see the discussion after Assumption 2).

The same arguments combined with the Cauchy-Schwarz inequality and the definition of

j (λ) (see (10)) yield

1 =

{
2πn/2

nΓ (n/2)

∫ ∞

0

ζn/4
f ′ (ζ;λ)
√
f (ζ;λ)

ζn/4
√
f (ζ;λ)dζ

}2

≤
4πn/2

nΓ (n/2)

∫ ∞

0

ζn/2
(f ′ (ζ;λ))2

f (ζ;λ)
dζ ·

πn/2

nΓ (n/2)

∫ ∞

0

ζn/2f (ζ;λ) dζ (B.2)

= j (λ) · Eλ
(
ρ2t
)
/n.
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Thus, we have shown the claimed inequality.

From the preceding proof it is seen that equality holds if and only if there is equality in

(B.2). As is well known, this happens if and only if ζn/4f ′ (ζ;λ) /
√
f (ζ;λ) is proportional

to ζn/4
√
f (ζ;λ) or if and only if

f ′ (ζ;λ)

f (ζ;λ)
=
∂

∂ζ
log f (ζ;λ) = c for some c.

This implies f (ζ;λ) = b exp (−aζ) with a > 0 and b > 0. From the fact that f (x′x;λ),

x ∈ Rn, is the density function of ρtυt (see (6) and (7)) it further follows that b = (a/π)
n/2

and that ρtυt has the normal density (2π)
−n/2 exp (−x′x/2). Here the identity covariance

matrix is obtained because ρ2t ∼ χ
2
n, and hence from (8), C (ρ2tυt) = In (cf. the corollary

to Lemma 1.4 and Example 1.3 of Fang et al. (1990), p. 23). Thus, εt is Gaussian

as a linear transformation of ρtυt. On the other hand, if εt is Gaussian the equality

f ′ (ζ;λ) /f (ζ;λ) = c clearly holds with c = −1/2 and, because then ρ2t ∼ χ
2
n, Eλ (ρ

2
t ) = n

and j (λ) = 1. This completes the proof for j (λ).

Regarding i (λ), first notice that

∫ ∞

0

ζn/2+1f ′ (ζ;λ0) dζ =

(
ζn/2+1f (ζ;λ) |∞0 −

n+ 2

2

∫ ∞

0

ζn/2f (ζ;λ) dζ

)

= −
n+ 2

2
·
Γ (n/2)

πn/2
Eλ

(
ρ2t
)
,

where we have used Assumptions 2(ii) and (iii), and the expression of the density of ρ2t

(see (9)). Proceeding as in the case of the first assertion yields

1 =

(
2

(n+ 2)Eλ (ρ2t )
·
πn/2

Γ (n/2)

∫ ∞

0

ζn/4+1/2
f ′ (ζ;λ)
√
f (ζ;λ)

ζn/4+1/2
√
f (ζ;λ)dζ

)2

≤

(
2

(n+ 2)Eλ (ρ2t )

)2
·
πn/2

Γ (n/2)

∫ ∞

0

ζn/2+1
(
f ′ (ζ;λ)

f (ζ;λ)

)2
f (ζ;λ) dζ

×
πn/2

Γ (n/2)

∫ ∞

0

ζn/2+1f (ζ;λ) dζ

=

(
2

(n+ 2)Eλ (ρ2t )

)2
· i (λ) · Eλ

(
ρ4t
)

(see the definition of i (λ) in (11)). This shows the stated inequality and the condition

for equality leads to the same condition as in the case of j (λ). Finally, in the Gaussian

case, Eλ (ρ
2
t ) = n and Eλ (ρ

4
t ) = 2n+ n

2, implying i (λ) = n (n+ 2) /4. �
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Proof of the nonsingularity of the matrix H1. To simplify notation we demonstrate

the nonsingularity of H1 when s = 2. From the definition of H1 it is not difficult to

see that the possible singularity of H1 can only be due to a linear dependence of its last

n (r + 2) rows and, furthermore, that it suffices to show the nonsingularity of the lower

right hand corner H1 of order n (r + 2)× n (r + 2). This matrix reads as

H
(2,2)
1 =






In −Φ1 −Φ2 0 · · · · · · p · · · 0

0
. . .

. . .
. . .

. . . p
...

...
. . .

. . .
. . .

. . .
. . . p

...
... · · · 0 In −Φ1 −Φ2 p 0 0
... · · · 0 0 In −Φ1 p −Φ2 0

0 · · · 0 0 0 In p −Φ1 −Φ2

− − − − − − − −

−anrIn · · · · · · · · · · · · −a1In p In 0

0 −anrIn · · · · · · · · · · · · p −a1In In






def
=



 B11 B12

B21 B22



 ,

where the partition is as indicated. The determinant of B11 is evidently unity so that

from the well-known formula for the determinant of a partitioned matrix it follows that

we need to show the nonsingularity of the matrix B11·2 = B22−B21B
−1
11B12. The inverse

of B11 depends on coefficients of the power series representation of L (z) = Φ (z)
−1 given

by L (z) =
∑∞

j=0 Ljz
j where L0 = In and, when convenient, Lj = 0, j < 0, will be

used. Equating the coefficient matrices of z on both sides of the identity L (z) Φ (z) = In

yields Lj = Lj−1Φ1 + Lj−2Φ2. Using this identity it is readily seen that B
−1
11 is an upper

triangular matrix with In on the diagonal and Lj, j = 1, ..., nr−1, on the diagonals above

the main diagonal. This fact and straightforward but tedious calculations further show

that

B11·2 =



 In −
∑nr

j=1 ajLj −
∑nr

j=1 ajLj−1Φ2

−
∑nr

j=1 ajLj−1 In −
∑nr

j=2 ajLj−2Φ2





=



 In 0

0 In



−
nr∑

j=1

aj



 Lj Lj−1Φ2

Lj−1 Lj−2Φ2



 .
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Next define the companion matrix

Φ =



 Φ1 Φ2

In 0





and note that the latter condition in (2) implies that the eigenvalues of Φ are smaller

than one in absolute value. Also, the matrices Lj and Lj−1 (j ≥ 0) can be obtained from

the upper and lower left hand corners of the matrix Φj, respectively. Using these facts,

the identity Lj = Lj−1Φ1+Lj−2Φ2, and properties of the powers Φ
j it can further be seen

that

B11·2 = I2n −

nr∑

j=1

ajΦ
j = P

(

I2n −

nr∑

j=1

ajD
j

)

P−1,

where the latter equality is based on the Jordan decomposition of Φ so that Φ = PDP−1.

Thus, the determinant of B11·2 equals the determinant of the matrix in parentheses in

its latter expression. Because Dj is an upper triangular matrix having the jth powers of

the eigenvalues of Φ on the diagonal this determinant is a product of quantities of the

form 1 −
∑nr

j=1 ajν
j where ν signifies an eigenvalue of Φ. By the latter condition in (2)

the eigenvalues of Φ are smaller than one in absolute value whereas the former condition

in (2) implies that the zeros of a (z) lie outside the unit disc. Thus, the nonsingularity of

B11·2, and hence that of H
(2,2)
1 and H1 follow.

We note that in the case s = 1 the preceding proof simplifies because then we need to

show the nonsingularity of the matrix obtained fromH
(2,2)
1 by deleting its last n rows and

columns and setting Φ2 = 0. In place of B11·2 we then have In−
∑nr

j=1 ajΦ
j
1 and, because

now the eigenvalues of Φ1 are smaller than one in modulus, the preceding argument applies

without the need to use a companion matrix. �

Before proving Proposition 1 we present some auxiliary results. In the following lem-

mas, as well as in the proof of Proposition 1, the true parameter value is assumed, so

the notation E (·) will be used instead of Eλ0 (·) and similarly for C (·). In these proofs

frequent use will be made of the facts that the processes ρt and υt are independent and

that E (υt) = 0 and E (υtυ
′
k) equals 0 if t 6= k and n

−1In if t = k. The same can be said

about well-known properties of the Kronecker product and vec operator, especially the

result vec(ABC) = (C ′ ⊗ A)vec(B) which holds for any conformable matrices A, B, and
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C. This and other results of matrix algebra to be employed can be found in Lütkepohl

(1996). We also recall the definition εt = Σ
−1/2
0 εt (see (6)) and, to simplify notation, we

will frequently write f (·;λ0) = f0 (·) and similarly for f
′
0 (·) and f

′′
0 (·).

Lemma 3. Under the conditions of Proposition 1,

E (e0t) = 0 and C (e0t) =
j0

4
In, (B.3)

and

C (εt, e0k) =





0, if t 6= k

−1
2
In, if t = k

(B.4)

Proof of Lemma 3. By the definition of the function h0 (·) (see (A.3)) and the density

of ρ2t (see (9)) we have

E

[
ρ2t
(
h0
(
ρ2t
))2]

=
πn/2

Γ (n/2)

∫ ∞

0

ζn/2
(f ′0 (ζ))

2

f0 (ζ)
dζ =

n

4
j0,

where the latter equality is due to (10). Thus, because E (υt) = 0 and C (υt) = n−1In,

the independence of the processes ρt and υt in conjunction with (A.3) proves (B.3). The

same arguments and (6) yield

E (εte
′
0k) = E

[
ρtρkh0

(
ρ2k
)]
E (υtυ

′
k) ,

where E (υtυ
′
k) = 0 for t 6= k. Thus, one obtains (B.4) from this and (B.1). �

Lemma 4. . Under the conditions of Proposition 1,

C (εt−i ⊗ e0t, εk−j ⊗ e0k) =






DnJ0D
′
n, if t = k, i = j = 0

τ0

4
In2 , if t = k, i = j 6= 0

1
4
Knn, if t 6= k, i = t− k, j = k − t

0, otherwise.

Moreover, the matrix J0 is positive definite even when εt is Gaussian.

Proof. First notice that (see (6) and (A.3))

εt−i ⊗ e0t
d
= ρt−iρth0

(
ρ2t
)
(υt−i ⊗ υt) . (B.5)
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Consider the case t = k and i = j = 0. Using (B.5) and independence of ρt and υt yields

E (εt ⊗ e0t) = E
[
ρ2th0

(
ρ2t
)]
E (υt ⊗ υt) = −

1

2
Dnvech (In) ,

where the latter equality is due to (B.1) and E (υt ⊗ υt) = vec(E (υtυ
′
t)) = n−1vec(In).

By the same arguments we also find that

E [(εt ⊗ e0t)(εt ⊗ e0t)
′] = E

[
ρ4t
(
h0
(
ρ2t
))2]

E (υtυ
′
t ⊗ υtυ

′
t) = i0E (υtυ

′
t ⊗ υtυ

′
t) ,

where the latter equality follows from the definition of i0 (see (11)). Because

E (υtυ
′
t ⊗ υtυ

′
t) = E [(υt ⊗ υt) (υ

′
t ⊗ υ

′
t)] = DnE

[
(vech(υtυ

′
t)) (vech(υtυ

′
t))

′]
D′
n,

the stated result is obtained from the preceding calculations and the definition of the

matrix J0.

To show the positive definiteness of the matrix J0, note first that J0 is clearly sym-

metric. From the definition of i0 and (B.1) we find that, even when εt is Gaussian,

i0 > {E [ρ
2
th0 (ρ

2
t )]}

2
= n2/4 where the inequality is strict because ρ2t has positive density.

Now, let x be a nonzero n× 1 vector and conclude from the preceding inequality and the

definition of J0 that

4x′J0x > n2x′E
[
(vech(υtυ

′
t)) (vech(υtυ

′
t))

′]
x− x′vech (In) vech (In)

′ x

= n2x′C (vech(υtυ
′
t)) x,

where the equality is justified by E [vech(υtυ
′
t)] = n

−1vech(In) . Because the last quadratic

form is clearly nonnegative, the positive definiteness of J0 follows.

For the case t = k, i = j 6= 0 we have by independence E (εt−i ⊗ e0t) = E (εt−i) ⊗

E (e0t) = 0. Thus, by (B.5) and arguments already used,

C (εt−i ⊗ e0t, εt−i ⊗ e0t) = E
(
ρ2t−i

)
E

[
ρ2t
(
h0
(
ρ2t
))2] [

E
(
υt−iυ

′
t−i

)
⊗ E (υtυ

′
t)
]
.

The stated result is obtained from this by using definitions and E (υtυ
′
t) = n

−1In.

In the case t 6= k, i = t− k, and j = k − t we have i 6= 0 6= j and, as in the preceding

case, E (εk ⊗ e0t) = 0. We also note that εt ⊗ e0k = Knn(e0k ⊗ εt) (see Result 9.2.2(3) in
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Lütkepohl (1996)). As before, we now obtain

C (εk ⊗ e0t, εt ⊗ e0k) = C (εk ⊗ e0t, Knn (e0k ⊗ εt))

= E
[(
ρkυk ⊗ ρth0

(
ρ2t
)
υt
) (
ρkh0

(
ρ2k
)
υ′k ⊗ ρtυ

′
t

)]
K ′
nn

=
{
E
[
ρ2th0

(
ρ2t
)]}2

{E (υkυ
′
k)⊗ E (υtυ

′
t)}K

′
nn

=
1

4
Knn,

where the last equality follows from (B.1), the symmetry of the commutation matrix Knn,

and the fact E (υtυ
′
t) = n

−1In.

Finally, in the last case the stated results follows from independence. �

Now we can prove Proposition 1.

Proof of Proposition 1. The proof consists of three steps. In the first one we show

that the expectation of the score of θ at the true parameter value is zero and its limiting

covariance matrix is Iθθ (θ0). The positive definiteness of Iθθ (θ0) is established in the

second step and the third step proves the asymptotic normality of the score.

Step 1. We consider the different blocks of Iθθ (θ0) separately and, to simplify nota-

tion, we set N = T − s − nr. In what follows, frequent use will be made of the identity
(
f ′
(
ε′tΣ

−1
0 εt;λ0

)
/f
(
ε′tΣ

−1
0 εt;λ0

))
Σ−10 εt = Σ

−1/2
0 e0t (see (A.2)).

Block Iϑ1ϑ1 (θ0). From the definitions and (3) it can be seen that U0,t−1 and e0t are

independent. Thus, (B.3), (A.7), and straightforward calculation give E (∂gt (θ0) /∂ϑ1) =

0 and, furthermore,

C



N−1/2

T−s−(n−1)r∑

t=r+1

∂

∂ϑ1
gt (θ0)



 = ∇1 (ϑ10)
′C11 (θ0)∇1 (ϑ10) = Iϑ1ϑ1 (θ0) .

Block Iϑ2ϑ2 (θ0). Deriving Iϑ2ϑ2 (θ0) is somewhat complicated. From the expression of

∂gt (θ0) /ϑ2 (see (A.8)) it may not be quite immediate that the expectation of the score of

ϑ2 is zero so that we shall first demonstrate this. Recall that Φ (z)
−1 = L (z) =

∑∞

j=0 Ljz
j

with L0 = In and, Lj = 0, j < 0. Similarly to the notationMj0, Nj0, and Ψj0 we shall also

write Lj0 when Lj is based on true parameter values. Equating the coefficient matrices

related to the same powers of z in the identity L (z−1) = Ψ (z) Π (z) (see the discussion
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below (5)) one readily obtains

−
r∑

i=0

Ψj−i,0Πi0 =






0, j > 0

In, j = 0

L−j0, j < 0,

(B.6)

where, as before, Π00 = −In. To simplify notation we also denote

A0 (k, i) = Ψk0Σ
1/2
0 ⊗ Π′i0Σ

−1/2
0 and B0 (d) =Md0Σ

1/2
0 ⊗ Σ

−1/2
0 .

Notice that from (B.6) we find that

r∑

i=0

A0 (a− i, i) vec (In) = vec

(
r∑

i=0

Π′i0Ψ
′
a−i,0

)

= 0, a ∈ {1, ..., s} . (B.7)

Now recall that the matrix Y0,t+1 consists of the blocks
∑r

i=0 (yt+a−i ⊗ Π
′
i0) , a ∈

{1, ..., s}, and consider the expectation

E

(
r∑

i=0

(yt+a−i ⊗ Π
′
i0) Σ

−1/2
0 e0t

)

=

r∑

i=0

∞∑

k=−∞

E

(
(Ψk0εt+a−i−k ⊗ Π

′
i0Σ

−1/2
0 )e0t

)

=
r∑

i=0

∞∑

k=−∞

A0 (k, i)E (εt+a−i−k ⊗ e0t) ,

where the former equality is based on (5) and the latter on the definition of A0 (k, i) and

the definition εt = Σ
−1/2
0 εt. By Lemma 3, the expectation in the last expression equals

zero if k 6= a− i and −1
2
vec(In) if k = a− i. From this and (B.7) we find that

E

(
r∑

i=0

(yt+a−i ⊗ Π
′
i0) Σ

−1/2
0 e0t

)

= −
1

2

r∑

i=0

A0 (a− i, i) vec (In) = 0.

This in conjunction with (13) and (A.8) shows that E (∂lT (θ0) /∂ϑ2) = 0, and we proceed

to the covariance matrix of the score of ϑ2.

Let 1 (·) stand for the indicator function and, for a, b ∈ {1, ..., s}, consider the covari-
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ance matrix

C

(
r∑

i=0

(yt+a−i ⊗ Π
′
i0) Σ

−1/2
0 e0t,

r∑

j=0

(yk+b−j ⊗ Π
′
i0) Σ

−1/2
0 e0k

)

=

∞∑

c,d=−∞

r∑

i,j=0

A0 (c, i)C ((εt+a−i−c ⊗ e0t), (εk+b−j−d ⊗ e0k))A0 (d, j)
′

=
τ 0

4

∞∑

c=−∞
c6=0

r∑

i,j=0

A0 (c+ a− i, i)A0 (c+ b− j, j)
′
1 (t = k)

+
1

4

r∑

i,j=0

A0 (t− k + a− i, i)KnnA0 (k − t+ b− j, j)
′
1 (t 6= k)

+

r∑

i,j=0

A0 (a− i, i)DnJ0D
′
nA0 (b− j, j)

′
1 (t = k) .

Here the former equality is again obtained by using (5) and the definition of A0 (k, i)

whereas the latter is justified by Lemma 4. Summing the last expression over t, k =

r + 1, ..., T − s− (n− 1) r, multiplying by 4/N , and letting T tend to infinity yields the

matrix C22 (a, b; θ0) (see (A.8) and the definition of Iϑ2ϑ2 (θ0)). Thus,

C22 (a, b; θ0) = τ 0

∞∑

k=−∞
k 6=0

r∑

i=0

A0 (k + a− i, i)

r∑

j=0

A0 (k + b− j, j)
′

+
∞∑

k=−∞
k 6=0

r∑

i=0

A0 (k + a− i, i)Knn

r∑

j=0

A0 (−k + b− j, j)
′

+4

r∑

i=0

A0 (a− i, i)DnJ0D
′
n

r∑

j=0

A0 (b− j, j)
′ . (B.8)

To see that the right hand side really equals the expression given in the main text, we

have to show that the second term vanishes when the range of summation is changed to

k = 0,±1,±2, ..., or that

∞∑

k=−∞

r∑

i,j=0

(
Ψk+a−i,0Σ

1/2
0 ⊗ Π′i0Σ

−1/2
0

)
Knn

(
Σ
1/2
0 Ψ′−k+b−j,0 ⊗ Σ

−1/2
0 Πj0

)
= 0.

To see this, notice that (Ψk+a−i,0Σ
1/2
0 ⊗Π′i0Σ

−1/2
0 )Knn = Knn(Π

′
i0Σ

−1/2
0 ⊗Ψk+a−i,0Σ

1/2
0 ) (see

Lütkepohl (1996), Result 9.2.2 (5)(a)). Thus, the left hand side of the preceding equality

32



can be written as

Knn

∞∑

k=−∞

r∑

i,j=0

(
Π′i0Ψ

′
−k+b−j,0 ⊗Ψk+a−i,0Πj0

)
= Knn

∞∑

l=−∞

r∑

j=0

(
r∑

i=0

Π′i0Ψ
′
−l+a+b−j−i,0 ⊗Ψl,0Πj0

)

= Knn

∞∑

l=−∞

r∑

j=0

(
L′l−a−b+j,0 ⊗Ψl,0Πj0

)

= Knn

∞∑

k=0

(

L′k,0 ⊗
r∑

j=0

Ψk+a+b−j,0Πj0

)

= 0.

Here the second and fourth equalities are obtained from (B.6) (because a, b > 0).

From (A.8), the definition of A0 (c, i), and the preceding derivations it follows that the

covariance matrix of the score of ϑ2 divided by N converges to Iϑ2ϑ2 (θ0).

Block Iϑ1ϑ2 (θ0). Let a ∈ {1, ..., r} and b ∈ {1, ..., s}. Using (3) and (5), and the

previously introduced notation A0 (k, i) and B0 (k) (B0 (k) = 0 for k < 0) we consider

C

(

(u0,t−a ⊗ In) Σ
−1/2
0 e0t,

r∑

i=0

(yk+b−i ⊗ Π
′
i0) Σ

−1/2
0 e0k

)

=
∞∑

c=0

∞∑

d=−∞

r∑

i=0

B0 (c)C ((εt−a−c ⊗ e0t), (εk+b−i−d ⊗ e0k))A0 (d, i)
′

=
τ 0

4

∞∑

c=a

r∑

i=0

B0 (c− a)A0 (c+ b− i, i)
′
1 (t = k)

+
1

4

r∑

i=0

B0 (t− k − a)KnnA0 (k − t+ b− i, i)
′
1 (t 6= k) ,

where the latter equality is based on Lemma 4. Summing over t, k = r + 1, ..., T −

s − (n− 1) r, multiplying by −4/N , and letting T tend to infinity yields the matrix

C12 (a, b; θ0) (see (A.7), (A.8) and the definition of Iϑ1ϑ2 (θ0)). Thus,

C12 (a, b; θ0) = −τ 0

∞∑

c=a

r∑

i=0

B0 (c− a)A0 (c+ b− i, i)
′

−
∞∑

c=a

r∑

i=0

B0 (c− a)KnnA0 (−c+ b− i, i)
′ . (B.9)

It is easy to see that the first term on the right hand side equals the the first term on the

right hand side of the defining equation of C12 (a, b; θ0). To show the same for the second
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term, we need to show that

−Knn

(
Ψ′b−a,0 ⊗ In

)
= −

∞∑

c=a

r∑

i=0

(
Mc−a,0Σ

1/2
0 ⊗ Σ

−1/2
0

)
Knn

(
Σ
1/2
0 Ψ′−c+b−i,0 ⊗ Σ

−1/2
0 Πi0

)
.

Using again Result 9.2.2 (5)(a) in Lütkepohl (1996) and the convention Mj0 = 0, j < 0,

we can write the right hand side as

−Knn

∞∑

c=−∞

r∑

i=0

(
Ψ′−c+b−i,0 ⊗Mc−a,0Πi0

)
= −Knn

∞∑

k=−∞

(

Ψ′k0 ⊗

r∑

i=0

Πi0M−k−a+b−i,0

)

= Knn

(
Ψ′b−a,0 ⊗ In

)
.

Here the latter equality can be justified by using the identity Π (z)M (z) = In to obtain

an analog of (B.6) with Ψj−i,0 and L−j0 replaced by Mj−i,0 and 0, respectively.

The preceding derivations and the definitions (see (A.7) and (A.8)) show that the

covariance matrix of the scores of ϑ1 and ϑ2 divided by N converges to Iϑ2ϑ1 (θ0).

Block Iσσ (θ0). First note that, by (A.9) and independence of εt, we only need to show

that E (∂gt (θ0) /∂σ) = 0 and C (∂gt (θ0) /∂σ) = Iσσ (θ0). These facts can be established

by writing equation (A.9) as

∂

∂σ
gt (θ0) = −D

′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )(εt ⊗ e0t +

1

2
vec (In)),

using Lemma 4 (case t = k and i = j = 0), and arguments in its proof.

Block Iλλ (θ0). As in the preceding case, it suffices to show that E (∂gt (θ0) /∂λ) = 0

and C (∂gt (θ0) /∂λ) = Iλλ (θ0). For the former, conclude from (A.10) and (6) that

Eλ0

(
∂

∂λ
gt (θ0)

)
= Eλ0

(
1

f (ρ2t ;λ0)
·
∂

∂λ
f
(
ρ2t ;λ

)
∣∣∣∣
λ=λ0

)

=
πn/2

Γ (n/2)

∫ ∞

0

ζn/2−1
∂

∂λ
f (ζ;λ)

∣∣∣∣
λ=λ0

dζ

=
πn/2

Γ (n/2)

∂

∂λ

∫ ∞

0

ζn/2−1f (ζ;λ) dζ|λ=λ0

= 0.

Here the second equality is based on the expression of the density function of ρ2t (see (9)),

the third one on Assumption 4(i), and the fourth one on the identity

∫ ∞

0

ζn/2−1f (ζ;λ) dζ =
Γ (n/2)

πn/2

∫
f (x′x;λ) dx =

Γ (n/2)

πn/2
, (B.10)
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which can be obtained as in Fang et al. (1990, p. 35).

That C (∂gt (θ0) /∂λ) = Iλλ (θ0) is an immediate consequence of Assumption 4(ii),

(A.10), (6), and the expression of the density function of ρ2t .

Blocks Iϑ1σ (θ0) and Iϑ1λ (θ0). That these blocks are zero follows from (A.7), (A.9),

(A.10), independence of εt, and the fact that U0,t−1 is independent of εt and has zero mean

(see (3)).

Block Iϑ2σ (θ0). Consider the covariance matrix (cf. the derivation of Iϑ2ϑ2 (θ0))

C

(
r∑

i=0

(yt+a−i ⊗ Π
′
i0) Σ

−1/2
0 e0t,

∂

∂σ
gk (θ0)

)

= −
∞∑

c=−∞

r∑

i=0

A0 (c, i)C ((εt+a−i−c ⊗ e0t), (εk ⊗ e0k)) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn

= −

r∑

i=0

A0 (a− i, i)DnJ0D
′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn1 (t = k) .

Here the former equality is based on (5), the definition on A0 (c, i), and the expression of

∂gt (θ0) /∂σ given in the case of block Iσσ (θ0). The latter equality is due to Lemma 4.

The stated expression of Iϑ2σ (θ0) is a simple consequence of this, (A.8), and (A.9).

Block Iϑ2λ (θ0). Similarly to the preceding case we consider the covariance matrix

C

(
r∑

i=0

(yt+a−i ⊗ Π
′
i0) Σ

−1/2
0 e0t,

∂

∂λ
gk (θ0)

)

=

∞∑

c=−∞

r∑

i=0

A0 (c, i)C

(
(εt+a−i−c ⊗ e0t),

∂

∂λ
gk (θ0)

)

=
∞∑

c=−∞

r∑

i=0

A0 (c, i)E

[(
ρt+a−i−cυt+a−i−c ⊗ ρth0

(
ρ2t
)
υt
) 1

f0 (ρ2k)

∂

∂λ′
f
(
ρ2k;λ0

)]

=
∞∑

c=−∞

r∑

i=0

A0 (c, i)E (υt+a−i−c ⊗ υt)E

[
ρt+a−i−cρth0

(
ρ2t
) 1

f0 (ρ2k0)

∂

∂λ′
f
(
ρ2k;λ0

)]
.

Here the first equality is justified by (5) whereas the remaining ones are obtained from

(A.10), (6), (A.3), the independence of the processes ρt and υt, and the fact that ∂gt (θ0) /∂λ

has zero mean. Thus, because E (υt+a−i−c ⊗ υt) = n
−1vec(In)1 (c = a− i),

C

(
r∑

i=0

(yt+a−i ⊗ Π
′
i0) Σ

−1/2
0 e0t,

∂

∂λ
gk (θ0)

)

=
1

n

r∑

i=0

A0 (a− i, i) vec (In)E

(
ρ2t
h0 (ρ

2
t )

f0 (ρ2t ; )

∂

∂λ′
f
(
ρ2t ;λ0

))
1 (t = k) ,
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which in conjunction with (B.7) gives the desired result Iϑ2λ (θ0) = 0.

Block Iσλ (θ0). The employed arguments are similar to those in the cases of blocks

Iσσ (θ0) and Iλλ (θ0). By the independence of εt it suffices to consider

C

(
∂

∂σ
gt (θ0) ,

∂

∂λ
gt (θ0)

)
= −D′

n

(
Σ
−1/2
0 ⊗ Σ

−1/2
0

)
E

[
(εt ⊗ e0t)

∂

∂λ′
gt (θ0)

]
,

where the expectation equals (see (6), (A.3), and (A.10))

E

[(
ρtυt ⊗ ρth0

(
ρ2t
)
υt
) 1

f0 (ρ2t )

∂

∂λ′
f
(
ρ2t ;λ0

)]
= E (υt ⊗ υt)E

[
ρ2t
h0 (ρ

2
t )

f0 (ρ2t ; )

∂

∂λ′
f
(
ρ2t ;λ0

)]
.

Because E (υt ⊗ υt) = n−1vec(In) = n−1Dnvech(In), the stated expression of Iσλ (θ0)

follows from the definitions and the expression of the density function of ρ2t (see (9)).

Thus, we have completed the derivation of Iθθ (θ0).

Step 2. From Assumption 5(i) it readily follows that it suffices to prove the positive

definiteness of Iθθ (θ0) when ∇1 (ϑ10) = Irn2 and ∇2 (ϑ20) = Isn2. First we introduce some

notation. Define the sn2 × n2 and rn2 × n2 matrices

A0 (k) =

[
r∑

i=0

A0 (k + j − i, i)

]s

j=1

and B0 (k) = [B0 (k − i)]
r
i=1 ,

where, as before, A0 (k + j − i, i) = Ψk+j−i,0Σ
1/2
0 ⊗Π′i0Σ

−1/2
0 , j = 1, ..., s, and B0 (k − i) =

Mk−i,0Σ
1/2
0 ⊗ Σ

−1/2
0 , i = 1, ..., r. We also set

F0 =
πn/2

Γ (n/2)

∫ ∞

0

ζn/2
f ′ (ζ;λ0)

f (ζ;λ0)

∂

∂λ
f (ζ;λ0) dζ · vech (In)

′ J−10
(
d× 1

2
n (n+ 1)

)

Let ηt = [η′1t η
′
2t η

′
3t η

′
4t]
′ be a sequence of independent and identically distributed

random vectors with zero mean. The covariance matrix of ηt as well as the dimensions of

its components will be specified shortly. We consider the linear process

xt =

∞∑

k=1

G0 (k) ηt,

where xt = [x
′
1t x

′
2t x

′
3t x

′
4t]
′ and

G0 (k) =






−B0 (k) 0 0 0

A0 (k) A0 (−k) 21 (k = 1)A0 (k − 1)Dn 0

0 0 −1 (k = 1)D′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn 0

0 0 1 (k = 1)F0 1 (k = 1) Id






36



With an appropriate definition of the covariance matrix of ηt we have C (xt) = Iθθ (θ0).

This is achieved by assuming

C (ηt) = diag







 τ 0In2 Knn

K ′
nn τ 0In2



 : J0 : Iλλ (θ0)− F0J0F
′
0



 ,

where the first block defines the covariance matrix of [η′1t η
′
2t]
′. Thus, [η′1t η

′
2t]
′, η3t, and

η4t are uncorrelated and the dimension of both η1t and η2t is n
2×1 whereas the dimensions

of η3t and η4t are (n (n+ 1) /2) × 1 and d × 1, respectively. The dimensions of xit agree

with those of ηit (i = 1, ..., 4). By straightforward calculations one can check that the

equality C (xt) = Iθθ (θ0) really holds (with ∇1 (ϑ10) = Irn2 and ∇2 (ϑ20) = Isn2). Here

we only note that for Iϑϑ (θ0) the calculations yield the expressions given for C22 (a, b; θ0)

and C21 (a, b; θ0) in the derivation of Iϑ2ϑ2 (θ0) and Iϑ2ϑ1 (θ0) (see (B.8) and (B.9)) and

that for Iϑ2λ (θ0) equation (B.7) can be used.

From Lemma 1 and the fact that Knn is a permutation matrix it follows that the first

block of C (ηt) is positive definite. Indeed, this is implied by the positive definiteness

of τ 0In2 − τ
−1
0 K

′
nnKnn = τ 0In2 − τ

−1
0 In2, which clearly holds because τ 0 > 1. That J0

is positive definite follows from Lemma 4 whereas the positive definiteness of the third

block of C (ηt) holds in view of Assumption 5(ii) and the identity Iλλ (θ0) − F0J0F
′
0 =

Iλλ (θ0) − Iλσ (θ0) Iσσ (θ0)
−1 Iσλ (θ0), which can be checked by direct calculation. Thus,

the whole covariance matrix C (ηt) is positive definite.

The preceding discussion implies that we need to show that the covariance matrix

C (xt) is positive definite. This holds if the infinite dimensional matrix [G0 (1) : G0 (2) : · · · ]

is of full row rank. First note that the first block of rows is readily seen to be of full row

rank. Indeed, using the definition of B0 (k) it is straightforward to see that the matrix

[B0 (1) : · · · : B0 (r)] (rn
2 × rn2) is upper triangular with diagonal blocks Σ

−1/2
0 ⊗ Σ

−1/2
0

and, therefore, of full row rank. The last two block of rows are also linearly indepen-

dent because the covariance matrix of [x′3t x
′
4t]
′ equals that of the scores of σ and λ,

which is positive definite by Assumption 5(ii). It is furthermore obvious that these two

block of rows are linearly independent of the first block of rows. Thus, from the de-

finition of G0 (k) it can be seen that it suffices to show that the infinite dimensional

matrix [A0 (−1) : A0 (−2) : · · · ] is of full row rank. We shall demonstrate that the matrix

37



[A0 (−1) : · · · : A0 (−r − s)] (sn
2 × s (s+ r)n2) is of full row rank. For simplicity, we do

this in the special case s = 2.

Consider the matrix product

[A0 (−1) : · · · : A0 (−r − 2)]






Σ
−1/2
0 Π00 ⊗ Σ

1/2
0 0

... Σ
−1/2
0 Π00 ⊗ Σ

1/2
0

Σ
−1/2
0 Πr0 ⊗ Σ

1/2
0

...

0 Σ
−1/2
0 Πr0 ⊗ Σ

1/2
0






(B.11)

=




∑r

j=0

(∑r
i=0Ψ−j−i,0Πi0 ⊗ Π

′
j0

) ∑r
j=0

(∑r
i=0Ψ−1−j−i,0Πi0 ⊗ Π

′
j0

)

∑r
j=0

(∑r
i=0Ψ1−j−i,0Πi0 ⊗ Π

′
j0

) ∑r
j=0

(∑r
i=0Ψ−j−i,0Πi0 ⊗ Π

′
j0

)





=




∑r

j=0

(
−Lj0 ⊗ Π

′
j0

) ∑r
j=0

(
−Lj+1,0 ⊗ Π

′
j0

)

∑r
j=0

(
−Lj−1,0 ⊗ Π

′
j0

) ∑r
j=0

(
−Lj0 ⊗ Π

′
j0

)



 ,

where the equalities follow from the definitions and from (B.6) by direct calculation.

We shall show below that the last expression, a square matrix of order 2n2 × 2n2, is

nonsingular. Assume this for the moment and note that the latter matrix in the product

(B.11) is of full column rank 2n2 (because Π00 = −In ). Thus, as the rank of a matrix

product cannot exceed the ranks of the factors of the product, it follows that the matrix

[A0 (−1) : · · · : A0 (−r − 2)] has to be of full row rank 2n
2.

To show the aforementioned nonsingularity, it clearly suffices to show the nonsingu-

larity of the matrix




∑r

j=0

(
−Lj0 ⊗ Π

′
j0

) ∑r
j=0

(
−Lj+1,0 ⊗ Π

′
j0

)

∑r
j=0

(
−Lj−1,0 ⊗ Π

′
j0

) ∑r
j=0

(
−Lj0 ⊗ Π

′
j0

)







 In2 −Φ10 ⊗ In

0 In2





=



 In L10 − Φ10

0 In



⊗ In −
r∑

j=1







 Lj0 Lj+1,0 − Lj0Φ10

Lj−1,0 Lj,0 − Lj−1,0Φ10



⊗ Π′j0





=



 In 0

0 In



⊗ In −
r∑

j=1







 Lj0 Lj−1,0Φ20

Lj−1,0 Lj−2,0Φ20



⊗ Π′j0



 .

As in the proof of proof of the nonsingularity of the matrix H1, we have here used the

identity Lj0 = Lj−1,0Φ10 + Lj−2,0Φ20 with L00 = In and Lj0 = 0, j < 0, as well as direct

calculation. In the same way as in that proof, we can now show the nonsingularity of the
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last matrix by using the fact that this matrix can be expressed as

In2 ⊗ In −

r∑

j=1

(
Φ
j
0 ⊗ Π

′
j0

)
= (P0 ⊗ In)

(

In2 ⊗ In −

r∑

j=1

(
D
j
0 ⊗ Π

′
j0

)
)
(
P−10 ⊗ In

)
,

where Φ0 is the companion matrix corresponding the matrix polynomial In − Φ10z −

Φ20z
2 and Φ0= P0D0P

−1
0 is its Jordan decomposition (cf. the aforementioned previous

proof). The determinant of the matrix on the right hand side of the preceding equation

is a product of determinants of the form det
(
In −

∑r
j=1Π

′
j0ν

j
)
where ν signifies an

eigenvalue of Φ0. These determinants are nonzero because, by the latter condition in (2),

the eigenvalues of Φ0 are smaller than one in absolute value whereas the former condition

in (2) implies that the zeros of detΠ (z) lie outside the unit disc. This completes the proof

of the positive definiteness of Iθθ (θ0).

Step 3. The asymptotic normality can be proved in the same way as in previous

univariate models (see Proposition 2 of Breidt et al. (1991)). The idea is to use (3)

and (5) to approximate the processes ut−i (ϑ10) and yt+j−i (i = 1, ..., r, j = 1, ..., s) in

∂gt (θ0) /∂ϑ1 and ∂gt (θ0) /∂ϑ1, respectively, by long moving averages. This amounts to

replacing ∂gt (θ0) /∂θ by a finitely dependent stationary and ergodic process with finite

second moments. As is well known, a central limit theorem holds for such a process. The

stated asymptotic normality can then be established by using a standard result to deal

with the approximation error (see, e.g., Hannan (p. 242)). As in the aforementioned

univariate case, one can here make use of the fact that the coefficient matrices in (3) and

(5) decay to zero at a geometric. Details are omitted. �

Proof of Lemma 2. In the same way as in the proof of Step 1 of Proposition 1 we

consider the different blocks of Iθθ (θ0) separately. For simplicity, we again suppress the

subscript from the expectation operator and denote E (·) instead of Eθ0 (·) .

Block Iϑ1ϑ1 (θ0). Using the independence of u0,t−i (i > 0) and e0t along with (B.3) it

can be seen that the first term on the right hand side of (A.12) evaluated at θ = θ0 has

zero expectation. Thus, it suffices to consider the expectation of the second term. To this

end, recall the notation εt = Σ
−1/2
0 εt and define

W
(1)
ϑ1ϑ1

(a, b) = 2E
[
h0 (ε

′
tεt)

(
u0,t−au

′
0,t−b ⊗ Σ

−1
0

)]
,

39



W
(2)
ϑ1ϑ1

(a, b) = 4E

[
f ′′0 (ε

′
tεt)

f0 (ε′tεt)

(
u0,t−au

′
0,t−b ⊗ Σ

−1
0 εtε

′
tΣ

−1
0

)]
,

and

W
(3)
ϑ1ϑ1

(a, b) = −4E
[
(h0 (ε

′
tεt))

2 (
u0,t−au

′
0,t−b ⊗ Σ

−1
0 εtε

′
tΣ

−1
0

)]
.

Using these definitions in conjunction with (A.11), (A.1), and (A.5) we can write the

aforementioned expectation (see (A.12)) as

−2

r∑

a=1

∂

∂ϑ1
πa (ϑ10)E

[
(u0,t−a ⊗ In) Σ

−1/2
0

∂

∂ϑ′1
et (θ0)

]

= −2
r∑

a=1

∂

∂ϑ1
πa (ϑ10)E

[
h0 (ε

′
tεt) (u0,t−a ⊗ In) Σ

−1
0

∂

∂ϑ′1
εt (ϑ0)

]

−4
r∑

a=1

∂

∂ϑ1
πa (ϑ10)E

[
f ′′0 (ε

′
tεt)

f0 (ε′tεt)
(u0,t−a ⊗ In) Σ

−1
0 εtε

′
tΣ

−1
0

∂

∂ϑ′1
εt (ϑ0)

]

+4
r∑

a=1

∂

∂ϑ1
πa (ϑ10)E

[
(h0 (ε

′
tεt))

2
(u0,t−a ⊗ In) Σ

−1
0 εtε

′
tΣ

−1
0

∂

∂ϑ′1
εt (ϑ0)

]

=
r∑

a,b=1

∂

∂ϑ1
πa (ϑ10)

[
W

(1)
ϑ1ϑ1

(a, b) +W
(2)
ϑ1ϑ1

(a, b) +W
(3)
ϑ1ϑ1

(a, b)
] ∂

∂ϑ′1
πb (ϑ10) .

We need to show that the last expression equals−Iϑ1ϑ1 (θ0), which follows if
∑3

i=1W
(i)
ϑ1ϑ1

(a, b) =

−C11 (a, b) ⊗ Σ
−1
0 . To see this, conclude from the definitions, (6), and the fact C (υt) =

n−1In that

W
(1)
ϑ1ϑ1

(a, b) +W
(2)
ϑ1ϑ1

(a, b) = 2

[
E
(
h0
(
ρ2t
))
+
2

n
E

(
ρ2t
f ′′0 (ρ

2
t )

f0 (ρ2t )

)] (
E
(
u0,t−au

′
0,t−b

)
⊗ Σ−10

)
.

Using definitions and the expression of the density of ρ2t (see (9)) yields

E
(
h0
(
ρ2t
))
+
2

n
E

(
ρ2t
f ′′0 (ρ

2
t )

f0 (ρ2t )

)
(B.12)

=
πn/2

Γ (n/2)

(∫ ∞

0

ζn/2−1f ′0 (ζ) dζ +
2

n

∫ ∞

0

ζn/2f ′′0 (ζ) dζ

)

=
πn/2

Γ (n/2)

(∫ ∞

0

ζn/2−1f ′0 (ζ) dζ +
2

n
ζn/2f ′0 (ζ) |

∞
0 −

∫ ∞

0

ζn/2−1f ′0 (ζ) dζ

)

= 0,

where the last two equalities are justified by Assumption 6(i). Thus, we can conclude

that W
(1)
ϑ1ϑ1

(a, b) +W
(2)
ϑ1ϑ1

(a, b) = 0.
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Regarding W
(3)
ϑ1ϑ1

(a, b), use again (6) and the fact C (υt) = n
−1In to obtain

W
(3)
ϑ1ϑ1

(a, b) = −
4

n
E

[
ρ2t
(
h0
(
ρ2t
))2]

E
(
u0,t−au

′
0,t−b

)
⊗ Σ−10

= −j0E
(
u0,t−au

′
0,t−b

)
⊗ Σ−10 ,

by the definitions of h0 (·) and j0 (see (10)). Thus, because j0E
(
u0,t−au

′
0,t−b

)
= C11 (a, b),

we have
∑3

i=1W
(i)
ϑ1ϑ1

(a, b) = C11 (a, b)⊗ Σ
−1
0 , as desired.

Block Iϑ2ϑ2 (θ0). The first term on the right hand side of (A.13) evaluated at θ = θ0 has

zero expectation by arguments entirely similar to those used to show that the expectation

of ∂gt (θ0) /∂ϑ2 is zero (see the proof of Proposition 1, Block Iϑ2ϑ2 (θ0)). Thus, it suffices

to consider the second term for which we first note that

E

(
ρ4t
f ′′0 (ρ

2
t )

f0 (ρ2t )

)
=

πn/2

Γ (n/2)

∫ ∞

0

ζn/2+1f ′′0 (ζ) dζ

=
πn/2

Γ (n/2)

(
ζn/2+1f ′0 (ζ)

∣∣∣
∞

0
−
n+ 2

2

∫ ∞

0

ζn/2f ′0 (ζ) dζ

)

= n(n+ 2)/4, (B.13)

where the last equality is justified by Assumption 6(i) and (B.1).

Next define

W
(1)
ϑ2ϑ2

(a, b) = 2E

[

h0 (ε
′
tεt)

r∑

i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π

′
i0Σ

−1
0 Πj0

)
]

,

W
(2)
ϑ2ϑ2

(a, b) = 4E

[
f ′′0 (ε

′
tεt)

f0 (ε′tεt)

r∑

i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π

′
i0Σ

−1
0 εtε

′
tΣ

−1
0 Πj0

)
]

and

W
(3)
ϑ2ϑ2

(a, b) = −4E

[

(h0 (ε
′
tεt))

2
r∑

i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π

′
i0Σ

−1
0 εtε

′
tΣ

−1
0 Πj0

)
]

.

Using these definitions in conjunction with (A.11) and (A.6) the expectation of the second
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term on the right hand side of (A.13) evaluated at θ = θ0 can be written as

2

s∑

a=1

∂

∂ϑ2
φa (ϑ20)E

[
r∑

i=0

(yt+a−i ⊗ Π
′
i0) Σ

−1/2
0

∂

∂ϑ′2
et (θ0)

]

= 2

s∑

a,b=1

∂

∂ϑ2
φa (ϑ20)E

[
f ′0 (ε

′
tεt)

f0 (ε′tεt)

r∑

i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π

′
i0Σ

−1
0 Πj0

)
]
∂

∂ϑ′2
φb (ϑ20)

+4

s∑

a,b=1

∂

∂ϑ2
φa (ϑ20)E

[
f ′′0 (ε

′
tεt)

f0 (ε′tεt)

r∑

i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π

′
i0Σ

−1
0 εtε

′
tΣ

−1
0 Πj0

)
]
∂

∂ϑ′2
φb (ϑ20)

−4
s∑

a,b=1

∂

∂ϑ2
φa (ϑ20)E

[(
f ′0 (ε

′
tεt)

f0 (ε′tεt)

)2 r∑

i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π

′
i0Σ

−1
0 εtε

′
tΣ

−1
0 Πj0

)
]
∂

∂ϑ′2
φb (ϑ20)

=
s∑

a,b=1

∂

∂ϑ2
φa (ϑ20)

[
W

(1)
ϑ2ϑ2

(a, b) +W
(2)
ϑ2ϑ2

(a, b) +W
(3)
ϑ2ϑ2

(a, b)
] ∂

∂ϑ′2
φb (ϑ20) .

Thus, to show that the last expression equals−Iϑ2ϑ2 (θ0) it suffices to show that
∑3

i=1W
(i)
ϑ2ϑ2

(a, b) =

−C22 (a, b, ; θ0). To this end, first note that, by (5),

W
(1)
ϑ2ϑ2

(a, b) = 2

r∑

i,j=0

∞∑

c,d=−∞

E
[
h0 (ε

′
tεt)

(
Ψc0εt+a−i−cε

′
t+b−j−dΨ

′
d0 ⊗ Π

′
i0Σ

−1
0 Πj0

)]

=
2

n
E
(
ρ2t
)
E (h0 (ε

′
tεt))

r∑

i,j=0

∞∑

c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

−

r∑

i,j=0

A0 (a− i, i)A0 (b− j, j) ,

where, as before, Ψk0Σ
1/2
0 ⊗Π′i0Σ

−1/2
0 = A0 (k, i). The latter equality is a straightforward

consequence of (6), (B.1), and the fact C (υt) = n
−1In.

For W
(2)
ϑ2ϑ2

(a, b) one obtains from (5)

W
(2)
ϑ2ϑ2

(a, b) = 4
r∑

i,j=0

∞∑

c,d=−∞

E

[
f ′′0 (ε

′
tεt)

f0 (ε′tεt)

(
Ψc0εt+a−i−cε

′
t+b−j−dΨ

′
d0 ⊗ Π

′
i0Σ

−1
0 εtε

′
tΣ

−1
0 Πj0

)]

=
4

n2
E
(
ρ2t
)
E

(
ρ2t
f ′′0 (ρ

2
t )

f0 (ρ2t )

) r∑

i,j=0

∞∑

c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

+4E

(
ρ4t
f ′′0 (ρ

2
t )

f0 (ρ2t )

) r∑

i,j=0

A0 (a− i, i)E (υtυ
′
t ⊗ υtυ

′
t)A0 (b− j, j) ,

where the latter equality is again obtained from (6) and the fact C (υt) = n
−1In. From
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(B.12) and (B.13) we can now conclude that

W
(1)
ϑ2ϑ2

(a, b) +W
(2)
ϑ2ϑ2

(a, b) = −
r∑

i=0

r∑

j=0

A0 (a− i, i)A0 (b− j, j)

+n(n+ 2)

r∑

i=0

r∑

j=0

A0 (a− i, i)E (υtυ
′
t ⊗ υtυ

′
t)A0 (b− j, j) .

Next, arguments similar to those already used give

W
(3)
ϑ2ϑ2

(a, b) = −4

r∑

i,j=0

∞∑

c,d=−∞

E

[
(h0 (ε

′
tεt))

2 (
Ψc0εt+a−i−cε

′
t+b−j−dΨ

′
d0 ⊗ Π

′
i0Σ

−1
0 εtε

′
tΣ

−1
0 Πj0

)]

= −
4

n2
E
(
ρ2t
)
E

[
ρ2t
(
h0
(
ρ2t
))2]

r∑

i,j=0

∞∑

c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

−4E
[
ρ4t
(
h0
(
ρ2t
))2]

r∑

i,j=0

A0 (a− i, i)E (υtυ
′
t ⊗ υtυ

′
t)A0 (b− j, j)

= −τ 0

r∑

i,j=0

∞∑

c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

−4

r∑

i,j=0

A0 (a− i, i)DnJ0D
′
nA0 (b− j, j) .

Here the last equality follows from the definitions of τ 0, i0, and J0 (in the term involving

J0 (B.7) has also been used).

From the preceding derivations we find that

3∑

i=1

W
(i)
ϑ2ϑ2

(a, b) = −τ 0

r∑

i,j=0

∞∑

c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

−

r∑

i,j=0

A0 (a− i, i) [4DnJ0D
′
n + In − n(n+ 2)E (υtυ

′
t ⊗ υtυ

′
t)]A0 (b− j, j) .

That
∑3

i=1W
(i)
ϑ2ϑ2

(a, b) = −C22 (a, b, ; θ0) holds, can now be seen by using the identity

E
[
(vec(υtυ

′
t)) (vec(υtυ

′
t))

′]
=

1

n (n+ 2)

(
In2 +Knn + vec (In) vec (In)

′
)

(B.14)

(see Wong and Wang (1992, p. 274)) and observing that the left hand side equals

E (υtυ
′
t ⊗ υtυ

′
t) and the impact of the term vec(In)vec(In)

′ on the right hand side can-

cels by equality (B.7) (see the definition of C22 (a, b, ; θ0)).

43



Block Iϑ1ϑ2 (θ0). First conclude from (A.14), (A.11), (A.6), and (6) that

∂2

∂ϑ1∂ϑ
′
2

gt (θ0) = 2

r∑

a=1

s∑

b=1

∂

∂ϑ1
πa (ϑ10)

(
In ⊗ Σ

−1/2
0 et (θ0)

) (
y′t+b−a ⊗ In

) ∂

∂ϑ′2
φb (ϑ20)

−2
r∑

a=1

s∑

b=1

∂

∂ϑ1
πa (ϑ10)h0 (ε

′
tεt)

r∑

i=0

(
u0,t−ay

′
t+b−i ⊗ Σ

−1
0 Πi0

) ∂

∂ϑ′2
φb (ϑ20)

−4

r∑

a=1

s∑

b=1

∂

∂ϑ1
πa (ϑ10)h

′
0 (ε

′
tεt)

r∑

i=0

(
u0,t−ay

′
t+b−i ⊗ Σ

−1
0 εtε

′
tΣ

−1
0 Πi0

) ∂

∂ϑ′2
φb (ϑ20) .

In the first expression on the right hand side,

(
In ⊗ Σ

−1/2
0 et (θ0)

) (
y′t+b−a ⊗ In

)
= h0 (ε

′
tεt)Knn

(
Σ−10 εty

′
t+b−a ⊗ In

)

by the definition of et (θ0) and Result 9.2.2(3) in Lütkepohl (1996). Define

W
(1)
ϑ1ϑ2

(a, b) = 2KnnE
[
h0 (ε

′
tεt)

(
Σ−10 εty

′
t+b−a ⊗ In

)]
,

W
(2)
ϑ1ϑ2

(a, b) = −2E

[

h0 (ε
′
tεt)

r∑

i=0

(
u0,t−ay

′
t+b−i ⊗ Σ

−1
0 Πi0

)
]

W
(3)
ϑ1ϑ2

(a, b) = −4E

[
f ′′0 (ε

′
tεt)

f0 (ε′tεt)

r∑

i=0

(
u0,t−ay

′
t+b−i ⊗ Σ

−1
0 εtε

′
tΣ

−1
0 Πi0

)
]

and

W
(4)
ϑ1ϑ2

(a, b) = 4E

[

(h0 (ε
′
tεt))

2
r∑

i=0

(
u0,t−ay

′
t+b−i ⊗ Σ

−1
0 εtε

′
tΣ

−1
0 Πi0

)
]

.

We need to show that
∑4

i=1W
(i)
ϑ1ϑ2

(a, b) = −C12 (a, b; θ0). The employed arguments,

based mostly on (3), (5), (6), and the fact C (υt) = n−1In, are similar to those used in

the previous cases. First note that

W
(1)
ϑ1ϑ2

(a, b) = 2Knn

∞∑

c=−∞

E
[
h0 (ε

′
tεt)

(
Σ−10 εtε

′
t+b−a−cΨ

′
c0 ⊗ In

)]

=
2

n
E
[
ρ2th0

(
ρ2t
)]
Knn

(
Ψ′b−a,0 ⊗ In

)

= −Knn

(
Ψ′b−a,0 ⊗ In

)
,

where the last equality is due to (B.1). Next,

W
(2)
ϑ1ϑ2

(a, b) = −2

∞∑

c=0

∞∑

d=−∞

r∑

i=0

E
[
h0 (ε

′
tεt)

(
Mc0εt−a−cε

′
t+b−i−dΨ

′
d0 ⊗ Σ

−1
0 Πi0

)]

= −
2

n
E
(
ρ2t
)
E
(
h0
(
ρ2t
)) ∞∑

c=0

r∑

i=0

(
Mc0Σ0Ψ

′
c+a+b−i,0 ⊗ Σ

−1
0 Πi0

)
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and

W
(3)
ϑ1ϑ2

(a, b) = −4
∞∑

c=0

∞∑

d=−∞

r∑

i=0

E

[
f ′′0 (ε

′
tεt)

f0 (ε′tεt)

(
Mc0εt−a−cε

′
t+b−i−dΨ

′
d0 ⊗ Σ

−1
0 εtε

′
tΣ

−1
0 Πi0

)]

= −
4

n2
E
(
ρ2t
)
E

(
ρ2t
f ′′0 (ρ

2
t )

f0 (ρ2t )

) ∞∑

c=0

r∑

i=0

(
Mc0Σ0Ψ

′
c+a+b−i,0 ⊗ Σ

−1
0 Πi0

)
.

From the preceding expressions and (B.12) it is seen that W
(2)
ϑ1ϑ2

(a, b) +W
(3)
ϑ1ϑ2

(a, b) = 0.

Regarding W
(4)
ϑ1ϑ2

(a, b), we have

W
(4)
ϑ1ϑ2

(a, b) = 4
∞∑

c=0

∞∑

d=−∞

r∑

i=0

E

[
(h0 (ε

′
tεt))

2 (
Mc0εt−a−cε

′
t+b−i−dΨ

′
d0 ⊗ Σ

−1
0 εtε

′
tΣ

−1
0 Πi0

)]

=
4

n2
E
(
ρ2t
)
E

[
ρ2t
(
h0
(
ρ2t
))2]

∞∑

c=0

r∑

i=0

(
Mc0Σ0Ψ

′
c+a+b−i,0 ⊗ Σ

−1
0 Πi0

)

= τ 0

∞∑

c=a

r∑

i=0

(
Mc−a,0Σ0Ψ

′
c+b−i,0 ⊗ Σ

−1
0 Πi0

)
,

where the last equality holds by the definitions of h0 (·) and τ 0. Combining the preceding

derivations yields
∑4

i=1W
(i)
ϑ1ϑ2

(a, b) = −C12 (a, b; θ0), as desired.

Block Iσσ (θ0). From (A.15) and (6) we obtain

∂2

∂σ∂σ′
gt (θ0) = h0 (ε

′
tεt) (ε

′
t ⊗ ε

′
t ⊗D

′
n) (In ⊗Knn ⊗ In)

×
[
Σ−10 ⊗ Σ−10 ⊗ vec

(
Σ−10

)
+ vec

(
Σ−10

)
⊗ Σ−10 ⊗ Σ−10

]
Dn

+h′0 (ε
′
tεt)D

′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 ) (εtε

′
t ⊗ εtε

′
t) (Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn

+
1

2
D′
n

(
Σ−10 ⊗ Σ−10

)
Dn.

The first term on the right hand side consists of two additive terms. Using (6) and taking

expectation the first one can be written as

E
(
ρ2th0

(
ρ2t
))(

vec
(
Σ
1/2
0 E (υtυ

′
t) Σ

1/2
0

)′
⊗D′

n

)
(In ⊗Knn ⊗ In)

×
(
Σ−10 ⊗ Σ−10 ⊗ vec

(
Σ−10

))
Dn

= −
1

2
D′
n

(
vec (Σ0)

′ ⊗ In2
)
(In ⊗Knn ⊗ In)

(
Σ−10 ⊗ Σ−10 ⊗ vec

(
Σ−10

))
Dn

= −
1

2
D′
n

(
Σ−1 ⊗ Σ−1

)
Dn.

Here the former equality is based on (B.1) and the fact E (υtυ
′
t) = n−1In whereas the

latter can be seen as follows. Let B1 and B2 be arbitrary symmetric (n× n) matrices and
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consider the quantity

vech (B1)
′D′

n

(
vec (Σ0)

′ ⊗ In2
)
(In ⊗Knn ⊗ In)

(
Σ−10 ⊗ Σ−10 ⊗ vec

(
Σ−10

))
Dnvech (B2)

= vec (B1)
′
(
vec (Σ0)

′ ⊗ In2
)
(In ⊗Knn ⊗ In)

((
Σ−10 ⊗ Σ−10

)
vec (B2)⊗ vec

(
Σ−10

))

= vec (B1)
′
(
vec (Σ0)

′ ⊗ In2
)
(In ⊗Knn ⊗ In)

(
vec
(
Σ−10 B2Σ

−1
0

)
⊗ vec

(
Σ−10

))

= vec (B1)
′
(
vec (Σ0)

′ ⊗ In2
)
vec
(
Σ−10 B2Σ

−1
0 ⊗ Σ−10

)

= vec (B1)
′
(
Σ−10 B2Σ

−1
0 ⊗ Σ−10

)
vec (Σ0)

= vec (B1)
′ vec

(
Σ−10 B2Σ

−1
0

)

= vech (B1)
′D′

n

(
Σ−10 ⊗ Σ−10

)
Dnvech (B2) .

Here the third equality follows from Lütkepohl (1996, Result 9.2.2(5)(c)) whereas the other

equalities are due to definitions and well-known properties of the Kronecker product and

vec operator (especially the result vec(ABC) = (C ′ ⊗ A)vec(B)). Because B1 and B2 are

arbitrary symmetric (n× n) matrices the stated result follows and in the same way it can

be seen that a similar result holds for the second additive component obtained from the

first term of the preceding expression of ∂2gt (θ0) /∂σ∂σ
′. Thus, we can conclude that

E

(
∂2

∂σ∂σ′
gt (θ0)

)
= D′

n(Σ
−1/2
0 ⊗ Σ

−1/2
0 )E [h′0 (ε

′
tεt) (εtε

′
t ⊗ εtε

′
t)]
(
Σ−1/2 ⊗ Σ−1/2

)
Dn

−
1

2
D′
n

(
Σ−1 ⊗ Σ−1

)
Dn.

Using (6) and (A.1) one obtains

E [h′0 (ε
′
tεt) (εtε

′
t ⊗ εtε

′
t)] =

[
E

(
ρ4t
f ′′0 (ρ

2
t )

f0 (ρ2t )

)
− E

(
ρ4t
(
h0
(
ρ2t
))2)

]
E (υtυ

′
t ⊗ υtυ

′
t)

=
n (n+ 2)

4
E (υtυ

′
t ⊗ υtυ

′
t)− i0E (υtυ

′
t ⊗ υtυ

′
t) ,

where the latter equality is based on (B.13) and the definition of i0 (see (11)). Thus,

E

(
∂2

∂σ∂σ′
gt (θ0)

)
=

1

4
D′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 ) [n(n+ 2)E (υtυ

′
t ⊗ υtυ

′
t)− 2In2 ] (Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn

− i0D
′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )E (υtυ

′
t ⊗ υtυ

′
t) (Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn.

Because E (υtυ
′
t ⊗ υtυ

′
t) = DnE ((vech(υtυ

′
t))(vech(υtυ

′
t))D

′
n the right hand side equals

−Iσσ (θ0) if the expression in the brackets can be replaced by vec(In)vec(In)
′. From
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(B.14) it is seen that this expression can be replaced by vec(In)vec(In)
′ + Knn − In2.

Thus, the desired result follows because

(Knn − In2) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn = (Σ

−1/2
0 ⊗ Σ

−1/2
0 ) (Knn − In2)Dn = 0

by Results 9.2.2(2)(b) and 9.2.3(2) in Lütkepohl (1996).

Block Iλλ (θ0). By the definition of Iλλ (θ0) and (A.17) it suffices to note that

E

[
1

f (ρ2t ;λ0)

∂2

∂λ∂λ′
f
(
ρ2t ;λ0

)]
=

πn/2

Γ (n/2)

∫ ∞

0

ζn/2−1
∂2

∂λ∂λ′
f (ζ;λ0) dζ = 0,

where the former equality follows from (9) and the latter from Assumption 6(ii) (cf. the

corresponding part of the proof of Proposition 1, Block Iλλ (θ0)).

Blocks Iϑ1σ (θ0) and Iϑ1λ (θ0). The former is an immediate consequence of (A.16), the

independence of εt and ∂εt (ϑ0) /∂ϑ1, and the fact E (∂εt (ϑ0) /∂ϑ1) = 0 (see (A.5)) which

imply E (∂2gt (θ0) /∂ϑ1∂σ
′) = 0.

As for Iϑ1λ (θ0), it is seen from (A.18), (A.1), and (A.5) that we need to show that

E

[
1

f0 (ε′tεt)
(u0,t−a ⊗ In) Σ

−1
0 εt

∂

∂λ′
f ′ (ε′tεt;λ0)

]
= 0, a = 1, ..., r,

and similarly when 1/f0 (ε
′
tεt) is replaced by f

′
0 (ε

′
tεt) / (f0 (ε

′
tεt))

2. These facts follow from

the independence of u0,t−a and εt and E (u0,t−a) = 0.

Block Iϑ2σ (θ0). From (A.16) and (A.6) we find that

∂2

∂ϑ2∂σ′
gt (θ0)

= −2h0 (ε
′
tεt)

s∑

b=1

∂

∂ϑ2
φb (ϑ20)

r∑

a=0

(ε′t ⊗ yt+b−a ⊗ Π
′
a0)
(
Σ−10 ⊗ Σ−10

)
Dn

−2h′0 (ε
′
tεt)

s∑

b=1

∂

∂ϑ2
φb (ϑ20)

r∑

a=0

(yt+b−a ⊗ Π
′
a0) Σ

−1
0 εt (ε

′
t ⊗ ε

′
t)
(
Σ−1 ⊗ Σ−1

)
Dn.

By independence of εt and equation (5), yt+b−a on the right hand side can be replaced

by Ψb−a,0εt when expectation is taken. Thus, using the definition of et0 (see (A.2)) and
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straightforward calculation the expectation of the first term on the right hand side becomes

−2
s∑

b=1

∂

∂ϑ2
φb (ϑ20)

r∑

a=0

E

[
e′0t ⊗Ψb−a,0εt ⊗ Π

′
a0Σ

−1/2
0

]
(Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn

= −2

s∑

b=1

∂

∂ϑ2
φb (ϑ20)

r∑

a=0

A0 (b− a, i)E [(e
′
0t ⊗ εt ⊗ In)] (Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn

=

s∑

b=1

∂

∂ϑ2
φb (ϑ20)

r∑

a=0

A0 (b− a, i) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn,

where, again, A0 (b− a, i) = Ψb−a0Σ
1/2
0 ⊗Π′a0Σ

−1/2
0 and the latter equality is due to E(e′0t⊗

εt ⊗ In) = E(εte
′
0t ⊗ In) = −2

−1In2 (see (B.4)).

The expectation of the second term in the preceding expression of ∂2gt (θ0) /∂ϑ2∂σ
′

can similarly be written as

−2

s∑

b=1

∂

∂ϑ2
φb (ϑ20)E

[

h′0 (ε
′
tεt)

r∑

a=0

(Ψb−a,0εt ⊗ Π
′
a0) Σ

−1
0 εt (ε

′
t ⊗ ε

′
t)

]

(Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn,

where, by (6) and (A.1), the expectation equals

{
E

[
ρ4t
f ′′0 (ρ

2
t )

f0 (ρ2t )

]
− E

[
ρ4t
(
h0
(
ρ2t
))2]

} r∑

a=0

A0 (b− a, i)E (υtυ
′
t ⊗ υtυ

′
t)

=

(
n (n+ 2)

4
− i0

) r∑

a=0

A0 (b− a, i)E (υtυ
′
t ⊗ υtυ

′
t) .

Here we have used (B.13), the definition of i0 (see (11)), and straightforward calculation.

Combining the preceding derivations shows that

E

(
∂2

∂ϑ2∂σ′
gt (θ0)

)
= 2

(
i0 −

n (n+ 2)

4

) s∑

b=1

∂

∂ϑ2
φb (ϑ20)

r∑

a=0

A0 (b− a, i)E (υtυ
′
t ⊗ υtυ

′
t)

× (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn

+

s∑

b=1

∂

∂ϑ2
φb (ϑ20)

r∑

a=0

A0 (b− a, i) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn

= 2

s∑

b=1

∂

∂ϑ2
φb (ϑ20)

r∑

a=0

A0 (b− a, i)DnJ0D
′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn,

where the last expression equals −Iϑ2σ (θ0) and the latter equality can be justified by

using the definition of J0, the identity (B.14), and arguments similar to those already

used in the case of block Iσσ (θ0) (see the end of that proof).
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Block Iϑ2λ (θ0). From (A.18) and (A.6) it is seen that we need to show that

r∑

i=0

E

[
1

f0 (ε′tεt)
(yt+a−i ⊗ Π

′
i0) Σ

−1
0 εt

∂

∂λ′
f ′ (ε′tεt;λ0)

]
= 0, a = 1, ..., r,

and
r∑

i=0

E

[
f ′0 (ε

′
tεt)

(f0 (ε′tεt))
2 (yt+a−i ⊗ Π

′
i0) Σ

−1
0 εt

∂

∂λ′
f (ε′tεt;λ0)

]
= 0, a = 1, ..., r.

The argument is similar in both cases and also similar to that used in the proof of Propo-

sition 1 (see Block Iϑ2λ (θ0)). For example, consider the former and use (5) and indepen-

dence of εt to write the left hand side of the equality as

r∑

i=0

E

[
1

f0 (ε′tεt)
(Ψa−i,0εt ⊗ Π

′
i0) Σ

−1
0 εt

∂

∂λ′
f ′ (ε′tεt;λ0)

]

=
r∑

i=0

A0 (a− i, i)E (υt ⊗ υt)E

[
ρ2t

f0 (ρ2t )

∂

∂λ′
f ′
(
ρ2t ;λ0

)]
,

where that equality is due to (6). Because E (υt ⊗ υt) = vec(E (υtυ
′
t)) = n

−1vec(In) the

last expression is zero by (B.7). A similar proof applies to the other expectation.

Block Iσλ (θ0). One obtains from (A.19) that E (∂2gt (θ0) /∂σ∂λ) is a sum of two

terms. One is

−D′
n(Σ

−1
0 ⊗ Σ−10 )E

[
1

f0 (ε′tεt)

∂

∂λ′
f ′ (ε′tεt;λ0)

]
= −D′

n(Σ
−1/2
0 ⊗ Σ

−1/2
0 )E (υt ⊗ υt)

× E

[
ρ2t

f0 (ρ2t )

∂

∂λ′
f ′
(
ρ2t ;λ0

)]
,

where the equality is based on (6) and, using (9), the last expectation can be written as

πn/2

Γ (n/2)

∫ ∞

0

ζn/2
∂

∂λ′
f ′ (ζ;λ)

∣∣∣∣
λ=λ0

dζ =
πn/2

Γ (n/2)

∂

∂λ′

∫ ∞

0

ζn/2f ′ (ζ;λ) dζ|λ=λ0 = 0.

Here the former equality is justified by Assumption 6(ii) and the latter by (B.1). By similar

arguments it is seen that the second term of E (∂2gt (θ0) /∂σ∂λ) becomes −Iσλ (θ0). �

Proof of Theorem 1. First note that our Proposition 1 and Lemma 2 are analogous

to Lemmas 1 and 2 of Andrews et al. (2006) so that the method of proof used in that

paper also applies here. That method is based on a standard Taylor expansion and, an

inspection of the arguments used by Andrews et al. (2006) in the proof of their Theorem
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1, shows that we only need to show that the appropriately standardized Hessian of the

log-likelihood function satisfies

sup
θ∈Θ0

∥∥∥∥∥∥
N−1

T−s−(n−1)r∑

t=r+1

(
∂2

∂θ∂θ′
gt(θ)−

∂2

∂θ∂θ′
gt(θ0)

)
∥∥∥∥∥∥

p
→ 0, (B.15)

where Θ0 is a small compact neighborhood of θ0 with non-empty interior (cf. Lanne and

Saikkonen (2008)). From the expressions of the components of ∂2gt(θ)/∂θ∂θ
′ it can be

checked that ∂2gt(θ)/∂θ∂θ
′ is stationary and ergodic, and, as a function of θ, continuous.

Hence, a sufficient condition for (B.15) to hold is that ∂2gt(θ)/∂θ∂θ
′ obeys a uniform law

of large numbers over Θ0, which is turn is implied by

Eθ0

(
sup
θ∈Θ0

∥∥∥∥
∂2

∂θ∂θ′
gt(θ)

∥∥∥∥

)
<∞ (B.16)

(see Theorem A.2.2 in White (1994)).

We demonstrate (B.16) for some typical components of ∂2gt(θ)/∂θ∂θ
′ and note that the

remaining components can be handled along similar lines. Of ∂2gt(θ)/∂ϑi∂ϑ
′
j i, j ∈ {1, 2}

we only consider ∂2gt(θ)/∂ϑ1∂ϑ
′
2. In what follows, c1, c2, ... will denote positive constants.

From (A.14), Assumption 3, and the definitions of the quantities involved (see (A.2),

(A.11), (A.6)) it can be seen that

Eθ0

(
sup
θ∈Θ0

∥∥∥∥
∂2

∂ϑ1∂ϑ
′
2

gt(θ)

∥∥∥∥

)
≤ c1Eθ0

(

sup
θ∈Θ0

‖et (θ)‖

r∑

i=1

∥∥∥∥
∂

∂ϑ2
ut−i (ϑ2)

∥∥∥∥

)

+c2Eθ0

(

sup
θ∈Θ0

r∑

i=1

‖ut−i (ϑ2)‖

∥∥∥∥
∂

∂ϑ2
et (θ)

∥∥∥∥

)

≤ c3Eθ0

(
‖yt‖

2 sup
θ∈Θ0

∣∣h
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)∣∣
)

+c4Eθ0

(
‖yt‖

4 sup
θ∈Θ0

∣∣h′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)∣∣
)
.

The finiteness of the last two expectations can be established similarly, so we only show

the latter. First conclude from (A.1) and Assumption 7 that, with Θ0 small enough,

sup
θ∈Θ0

∣∣h′
(
εt (ϑ)

′Σ−1εt (ϑ) ;λ
)∣∣ ≤ 2a1 + 2a2

(
sup
θ∈Θ0

εt (ϑ)
′Σ−1εt (ϑ)

)a3

≤ c5

(
1 + sup

θ∈Θ0

‖εt (ϑ)‖
2a3

)

≤ c6
(
1 + ‖yt‖

2a3
)
,
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where the last equality is obtained from the definition of εt (ϑ) (see (15)) and Loeve’s

cr—inequality (see Davidson (1994), p. 140). Thus, it follows that we need to show the

finiteness of Eθ0
(
‖yt‖

4+2a3
)
or, by (5) and Minkowski’s inequality, the finiteness of

Eθ0

(
‖εt‖

4+2a3
)
≤ c7Eλ0

(
ρ4+2a3t

)
=

πn/2

Γ (n/2)

∫ ∞

0

ζn/2+1+2a3f (ζ;λ0) dζ <∞,

where the former inequality is justified by (6) and the latter by Assumption 7.

From (15) and (A.15) it can be seen that the treatment of ∂2gt(θ)/∂σ∂σ
′ is very similar

to that of ∂2gt(θ)/∂ϑ1∂ϑ
′
2 and the same is true for ∂

2gt(θ)/∂ϑi∂σ
′ (i = 1, 2) (see (A.16),

(A.5), and (A.6)). Next consider ∂2gt(θ)/∂λ∂λ
′. The dominance assumptions imposed

on the third and fifth functions in Assumption 7 together with the triangular inequality

and the Cauchy-Schwarz inequality imply that, with Θ0 small enough,

Eθ0

(
sup
θ∈Θ0

∥∥∥∥
∂2

∂λ∂λ′
gt(θ)

∥∥∥∥

)
≤ 2a1 + 2a2Eθ0

((
sup
θ∈Θ0

εt (ϑ)
′Σ−1εt (ϑ)

)a3)
,

where the finiteness of the right hand side was established in the case of ∂2gt(θ)/∂ϑ1∂ϑ
′
2.

The treatment of the remaining components, ∂2gt(θ)/∂ϑi∂λ
′ and ∂2gt(θ)/∂σ∂λ

′, involve

no new features, so details are omitted.

Finally, because

− (T − s− nr)−1 ∂2lT (θ̂)/∂θ∂θ
′ = − (T − s− nr)−1

T−s−(n−1)r∑

t=r+1

∂2gt(θ̂)/∂θ∂θ
′,

the consistency claim is a straightforward consequence of the fact that ∂2gt(θ)/∂θ∂θ
′ obeys

a uniform law of large numbers. This completes the proof. �
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Figure 1: Quantile-quantile plots of the residuals of the VAR(3,0)-N (upper panel) and

VAR(2,1)-t (lower panel) models for the U.S. term structure data.
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Table 1: Results of diagnostic checks of the third-order VARmodels for the term structure.

Model
VAR(3,0)-N VAR(3,0)-t VAR(2,1)-t VAR(1,2)-t VAR(0,3)-t

Ljung-Box (4)
0.172
0.118

0.014
0.069

0.094
0.063

9.4e—5
3.2e—5

0.003
0.027

McLeod-Li (4)
0.4.2e—4
0.002

0.023
0.183

0.896
0.930

5.2e—5
0.018

0.101
0.003

Log-likelihood —258.510 —229.985 —222.953 -227.454 —231.252

VAR(r, s) denotes the vector autoregressive model for (∆rt, St)
′ with the rth and sth order

polynomials Π(B) and Φ(B−1), respectively. N and t refer to Gaussian and t-distributed errors,
respectively. Marginal significance levels of the Ljung-Box and McLeod-Li tests with 4 lags are
reported for each equation.
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Table 2: Estimation results of the VAR(2,1)-t model for (∆rt, St)
′.

Π1
—0.458

(0.156)

0.782

(0.189)

0.138

(0.143)

0.075

(0.183)

Π2
—0.241

(0.090)

0.298

(0.184)

0.320

(0.097)

—0.006

(0.164)

Φ1
0.399

(0.126)

—0.210

(0.067)

—0.240

(0.260)

0.673

(0.144)

Σ
0.296

(0.096)

—0.167

(0.106)

—0.167

(0.106)

0.312

(0.189)

λ
4.085

(1.210)

The figures in parentheses are standard errors based on the

Hessian of the log-likelihood function.
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