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Abstract

This paper is concerned with univariate noncausal autoregressive models and their
potential usefulness in economic applications. We argue that noncausal autoregres-
sive models are especially well suited for modeling expectations. Unlike conventional
causal autoregressive models, they explicitly show how the considered economic vari-
able is a¤ected by expectations and how expectations are formed. Noncausal autore-
gressive models can also be used to determine to what extent the expectation, and,
hence, current value of an economic variable depends on its past realized and future
expected values. Dependence on future values suggests that the underlying economic
model has a nonfundamental solution. We show in the paper how the parameters
of a noncausal autoregressive model can be estimated by the method of maximum
likelihood and how related test procedures can be obtained. Because noncausal au-
toregressive models cannot be distinguished from conventional causal autoregressive
models by second order properties or Gaussian likelihood, a detailed discussion on
their speci�cation is provided. As an empirical application, we consider modeling the
U.S. in�ation dynamics which, according to our results, depends only on its expected
future values.
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1 Introduction

Univariate autoregressive models are commonly employed in analyzing economic time

series. Typical �elds of application include forecasting and the measurement of per-

sistence (Andrews and Chen (1994)), but the dynamics of state variables is also often

modeled as an autoregressive process in macroeconomic (see, e.g., Canova (2007))

and �nancial (see, e.g., Campbell et al. (1997)) models. However, to the best of our

knowledge, all economic applications so far restrict themselves to causal autoregressive

models where the current value of the variable of interest is forced to depend only on

its past. Noncausal autoregressive models, in contrast, also allow for dependence on

the future. In our view, this is a particularly useful feature in economic applications

where expectations play a central role (see, for instance, the literature on in�ation

persistence discussed in Section 5 below). Noncausal autoregressive models also lend

themselves to a convenient economic interpretation. In particular, they make explicit

how expectations of future error terms of the model a¤ect both the current value and

expected future values of the variable of interest.

A noncausal autoregressive model may arise as a nonfundamental solution of a

rational expectations model. In this case, noncausality can be interpreted as the

agents� information set being greater than that of the econometrician, who is esti-

mating only a univariate model (see, e.g., Hansen and Sargent (1991)). The presence

of noncausality indicates that the agents are able to forecast a part of the future

values of the economic variable in question by information unknown to the econo-

metrician. Hence, noncausal autoregressive models allow for taking the e¤ect of the

agents� true information set into account without explicitly specifying it. Besides the

discrepancy between the econometrician�s and agents� information sets, heterogeneous

information has been shown to be a potential cause of nonfundamental solutions with

nonrevealing equilibria (see, e.g. Kasa et al. (2007)).

In statistics literature, noncausal autoregressive and autoregressive moving aver-

age models have been studied, inter alia, by Breidt et al. (1991), Lii and Rosenblatt

2



(1996), Huang and Pawitan (2000), Rosenblatt (2000), Breidt et al. (2001), and An-

drews et al. (2006). However, this literature is not voluminous and, as discussed in

these papers, typical applications have been con�ned to natural sciences and engineer-

ing.1 In many of these applications it may actually not be reasonable to think of the

employed model as a time series model but rather as a one-dimensional random �eld

in which the direction of �time� is irrelevant and prediction is not of interest. This is

in stark contrast with economics where the value added of the extension to the non-

causal case most likely lies in the possibility of examining the e¤ects of expectations

of the future on the current value of an economic variable.

This paper demonstrates the potential that noncausal autoregressive models can

have in economic applications. Unlike in the aforementioned previous literature, our

formulation of the model explicitly involves both leads and lags of the autoregressive

polynomial. This is in line with the practice of explicitly including expectations in

economic models, and it also has statistical advantages. Indeed, a useful implication of

our formulation is that statistical inference on autoregressive parameters is facilitated

and it becomes, for example, straightforward to obtain likelihood based diagnostic

tests for the speci�ed orders of the autoregressive polynomials containing leads and

lags. Obtaining speci�cation tests of this kind within the previously employed for-

mulation appears less straightforward. A further advantage is that the autoregressive

parameters are orthogonal to the parameters in the distribution of the error term so

that inference on these two sets of parameters is asymptotically independent.

Once allowance for noncausality is made, model selection becomes a more com-

1As far as we know, the only empirical example of noncausal autoregressive moving average

models with economic data is provided by Breidt et el. (2001) who demonstrate that a noncausal

�rst order autoregressive model is appropriate for modeling a daily time series of Microsoft trading

volume. Empirical economic examples of related models with a noninvertible moving average part

are given in Huang and Pawitan (2000) and Breidt et al. (2001). In the former paper a noninvertible

moving average model is applied to U.S. unemployment rate whereas the latter uses the so-called

all-pass model to New Zealand/U.S. exchange rate. No discussion about expectations is provided is

these papers, however.
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plicated empirical issue than in conventional causal autoregressions. Which model is

selected is also of great economic interest, as it tells us to what extent the economic

variable depends on its past and expected future values. Dependence on future values

suggests nonfundamentalness, and distinguishing between fundamental and nonfun-

damental representations is particularly important in rational expectations models.

One well-known complication with noncausal autoregressions is that a non-Gaussian

error term is required to achieve identi�cation. In previous economic applications,

causal autoregressive models with Gaussian error terms have typically been assumed.

However, this approach has usually been justi�ed by quasi maximum likelihood (ML)

arguments because signi�cant departures from Gaussianity, especially excess kurto-

sis, have been detected by diagnostic checks. In this paper, an error term with a

t-distribution is found to provide an adequate �t but other leptokurtic distributions

could also be considered. Once the distribution of the error term has been speci�ed,

we follow Breidt et al. (1991) and consider, in addition to diagnostic tests, a model

selection algorithm based on the maximized log-likelihood function.

The proposed model is applied to study the U.S. in�ation dynamics. A large part

of the related voluminous previous literature based on univariate methods concen-

trates on the �nding that in�ation seems to be highly persistent which is considered

to be in contrast with typical New Keynesian models assuming in�ation to be forward-

looking. Previous empirical results are based on conventional causal autoregressive

models in which high persistence indeed necessarily implies backward-looking behav-

ior. However, our results suggest that a purely noncausal autoregressive model is a

far better description for U.S. in�ation. This implies that the persistence previously

found with univariate methods is not caused by agents� relying on past in�ation when

forming expectations. Instead, it is caused by predictability inherent in the noncausal

autoregressive nature of the process, which, in turn, may be explained by nonfunda-

mentalness due to omitting relevant variables. It should be pointed out that although

a large part of the literature on in�ation persistence, including this paper, is based

on univariate models, typical New Keynesian models incorporate also other drivers
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of in�ation, such as a measure of marginal costs. However, the aim of our empiri-

cal application is merely to contribute to this literature by showing that not even in

univariate analysis is dependence on past in�ation in forming expectations the only

possible explanation of the observed in�ation persistence.

The rest of the paper is organized as follows. In Section 2 the noncausal autore-

gressive model is introduced and its properties are discussed. Section 3 considers

(approximate) ML estimation and statistical inference in noncausal autoregressive

models. In Section 4 a small-scale simulation study is conducted to examine the

practical relevance of the asymptotic results presented in Section 3 as well as the

aforementioned model selection procedure. Section 5 presents an empirical applica-

tion to U.S. in�ation. Finally, Section 6 concludes.

2 Model

Let yt (t = 0;�1;�2; :::) be a stochastic process generated by

'
�
B�1

�
� (B) yt = �t; (1)

where � (B) = 1� �1B � � � � � �rBr, ' (B�1) = 1�'1B�1� � � � �'sB�s, and �t is a

sequence of independent, identically distributed (continuous) random variables with

mean zero and variance �2 or, brie�y, �t � i:i:d: (0; �2). Moreover, B is the usual

backward shift operator, that is, Bkyt = yt�k (k = 0;�1; :::), and the polynomials
� (z) and ' (z) have their zeros outside the unit circle so that

� (z) 6= 0 for jzj � 1 and ' (z) 6= 0 for jzj � 1: (2)

If 'j 6= 0 for some j 2 f1; ::; sg, equation (1) de�nes a noncausal autoregression
referred to as purely noncausal when �1 = � � � = �r = 0. The conventional causal

autoregression is obtained when '1 = � � � = 's = 0. Then the former condition in (2)

guarantees the stationarity of the model. In the general set up of equation (1) the

same is true for the process ut = ' (B�1) yt which has the backward-looking moving
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average representation

ut =

1X

j=0

�j�t�j; (3)

where �0 = 1 and the coe¢cients �j decay to zero at a geometric rate as j !
1. Similarly, the latter condition in (2) guarantees the stationarity of the purely
noncausal process vt = � (B) yt and the validity of its forward-looking moving average

representation

vt =
1X

j=0

�j�t+j; (4)

where �0 = 1 and the coe¢cients �j decay to zero at a geometric rate as j ! 1.
The process yt itself has the two-sided moving average representation

yt =

1X

j=�1

 j�t�j; (5)

where  j is the coe¢cient of z
j in the Laurent series expansion of � (z)�1 ' (z�1)

�1 def
=

 (z). Speci�cally, by condition (2),

 (z) =

1X

j=�1

 jz
j

exists in some annulus b < jzj < b�1 with b < 1 and reduces to the one-sided special

cases obtained from (3) and (4) when yt is causal and purely noncausal, respectively.

The representation (5) implies that yt is a stationary and ergodic process with �nite

second moments. We use the abbreviation AR(r; s) for the model de�ned by (1). In

the causal case s = 0, the conventional abbreviation AR(r) is also used.

In the previous literature on noncausal autoregressions, it has been common to

specify the model as

a (B) yt = "t; (6)

where a (B) = 1 � a1B � � � � � apB
p with ap 6= 0 and "t is an i:i:d: sequence with

zero mean and �nite variance (see, e.g., Breidt et al. (1991), Rosenblatt (2000) and

the references therein). In this set up the relevant stationarity condition is a (z) 6= 0;
jzj = 1. When it holds yt has a two-sided moving average representation similar to
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that in (5) (see Brockwell and Davis (1987, p. 88)). Moreover, when p = r + s and

the number of zeros of a (z) outside (inside) the unit circle is r (s), one can factor the

polynomial a (z) as

a (z) = '� (z)� (z) ; (7)

where � (z) is as in (1) and '� (z) = 1�'�1z� � � � �'�szs has its zeros inside the unit
circle, that is, '� (z) 6= 0 for jzj � 1. Note that this particularly means that in the

noncausal case s > 0 the condition j'�sj > 1 holds.
The polynomial '� (z) can be expressed as

'� (z) = �'�szs
�
1 +

'�s�1
'�s

z�1 + � � �+ '�1
'�s
z1�s � 1

'�s
z�s
�

= �'�szs'
�
z�1
�
;

where ' (z�1) is as in (1) so that '�s�j='
�
s = �'j for j = 1; :::; s � 1 and 1='�s = 's.

Because the zeros of '� (z) lie inside the unit circle those of ' (z) lie outside the unit

circle, as can be readily checked. Thus, the latter condition in (2) holds and model

(1) can be obtained from (6) by de�ning �t = �(1='�s)"t+s. Similarly, if 's 6= 0 is

assumed in (1) the preceding reasoning can be reversed to obtain the speci�cation

(6) with "t = � (1='s) �t�s and the coe¢cients of the polynomial '� (z) in (7) given
by '�j = �'j='s, j = 1; :::; s � 1, and '�s = 1='s. Thus, when 's 6= 0 there is a

one-to-one correspondence between the parameters in (1) and (6).2

A practical complication of noncausal autoregressive processes is that they cannot

be identi�ed by second order properties or Gaussian likelihood. This can be seen

as follows. First, conclude from well-known results on linear �lters that the spec-

tral density function of the process yt de�ned by (1) (or (6) and (7)) is given by

�2=2� j� (e�i!)' (e�i!)j2. The same spectral density is obtained from a causal au-

toregressive process with lag polynomial ' (B)� (B) having its zeros outside the unit

2This kind of reparameterization of model (6) is mentioned in Lii and Rosenblatt (1996, p. 17)

in the context of a noncausal and noninvertible autoregressive moving average model. However, in

that paper the model is not explicitly written as in (1) and the case 's = 0 allowed in (1) is not

discussed.
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circle. These observations explain that yt also has the causal representation

' (B)� (B) yt = �t; (8)

where the (stationary) innovation sequence �t is uncorrelated but, in general, not

independent with mean zero and variance �2 (cf. Brockwell and Davis (1987, p. 124-

125)). Thus, even if yt is noncausal, its spectral density and, hence, autocovariance

function cannot be distinguished from those of a causal autoregressive process. Thus,

before applying a noncausal model it is advisable in practice to �rst �t an (adequate)

causal autoregression to the observed series by standard least squares or Gaussian

ML and check whether the residuals look non-Gaussian.

Unless otherwise stated, we shall henceforth assume that �t is non-Gaussian and

that its distribution has a (Lebesgue) density f� (x;�) = ��1f (��1x;�) which de-

pends on the parameter vector � (d� 1) in addition to the scale parameter � intro-
duced earlier.

The formulation (1) appears more convenient than (6) and (7) when one needs

to specify the (usually) unknown model orders r and s. Indeed, it turns out to be

quite feasible to construct conventional likelihood based tests for hypotheses such

as �r0+1 = � � � = �r = 0 (r0 < r) and 's0+1 = � � � = 's = 0 (s0 < s). For the

latter hypothesis similar test procedures seem to be more di¢cult to obtain if the

model is formulated as in (6) and (7) because j'�sj > 1 by assumption and because

the logarithm of j'�sj appears in the likelihood function (see Breidt et al. (1991)).3

A further statistical convenience of the speci�cation (1) is that the autoregressive

parameters � = (�1; :::; �r) and ' = ('1; :::; 's) turn out to be orthogonal to the

parameters �2 and � implying asymptotic independence of the corresponding ML

estimators.4

3For statistical inference the previously mentioned condition ap 6= 0 is not needed, as the de�nition
of the parameter space used in Lii and Rosenblatt (1996, p. 16) indicates.

4We use the notation x = (x1; :::; xn) to introduce the n-dimensional vector x and its components.

The same convention is also used when the components are vectors. In matrix calculations all vectors

are interpreted as column vectors and a prime is used to signify the transpose of a vector or a matrix.
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Allowing for noncausality complicates predicting the process yt which is pertinent

in economic applications when expectations are studied. Let Ft be the information
set (�-algebra) generated by fyt; yt�1; :::g and let Et (�) be the corresponding condi-
tional expectation operator. In the following discussion it is convenient to use the

formulation (6) from which it is seen that the optimal (in mean square sense) one-step

ahead predictor of yt+1 based on Ft satis�es

Et (yt+1) = a1yt + � � �+ apyt�p+1 + Et ("t+1) : (9)

If yt is noncausal, the conditional expectation on the right hand side does not vanish

because then "t+1 (= � (1='s) �t+1�s) is not independent of Ft (see (5)). Of course, the
situation is similar when predictions for longer time horizons are considered. Thus,

for optimal prediction knowledge of the distribution of the error process "t is required

and, even if this knowledge is available, prediction is not easy because, in general, the

prediction problem is nonlinear. Indeed, it is shown in Rosenblatt (2000, Corollary

5.4.2) that if "t is non-Gaussian with �nite (k + 1)st cumulant for some integer k � 2
and if the zeros of '� (z) are simple then the optimal one-step ahead predictor is

necessarily nonlinear. If "t is Gaussian so is yt and the prediction problem is linear,

but this is of little practical interest because then the possible noncausal nature of

the process cannot be empirically revealed.

Even if the distribution of the error process "t is known the conditional expecta-

tions needed to compute optimal predictions may be unobtainable analytically. It is

known, however, that even in the noncausal case the process yt is pth order Markov-

ian so that the conditional expectations Et (yt+h) (h � 1) are functions of yt; :::; yt�p+1
only (see Rosenblatt (2000, p. 90�93)). Thus, these functions can be estimated by sim-

ulating a long realization from the considered noncausal autoregression, as described

in Breidt et al. (1991), and using available nonparametric estimation methods. This

approach may be used to obtain predictions in practice but working out its feasibility

and theoretical properties is outside the scope of this paper.

The noncausal autoregressive model considered in the previous section is econom-
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ically appealing as a description of how economic agents form expectations and how

realized values are a¤ected by expectations. We can think the autoregressive rep-

resentation of an economic variable as a solution of a rational expectations model.

The solution may be fundamental or nonfundamental, the latter case being character-

ized by the process of the economic variable depending on future (nonfundamental)

shocks. This property is shared by the noncausal autoregressive model. As Hansen

and Sargent (1991), among others, have pointed out, an estimated model may turn

out to be nonfundamental, if the econometrician�s information set is smaller than

that of the agents. Therefore, �nding noncausality may be interpreted as the causal

univariate autoregressive model being inadequate, despite the causal and noncausal

models having the same autocorrelation function. In this case, the noncausal autore-

gressive model captures the e¤ect of the missing variables (the discrepancy between

the information sets of the agents and the econometrician, with the latter consisting

only of the history of the variable in question, Ft), and allows for explicitly modeling

the dependence of both expectations and realized values on future errors.

We �rst demonstrate that the model implies that the current value of the process,

yt, is a¤ected by expected future errors. Using the de�nition of the process vt and

taking conditional expectation with respect to Ft on both sides of equation (4) yields

yt = �1yt�1 + � � �+ �ryt�r +
1X

j=0

�jEt(�t+j): (10)

In a causal model, �j = 0; j > 0; and the last term is just �t implying that expected

future errors have no e¤ect on yt. However, as our discussion on equation (9) shows,

the last term is generally nonzero in a noncausal model, indicating the potential

dependence of yt on (an in�nite number of) expected future errors. Note also that in

a noncausal model Et(�t) 6= �t because �t depends on yt+j (0 < j � s) (see (1)).

The model also shows how expectations are a¤ected by future errors. Leading (4)

by one period and taking conditional expectations with respect to Ft on both sides
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gives

Et (yt+1) = �1yt + � � �+ �ryt�r+1 +

1X

j=0

�jEt(�t+1+j): (11)

In a purely causal model, future errors have no e¤ect on the conditional expectation

of yt+1 because �j = 0; j > 0; and Et (�t+1) = 0. However, as already discussed, the

last term is di¤erent from zero in a noncausal model, indicating that the conditional

expectation of future errors directly a¤ects the conditional expectation of yt+1. In

economic applications, this can be interpreted as the predictable part of future errors

having an e¤ect on expectations. Note that this particularly means that, in the

noncausal case, the errors �t are nonfundamental, and they cannot be interpreted as

unpredictable fundamental shocks similar to those appearing in economic applications

of conventional causal models.

3 Parameter estimation and statistical inference

3.1 Approximate likelihood function

ML estimation of the parameters of a noncausal autoregression was studied by Breidt

et al. (1991) by using the formulation based on equation (6). Even in this set up

our model is slightly more general than theirs because we allow the distribution of

the error term to depend on the additional parameter vector �. This generalization

has been considered by Andrews et al. (2006) in a related context and, following

the arguments used in their paper, it can also be straightforwardly handled in our

case. Thus, we shall assume that the density function f (x;�) satis�es the regularity

conditions of Andrews et al. (2006) which, among other things, require that f (x;�)

is twice continuously di¤erentiable with respect to (x; �), non-Gaussian, and positive

for all x 2 R and all permissible values of �. The permissible parameter space of �,
denoted by �, is some subset of Rd whereas the permissible space of the parameters

�; ' and � is de�ned by the conditions in (2) and by � > 0. For convenience, the

regularity conditions of Andrews et al. (2006) are also presented in the appendix and,
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unless otherwise stated, they will henceforth be assumed. Densities that satisfy these

conditions include a rescaled t-density and a weighted average of Gaussian densities.

If the model is de�ned as in (6) and (7), ML estimators of the parameters in (1)

can be derived by a smooth one-to-one transformation from ML estimators of the

parameters in (6), and hence their limiting distribution can also be easily obtained.

However, because this reasoning is not directly applicable if the degree of the poly-

nomial ' (z) is overspeci�ed (i.e., 's = 0) we shall provide details based directly on

the speci�cation (1). We start by deriving the likelihood function.

Suppose we have an observed time series y1; :::; yT . Using the de�nitions ut =

' (B�1) yt and vt = � (B) yt we can write
2

666666666666
4

u1
...

uT�s

vT�s+1
...

vT

3

777777777777
5

=

2

666666666666
4

y1 � '1y2 � � � � � 'sys+1
...

yT�s � '1yT�s+1 � � � � � 'syT

yT�s+1 � �1yT�s � � � � � �ryT�s+1�r
...

yT � �1yT�1 � � � � � �ryT�r

3

777777777777
5

= A

2

666666666666
4

y1
...

yT�s

yT�s+1
...

yT

3

777777777777
5

or brie�y

x = Ay:

Similarly,
2

666666666666666666666
4

u1
...

ur

�r+1
...

�T�s

vT�s+1
...

vT

3

777777777777777777777
5

=

2

666666666666666666666
4

u1
...

ur

ur+1 � �1ur � � � � � �ru1
...

uT�s � �1uT�s�1 � � � � � �ruT�s�r

vT�s+1
...

vT

3

777777777777777777777
5

= B

2

666666666666666666666
4

u1
...

ur

ur+1
...

uT�s

vT�s+1
...

vT

3

777777777777777777777
5
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or

z = Bx:

Hence, the vectors z and y are related by

z = BAy:

Note that from (3) and (4) it can be seen that the components of z given by (u1; :::; ur),

(�r+1; :::; �T�s), and (vT�s+1; :::; vT ) are independent. The joint density function of z

under true parameter values can thus be expressed as

hU (u1; :::; ur)

 
T�sY

t=r+1

f� (�t;�)

!

hV (vT�s+1; :::; vT ) ;

where hU and hV signify the joint density functions of (u1; :::; ur) and (vT�s+1; :::; vT ),

respectively. It is easy to see that the (nonstochastic) matrices A and B are non-

singular and the determinant of B is unity so that we can express the joint density

function of the data vector y as

hU
�
'
�
B�1

�
y1; :::; '

�
B�1

�
yr
�
 

T�sY

t=r+1

f�
�
'
�
B�1

�
� (B) yt;�

�
!

� hV (� (B) yT�s+1; :::; � (B) yT ) jdet (A)j :

It is also easy to check that the determinant of the (T � s)�(T � s) block in the upper

left hand corner of A is unity and, using the well-known formula for the determinant

of a partitioned matrix, it can furthermore be seen that the determinant of A is

independent of the sample size T . This suggests approximating the joint density of

y by the second factor in the preceding expression, giving rise to the approximate

log-likelihood function

lT (�) =

T�sX

t=r+1

gt (�) ; (12)

where � = (�; '; �; �) and

gt (�) = log f
�
��1 (ut (')� �1ut�1 (')� � � � � �rut�r (')) ;�

�
� log �

= log f
�
��1 (vt (�)� '1vt+1 (�)� � � � � 'svt+s (�)) ;�

�
� log �:
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Here ut (') and vt (�) signify the series ut and vt treated as functions of the parame-

ters ' and �, respectively. Maximizing lT (�) over permissible values of � gives an

approximate ML estimator of �. Note that here, as well as in the next section, the

orders r and s are assumed known. Procedures to specify these quantities will be

discussed in later sections of the paper.

3.2 Asymptotic properties of the approximate ML estimator

In what follows, it will be convenient to use the notation �0 for the true value of � and

similarly for its components. It is assumed that �0, the true value �, is an interior

point of �.

We shall �rst consider the score of � evaluated at true parameter values. De�ne the

vectors Ut�1 = (ut�1; :::; ut�r) and Vt+1 = (vt+1; :::; vt+s) where ut and vt are de�ned

in terms of true parameter values so that ut =
P1

j=0 �0j�t�j and vt =
P1

j=0 �0j�t+j.

By straightforward di¤erentiation (cf. Breidt et al. (1991)) we �nd from (12) that

@

@�
gt (�0) = �

f 0
�
��10 �t;�0

�

�0f
�
��10 �t;�0

�Ut�1 (r � 1)

and
@

@'
gt (�0) = �

f 0
�
��10 �t;�0

�

�0f
�
��10 �t;�0

�Vt+1 (s� 1) ;

where f 0 (x; �) = @f (x; �) =@x and use has also been made of the fact that �0 (B) ut =

�t = '0 (B) vt with �0 (B) and '0 (B) de�ned in terms of true parameter values (e.g.

�0 (B) = 1� �01B � � � � � �0rB
r). Similarly,

@

@�
gt (�0) = ���20

 
f 0
�
��10 �t;�0

�

f
�
��10 �t;�0

� �t + �0

!

and
@

@�
gt (�0) =

1

f
�
��10 �t;�0

� @
@�
f
�
��10 �t;�0

�
(d� 1) :

The following lemma presents the asymptotic distribution of the score vector.

For the presentation of this lemma we need some notation. Let �t � i:i:d: (0; 1)

and de�ne the AR(r) process u�t by �0 (B) u
�
t = �t and the AR(s) process v

�
t by
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'0 (B) v
�
t = �t. Note that u

�
t and v

�
t are jointly stationary and causal with �nite second

moments. Next form the vectors U�t�1 =
�
u�t�1; :::; u

�
t�r

�
and V �

t�1 =
�
v�t�1; :::; v

�
t�s

�

and the associated covariance matrices �U� = Cov
�
U�t�1

�
, �V � = Cov

�
V �
t�1

�
, and

�U�V � = Cov
�
U�t�1; V

�
t�1

�
= �0V �U� . We also de�ne

J =

Z
(f 0 (x;�0))

2

f (x;�0)
dx

and set

� =

2

4 �11 �12

�21 �22

3

5 =

2

4 J �U� �U�V �

�V �U� J �V �

3

5 :

Note that �U� = ��20 Cov (Ut�1), �V � = ��20 Cov (Vt+1), and J > 1 (see condition

(A5) of Andrews et al. (2006)). Finally, de�ne the (d+ 1)� (d+ 1) matrix


 =

2

4 !2� !��

!�� 
��

3

5 ; (13)

where


�� =

Z
1

f (x;�0)

�
@

@�
f (x;�0)

��
@

@�
f (x;�0)

�0
dx;

!�� = ���10
Z
x
f 0 (x;�0)

f (x;�0)

@

@�
f (x;�0) dx = !0��;

and

!2� = ��20

 Z
x2
(f 0 (x;�0))

2

f (x;�0)
dx� 1

!

:

Now we can present the limiting distribution of the score vector.5

Lemma 1 If conditions (A1)�(A7) of Andrews et al. (2006) hold, then

(T � p)�1=2
T�sX

t=r+1

@

@�
gt (�0)

d! N (0; diag (�;
)) :

Moreover, the matrices � and 
 are positive de�nite.

5The notation diag (A1; A2) signi�es a block diagonal matrix with diagonal blocks A1 and A2.
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Lemma 1 can be proved in the same way as Propositions 1 and 2 of Breidt et al.

(1991). An outline of the needed arguments is provided in the appendix. Here we

note that the positive de�niteness of the matrix � follows from the above mentioned

inequality J > 1 which holds when �t is non-Gaussian (see Remark 2 of Andrews et al.

(2006)). The matrix � is positive de�nite even if the model order r or s is overspeci�ed

or both are overspeci�ed. For instance, suppose that r = s and consider the extreme

case where � = ' = 0. Then, �11 = �22 = J Ir and �12 = Ir so that the matrix �

is clearly positive de�nite when J > 1. In the general case of Lemma 1 the positive

de�niteness of the matrix 
 must be assumed (cf. condition (A6) of Andrews et al.

(2006)). The block diagonality of the covariance matrix of the limiting distribution

implies that the scores of (�; ') and (�; �) are asymptotically independent. This

property, commonly referred to as orthogonality of the parameters (�; ') and (�; �), is

convenient because it means that statistical inference on the autoregressive parameters

� and ', which is typically of primary interest, is asymptotically independent of the

estimation of the parameters � and � describing the distribution of the error term

�t. It may be noted that similar orthogonality does not hold if the formulation given

by (6) and (7) is used because then the score of the autoregressive parameter '�s is

asymptotically correlated with the score of the scale parameter of the error term "t

(see Proposition 2 of Breidt et al. (1991)).

Using a conventional Taylor series expansion of the score in conjunction with

Lemma 1 and the assumed regularity conditions one can show the existence of a

consistent and asymptotically normal (local) maximizer of the approximate likelihood

function. Speci�cally, the following theorem can be established. Its proof makes use

of arguments similar to those in Breidt et al. (1991) and Andrews et al. (2006) and

is outlined in the appendix.

Theorem 2 If conditions (A1)�(A7) of Andrews et al. (2006) hold, there exists a

sequence of (local) maximizers �̂ = (�̂; '̂; �̂; �̂) of lT (�) in (12) such that

(T � p)1=2 (�̂ � �0)
d! N

�
0; diag

�
��1;
�1

��
:
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Due to the block diagonality of the covariance matrix of the limiting distribution,

the (approximate) ML estimators (�̂; '̂) and (�̂; �̂) are asymptotically independent.

This means that if a consistent initial estimator (~�; ~') of (�; ') is available an es-

timator of (�; �) with the same asymptotic distribution as the ML estimator (�̂; �̂)

can be obtained by maximizing the function lT (~�; ~'; �; �). As the initial estimator

(~�; ~') one may consider the least absolute deviation (LAD) estimator based on the

(possibly incorrect) assumption that �t has a Laplace (or double exponential) distri-

bution. In the case of the speci�cation (6) Huang and Pawitan (2000) establish the

consistency of the LAD estimator when, in a certain sense, the true distribution of

�t has tails heavier than the normal distribution. Their result applies to a variety

of known distributions including the t-distribution and normal scale mixtures. An

inspection of the residuals based on a LAD estimation may also help to specify an

appropriate distribution for the error term �t.

3.3 Statistical inference

To be able to compute approximate standard errors for the components of the es-

timator �̂ and construct con�dence intervals and conventional Wald tests we need

consistent estimators of the covariance matrices � and 
. We use the conventional

estimator based on the Hessian of the approximate log-likelihood function which yields

a consistent estimator, as discussed in the proof of Theorem 2. Speci�cally, we have

Q̂
def
= � (T � p)�1

T�sX

t=r+1

@2

@�@�0
gt(�̂)

p! diag (�;
) : (14)

One could also consider an estimator based on the expressions of the matrices � and


 given in the previous section. These matrices can be consistently estimated by

expressing them as functions of the parameter vector � and replacing � by its ML

estimator �̂. The resulting estimator is block diagonal. We will not consider this

estimator because simulations on Wald tests showed that it yields a test whose size

properties are inferior to those based on the estimator in (14).
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Approximate standard errors of the components of �̂ can be obtained by computing

the square roots of the diagonal elements of the matrix (T � p)�1 Q̂�1. Conventional

Wald tests are also readily obtained. For instance, one can consider testing the null

hypotheses

Hr0;s0 : �0;r0+1 = � � � = �0r = 0 and '0;s0+1 = � � � = '0s = 0;

where r0 < r and s0 < s with the case r0 = r or s0 = s obtained in with an obvious

modi�cation. Under this null hypothesis at least one of the model orders can be

reduced. To generalize slightly, consider the null hypothesis H : R�0 = 0 where the

(known) m� (r+ s+ d+1) matrix R is of full row rank. The conventional Wald test
statistic can be written as

W = (T � p) �̂
0
R0(RQ̂�1R0)�1R�̂

d! �m;

where the convergence assumes the null hypothesis and is an immediate consequence

of Theorem 2.

One may also use the likelihood ratio (LR) test. Let ~� signify the ML estimator

of the parameter � constrained by the null hypothesis H so that in the case of the

hypothesis Hr0;s0 the estimator
~� is obtained by applying ML in the model with orders

r0 and s0. The LR test statistic is

LR = lT (�̂)� lT (~�)
d! �m;

where the null hypothesis is again assumed. The limiting distribution can be justi�ed

by a standard application of the results given in the appendix which can also be

used to obtain the corresponding score (Lagrange multiplier) test. To the best of our

knowledge, test procedures of this kind have not been explicitly considered in the

previous literature of noncausal autoregressive models where the model is formulated

as in (6) and (7). In this formulation treating the null hypothesis which speci�es

s0 < s is hampered by the condition j'�sj > 1.
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4 Simulation study

To study the �nite-sample properties of the estimators and tests proposed in Section 3,

we conducted a small simulation study. Following Breidt et al. (1991), we concentrate

on the second-order process as the data-generating process (DGP) because it is the

simplest model that allows for a versatile analysis of various aspects of estimation and

testing. Throughout, the results are based on 10,000 realizations. We generate each

realization in two steps. First, a series from the causal AR(r) model � (B) vt = �t

(t = r+1; :::; T ) is generated. Then yt is computed recursively from ' (B�1) yt = vt for

t = T�s; :::; 1. The r and s initial values, respectively, are set to zero, and to eliminate
initialization e¤ects 100 observations at the beginning and end of each realization are

discarded. In all experiments, the error term �t is assumed to follow the t-distribution

with 3 degrees of freedom and � is set equal to 0.1. We consider three di¤erent

combinations of parameter values, (�1; '1) = f(0:9; 0:9); (0:9; 0:1); (0:1; 0; 9)g. In the
�rst case, the roots of the lag polynomials are equal and close to the unit circle, in

the two other cases the roots of the �causal� and �noncausal� polynomials are clearly

di¤erent. Three sample sizes, 100, 200 and 500 are considered.

The mean and standard deviation of the ML estimators of �1 and '1 are pre-

sented in Table 1. Even with as few as 100 observations the parameters are relatively

accurately estimated in each case, and the biases as well as the standard deviations

clearly diminish as the sample size increases. In the case (�1; '1) = (0:9; 0:9), �1 is

more accurately estimated in terms of both criteria, whereas in the other two cases it

is the parameter taking the smaller value that is estimated with a somewhat smaller

bias. The di¤erences are, however, minor.

The results concerning the Wald and LR tests of hypotheses involving a single

parameter in Table 2 indicate that both tests tend to overreject to some extent, but

the problem is mitigated as the sample size increases. For the Wald test, the case

(�1; '1) = (0:9; 0:9) seems to be the most di¢cult, while the di¤erences between the

rejection rates of the Wald and LR tests are minor in the other cases. In general,
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the LR tests on the parameter with the smaller value have somewhat better size

properties, in accordance with the properties of the ML estimator above. In contrast,

this pattern does not carry over to the Wald test.

As the Wald test tends to overreject in the (�1; '1) = (0:9; 0:9) case, we only

present simulation results on power for the LR test. Because the size properties do

not di¤er much between the di¤erent DGP�s, only the rejection rates of the LR test

(at the nominal 5% level of signi�cance) for the �rst DGP ((�1; '1) = (0:9; 0:9))

are presented in Figure 1. Moreover, we concentrate on tests concerning �1 because

there is no reason to expect the power properties to greatly depend on the particular

parameter. The values of �1 in the alternative DGP�s that are used to generate the

data are given by 0:9 � c=
p
T (c = 0:0; 0:2; 0:4; : : : ; 2:0), and the null hypothesis in

the test is �1 = 0:9. The rejection rates for alternatives very close to the null are

moderate for all sample sizes considered (T = 100; 200; 500), but they rapidly increase

with c, especially with the greater sample sizes. Hence, the LR test seems to have

reasonable power. These results, however, suggest that in small samples, one should

not rely on this test alone in model selection.

Breidt et al. (1991) suggested a model selection procedure based on maximizing

the likelihood function. In other words, all purely causal, noncausal and mixed models

of a given order (p) are estimated, and the model yielding the greatest value of the

likelihood function is selected. Their simulation results lend support to this procedure,

and in Table 3, we present similar results when the DGP is the mixed second-order

model. The procedure seems to work relatively well even with 100 observations, and

the performance greatly improves with the sample size. However, there seem to be

some di¤erences depending on the parameter values. When (�1; '1) = (0:9; 0:9), the

correct model is selected in 95% of the realizations with 200 observations, and the

corresponding �gure is 99.9% with 500 observations. In contrast, in the cases with

di¤erent parameter values, the causal (noncausal) model is selected far too often when

�1 is smaller (greater), even with 500 observations. In these cases model selection is

presumably complicated by the fact that the considered processes are rather close to
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�rst-order processes. Although the proposed procedure works fairly well even in these

di¢cult cases, additional simulation experiments involving greater values of the other

parameter (not reported) indicated improvements, with the correct model sometimes

being selected even more frequently than in the (�1; '1) = (0:9; 0:9) case. Despite

the quite satisfactory performance of this procedure, the results suggest that model

selection should not be based on this criterion alone, but, in addition, diagnostic tests

should be employed.

5 Empirical application

In this section, we apply the models and methods discussed above to modeling U.S.

in�ation dynamics. Our focus is on examining the nature of in�ation persistence that

has given rise to a voluminous literature in the past few decades. The central ques-

tion in this line of research is whether in�ation is a purely forward-looking variable

as required by typical New Keynesian models. This assumption has been tested by

checking for serial correlation in in�ation, and typically measures based on univari-

ate autoregressive models such as the cumulative impulse response (CIR) (Andrews

and Chen (1994)), have indicated quite high persistence of in�ation in industrialized

countries (for a survey of the recent empirical literature, see Cecchetti and Debelle

(2006)). The presence of high autocorrelation has been interpreted as evidence in favor

of the dependence of in�ation expectations on past in�ation, and, hence, against the

forward-looking in�ation expectations assumed in the New Keynesian models. This,

in turn, has led to modi�cations of existing theory that try to explain the apparently

backward-looking behavior. This paper contributes to the large empirical literature

that studies in�ation persistence in the univariate framework only. This approach

excludes a number of potential drivers of the in�ation process included in macroeco-

nomic theories of price determination, such as marginal costs and output gap. A

multivariate extension of our model is, however, outside the scope of this paper.

To the best of our knowledge, only causal autoregressive models have been enter-
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tained in the previous literature on in�ation. As a consequence, high persistence has

automatically been interpreted as evidence of the dependence of in�ation expectations

on past in�ation (see Cecchetti and Debelle (2006), and the references therein). How-

ever, as discussed in Section 2, high autocorrelation and, hence, strong persistence

do not, per se, indicate such a dependence. Even if current in�ation only depends

on expected future in�ation, the process may be persistent if autocorrelation is used

as a measure of persistence. The same is true if the CIR based on a causal autore-

gressive model is used to measure persistence. Indeed, as seen in Section 2, for any

purely noncausal autoregressive process there is a corresponding causal process with

the same lag polynomial and, hence, the same autocorrelation function and impulse

response function. Thus, causality or noncausality and, hence, dependence on past

or expected future values, cannot be distinguished by examining the autocorrelation

function or the impulse response function of a causal autoregressive model �tted to

the series.

In what follows, we will use the procedures proposed earlier in the paper to argue

that the U.S. in�ation series is purely noncausal despite its strong persistence. This

can be interpreted as evidence in favor of in�ation being dependent on expectations of

future in�ation and not on past in�ation. In view of the discussion in Section 2, �nding

noncausality suggests the presence of nonfundamentalness in the in�ation process,

with the likeliest explanation being that agents have other information besides past

and present in�ation relevant for predicting in�ation.

The in�ation series that we model, is the annualized quarterly in�ation rate com-

puted from the seasonally adjusted U.S. consumer price index (for all urban con-

sumers) published by the Bureau of Labor Statistics. The sample period comprises

148 observations, from 1970:1 to 2006:4. There is positive autocorrelation even at

high lags as shown by the autocorrelation function depicted in Figure 2. The Ljung-

Box test indicates that autocorrelation is also signi�cant at all reasonable signi�cance

levels. However, by visual inspection and unit root tests, the series can be consid-

ered stationary. Further evidence of persistence is provided by the CIR based on
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the causal Gaussian AR(3) model that turned out to adequately capture the linear

dependence in the in�ation series (see Table 4). The CIR of this model equals 7.6,

which is comparable to the values obtained by Cecchetti and Debelle (2006) for the

OECD countries, indicating high persistence.

In Table 4, we present the estimation results of a number of autoregressive models

for the demeaned in�ation, along with some diagnostic tests.6 Of Gaussian autore-

gressive models up to order 4, the AR(3) model (AR(3,0)-N ) was selected by both

the Akaike (AIC) and Bayesian (BIC) information criteria. However, the diagnos-

tic tests suggest that this model is misspeci�ed. Although the Ljung-Box test does

not indicate the presence of unmodeled autocorrelation, there is evidence of condi-

tional heteroskedasticity, as the p-value of the McLeod-Li test is 0.003.7 Moreover, the

quantile-quantile plot of the residuals in the upper panel of Figure 3 indicates that the

normal distribution fails to capture the tails of the error distribution. Also, normality

of the quantile residuals of the AR(3,0)-N model is rejected by the Shapiro-Wilk test

at the 10% level (p-value is 0.066). These �ndings suggest that a more leptokur-

tic distribution, such as the t-distribution with a relatively small degrees-of-freedom

parameter might provide a more satisfactory �t.

Because a Gaussian AR(3) model is deemed adequate in describing the autocorre-

lation structure of the in�ation series, we proceed by estimating all alternative causal

and noncausal AR(r; s) models with r + s = 3, following the procedure proposed in

Section 4. The error term is assumed to have a t-distribution with � degrees of free-

6Estimation is done using the BHHH algorithm in the GAUSS CMLMT library.
7Note that, when the orders of the model are misspeci�ed, the Ljung-Box and McLeod-Li tests

are not exactly valid as they do not take estimation errors correctly into account. The reason is that

a misspeci�cation of the model orders makes the errors dependent, as pointed out in the case of the

causal speci�cation (8). Nevertheless, p-values of these tests can be seen as convenient summary

measures of the autocorrelation remaining in residuals and their squares. A similar remark applies

to the Shapiro-Wilk test used for quantile-quantile plots.
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dom.8 Of the four models, the purely noncausal model (AR(0,3)-t) maximizes the

log-likelihood function by a clear margin to the other speci�cations. Furthermore,

according to the diagnostic tests, the AR(1,2)-t and AR(0,3)-t models are the only

speci�cations for which there is no strong evidence of remaining autocorrelation and

conditional heteroskedasticity. The adequacy of the AR(0,3)-t model was also checked

by testing it against higher-order speci�cations, and the coe¢cients of the additional

terms turned out to be virtually insigni�cant in the LR test. The p-values of the extra

parameter in the AR(1,3)-t and AR(0,4)-t models, are 0.243 and 0.283, respectively.

Hence, the results attest to purely noncausal in�ation dynamics, indicating that it is

the expectations of future errors that drive the in�ation process.

In all cases, the degrees-of-feedom parameter � is estimated small, indicating fat-

tailed error distributions. This is not surprising given the bad �t of the Gaussian

AR(3) model. The quantile-quantile plot of the AR(0,3)-t model depicted in the

lower panel of Figure 3 lends support to the adequacy of the t-distribution, as does the

Shapiro-Wilk test with p-value 0.48. As a matter of fact, all models with t-distributed

errors generated a similar quantile-quantile plot, indicating that great improvements

in �t are brought about by only properly selecting the error distribution.

In summary, the results strongly indicate purely noncausal in�ation dynamics.

Hence, the apparent persistence in in�ation observed in univariate analyses is not

caused by relying on past in�ation in forming expectations but by the predictability

of nonfundamental shocks to in�ation. It is not clear what causes nonfundamental-

ness. The likeliest explanation is model misspeci�cation such that the univariate

model is too simple, and in reality, the agents have other information besides in�a-

8The log-likelihood function equals

lT (�) =
T�sX

t=r+1

gt (�) ;

where

gt (�) = log

(
� [(�+ 1) =2]

�1=2� (�=2)
(�� 2)�1=2

�
1 +

��2�2t
�� 2

��(�+1)=2)

� log �:
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tion history that helps them to predict in�ation. Nevertheless, the fact that only a

purely noncausal autoregressive model is deemed adequate, can be seen as evidence

against in�ation expectations being driven by past in�ation, causing high persistence.

This �nding does not lend support to the common practice in the literature of aug-

menting the Phillips curve by lagged in�ation. As a matter of fact, if the in�ation

series follows a noncausal autoregressive process, the true persistence of a shock to

the in�ation series may be di¤erent from that implied by the autocorrelation func-

tion or the CIR based on a causal autoregressive model. Moreover, because optimal

predictions in the noncausal autoregressive model are nonlinear, persistence and the

shape of the impulse response function may depend on the sign and size of a shock

as well as the initial values. While the computation of the CIR is straightforward in

the case of a causal autoregressive model, it becomes di¢cult when noncausality is

present. In this case, tracing the e¤ects of a shock calls for computing conditional

expectations which, as pointed out in Section 2, are not available in closed form but

require simulation methods. This issue lies outside the scope of this paper.

6 Conclusion

In this paper, we have considered univariate noncausal autoregressive models that, to

the best of our knowledge, have so far not attracted attention in the economics and

�nance literature. In the applications presented in the related statistics literature,

the direction of time has typically been an irrelevant aspect which is not the case in

economic applications where expectations of the future play a central role. There-

fore, we argue that allowing for noncausality opens up new possibilities for modeling

expectations and their e¤ects on the dynamics of economic variables. In particular,

these models facilitate determining to what extent expectations of economic variables,

and, hence, their current values depend on past realized and expected future values.

Dependence on future values can be interpreted as nonfundamentalness that is likely

to arise often in rational expectations models. Our techniques make it possible to
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distinguish between fundamental and nonfundamental representations and estimate

nonfundamental models in a new way.

We discuss ML estimation and develop related tests for noncausal autoregressive

models. Furthermore, based on a number of simulation experiments and our expe-

rience with actual economic data, we propose the following procedure for specifying

a potentially noncausal autoregressive model. The �rst step is to �t a conventional

causal autoregressive model by least squares or Gaussian ML and determine its or-

der by using conventional procedures such as diagnostic checks and model selection

criteria. Once an adequate causal model is found, its error term should be tested for

Gaussianity. Because identi�cation requires the error term be non-Gaussian, we can

proceed only if deviations from Gaussianity are detected. A variety of error distrib-

utions can be considered; in our empirical application we successfully employed the

t-distribution. With the chosen error distribution, all causal and noncausal autore-

gressive models of the selected order are then estimated and the model maximizing

the log-likelihood function is selected. Finally, through diagnostic tests the adequacy

of this model is con�rmed. These diagnostic checks should give information on direc-

tions in which the model potentially fails.

In future work, we plan to look at extensions of the univariate model consid-

ered in this paper. Being able to handle multiple times series is of interest, as our

discussion about in�ation persistence at the beginning of Section 5 also indicates.

Using noncausal autoregressions to model �nancial returns is another obvious �eld

of application. To be able to adequately capture the erratic behavior of these time

series probably calls for extensions of the basic model considered in this paper. In

particular, allowing for forward-looking dynamics is hardly su¢cient to model the

conditional heteroskedasticity prevalent in �nancial returns.
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Mathematical appendix

We shall �rst present the regularity conditions (A1)�(A7) of Andrews et al. (2006).

We use �0 � � to signify some neighborhood of �0.

(A1) For all x 2 R and all � 2 �, f (x;�) > 0 and f (x;�) is twice continuously

di¤erentiable with respect to (x; �).

(A2) For all � 2 �0,
R
xf 0 (x;�) dx = xf (x;�) j1�1 �

R
f (x;�) dx = �1.

(A3)
R
f 00 (x;�0) dx = f 0 (x;�0) j1�1 = 0.

(A4)
R
x2f 00 (x;�0) dx = x2f 0 (x;�0) j1�1 � 2

R
xf 0 (x;�0) dx = 2.

(A5) 1 <
R
(f 0 (x;�0))

2 =f (x;�0) dx.

(A6) The matrix 
 de�ned in (13) is positive de�nite.

(A7) For j; k = 1; :::; d and all � 2 �0,

� f (x;�) is dominated by a function f1 (x) such that
R
x2f1 (x) dx <1, and

� x2
(f 0 (x;�))2

f (x;�)2
, x2

����
f 00 (x;�)

f (x;�)

����, jxj
����
@f 0 (x;�) =@�j

f (x;�)

����,
(@f 0 (x;�) =@�j)

2

f 2 (x;�)
, and

j@2f (x;�) =@�j@�kj
f (x;�)

are dominated by a1 + a2 jxjc1, where a1, a2, and c1 are

nonnegative constants and
R
jxjc1 f1 (x) dx <1.

Proof of Lemma 1. First consider the covariance matrix of the score. For sim-

plicity, denote et = f 0
�
��10 �t;�0

�
=
�
f
�
��10 �t;�0

�
�0
�
= f 0�0

�
��10 �t;�0

�
=f�0

�
��10 �t;�0

�

and notice that

E(e2t ) = E
h�
f 0�0 (�t;�0) =f�0 (�t;�0)

�2i

= ��20

Z �
f 0 (x;�0)

2 =f (x;�0)
�
dx

= ��20 J ;
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where the second equality is based on the fact that f�0 (x;�0) = ��10 f
�
��10 x;�0

�
is

the density function of �t (cf. equation (2.13) of Breidt et al. (1991)). Thus, because

et and Ut�1 are independent and �U� = ��20 Cov (Ut�1),

Cov

�
@

@�
gt (�0)

�
= Cov (�Ut�1et)

= E(e2t )Cov (Ut�1)

= J �U� :

Because the sequence Ut�1et is uncorrelated we have

lim
T!1

(T � p)�1Cov

 
T�sX

t=r+1

@

@�
gt (�0) ;

T�sX

t=r+1

@

@�
gt (�0)

!

= J �U� :

Similarly, the independence of et and Vt+1 and the equality �V � = ��20 Cov (Vt+1) give

Cov

�
@

@'
gt (�0)

�
= J �V �

and, by the uncorrelatedness of the sequence Vt+1et;

lim
T!1

(T � p)�1Cov

 
T�sX

t=r+1

@

@'
gt (�0) ;

T�sX

t=r+1

@

@'
gt (�0)

!

= J �V � :

As for the covariance matrix between @gt (�0) =@� and @gt (�0) =@', �rst consider

Cov (�ut�iet;�vk+jek) =

1X

a=0

1X

b=0

�0a�0bCov
�
�t�i�aet; �k+j+bek

�

=

8
<

:
�0;t�k�i�0;t�k�j; t > k; 1 � i � r; 1 � j � s

0; t � k; 1 � i � r; 1 � j � s
;

where the �rst equality follows from (3) and (4) and the second one is based on con-

dition (A2) (see also Breidt et al. (1991, p. 181)). Hence, as in Breidt et al. (1991, p.

182), the element in position (i; j) of the matrix (T � p)�1Cov (@lT (�0) =@�; @lT (�0) =@')

is

(T � p)�1
T�s�1X

k=r+1

T�sX

t=k+1

�0;t�k�i�0;t�k�j = (T � p)�1
T�s�1X

k=r+1

T�s�k�iX

t=0

�0t�0;t+i�j

!
1X

k=0

�0k�0;k+i�j;
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where �0l = 0 for l < 0. Note that the limit equals  0;j�i, as can be easily checked.

Next recall that u�t =
P1

k=0 �0k�t�k and v
�
t =

P1

l=0 �0l�t�l with �t � i:i:d: (0; 1) :

Thus,

Cov
�
u�t�i; v

�
t�j

�
=

1X

k=0

�0k

1X

l=0

�0lE(�t�i�k�t�j�l)

=

1X

k=0

�0k�0;k+i�j;

and we can conclude that

lim
T!1

(T � p)�1Cov

 
T�sX

t=r+1

@

@�
gt (�0) ;

T�sX

t=r+1

@

@'
gt (�0)

!

= �U�V � :

We have thus shown that the covariance matrix of the score of (�; ') evaluated at the

true parameter value and divided by (T � p) converges to �.

The score of (�; �) is i:i:d: and, by condition (A7), has zero mean and �nite second

moments. The de�nitions show that its covariance matrix equals that of the score of

the parameter (�p+1; �) in Andrews et al. (2006). Thus, if �2 = (�; �)

(T � p)�1Cov

 
T�sX

t=r+1

@

@�2
gt (�0) ;

T�sX

t=r+1

@

@�2
gt (�0)

!

= 
:

Using the de�nitions it is also straightforward to check that, at true parameter values,

the scores of (�; ') and (�; �) are uncorrelated so that we can conclude that

lim
T!1

(T � p)�1Cov

 
T�sX

t=r+1

@

@�
gt (�0) ;

T�sX

t=r+1

@

@�
gt (�0)

!

= diag(�;
):

The matrix 
 is positive de�nite by the assumed condition (A6). Because J > 1 (see

condition (A5)) the positive de�niteness of � can be established in the same way as

Proposition 1 of Breidt et al. (1991).

The asymptotic normality can be proved in the same way as Proposition 2 of

Breidt et al. (1991) by approximating the processes Ut�1 and Vt+1 by long moving

averages and using a standard central limit theorem for �nitely dependent stationary

processes.
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Proof of Theorem 2. We shall �rst present the second partial derivatives of

the function gt (�). To simplify notation, we write ~ut = ut (') and ~vt = vt (�) and,

furthermore, ~Ut�1 = (~ut�1; :::; ~ut�r) and ~Vt+1 = (~vt+1; :::; ~vt+s). Similarly, ~�t = ~ut �
�1~ut�1 � � � � � �r~ut�r = ~vt � '1~vt+1 � � � � � 's~vt+s will signify �t evaluated at an

arbitrary point in the permissible parameter space, not the true parameter value. We

also set h (x;�) = f 0 (x;�) =f (x;�), so that

h0 (x;�) =
f 00 (x;�)

f (x;�)
�
�
f 0 (x;�)

f (x;�)

�2
;

and let Yt stand for the r � s matrix with elements yt�i+j (i = 1; :::; r, j = 1; :::; s).

By straightforward di¤erentiation (cf. Breidt et al. (1991), p. 187),

@2gt (�) =@�@�
0 = ��2h0

�
��1~�t;�

�
~Ut�1 ~U

0
t�1

@2gt (�) =@'@'
0 = ��2h0

�
��1~�t;�

�
~Vt+1 ~V

0
t+1

@2gt (�) =@�
2 = 2��3h

�
��1~�t;�

�
~�t + ��4h0

�
��1~�t;�

�
~�2t + ��2

@2gt (�) =@�@�
0 =

1

f (��1~�t;�)
@2f

�
��1~�t;�

�
=@�@�0

� 1

f 2 (��1~�t;�)

�
@f
�
��1~�t;�

�
=@�

� �
@f
�
��1~�t;�

�
=@�

�0

@2gt (�) =@�@'
0 = ��2h0

�
��1~�t;�

�
~Ut�1 ~V

0
t+1 + ��1h

�
��1~�t;�

�
Yt

@2gt (�) =@�@� = ��3h0
�
��1~�t;�

�
~�t ~Ut�1 + ��2h

�
��1~�t;�

�
~Ut�1

@2gt (�) =@�@�
0 = ���1 ~Ut�1@h

�
��1~�t;�

�
=@�0

@2gt (�) =@'@� = ��3h0
�
��1~�t;�

�
~�t ~Vt+1 + ��2h

�
��1~�t;�

�
~Vt+1

@2gt (�) =@'@�
0 = ���1 ~Vt+1@h

�
��1~�t;�

�
=@�0

@2gt (�) =@�@�
0 = ���2~�t@h

�
��1~�t;�

�
=@�0:

Using conditions (A2)�(A4) and calculations similar to those in Breidt et al. (1991,

p. 181) it is not di¢cult to check that E [@2gt (�0) =@�@�
0] = �diag (�;
).
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As in Andrews et al. (2006), we now use the Taylor series expansion

T�sX

t=r+1

�
gt
�
�0 + T�1=2c

�
� gt (�0)

�
= T�1=2

T�sX

t=r+1

c0
@gt (�0)

@�
+
1

2
T�1

T�sX

t=r+1

c0
@2gt (�0)

@�@�0
c

+
1

2
T�1

T�sX

t=r+1

c0
�
@2gt (�

�
T (c))

@�@�0
� @2gt (�0)

@�@�0

�
c;

where c 2 Rr+s+1+d and the argument ��T (c) in the matrix of second partial derivatives
means that each row is evaluated at an intermediate point lying between �0 and

T�1=2c. Thus, if k�k signi�es the Euclidean norm we have supc2K k��T (c)� �0k ! 0

for any compact set K � R
r+s+1+d. Moreover, using the dominance conditions in

(A7) and arguments similar to those in Breidt et al. (1991, p. 186-190) it can be

shown that a uniform law of large numbers for stationary ergodic processes applies to

@2gt(�)=@�@�
0 over any small enough compact neighborhood �0 (see Theorem A.2.2

in White (1994)). Thus, we can conclude that

T�1
T�sX

t=r+1

c0
�
@2gt (�

�
T (c))

@�@�0
� @2gt (�0)

@�@�0

�
c

p! 0

for c belonging to any compact subset of Rr+s+1+d. The proof can now be completed

in the same way as the proof of Theorem 1 of Andrews et al. (2006).

Finally, note that the convergence (14) is an immediate consequence of the consis-

tency of the estimator �̂ obtained from Theorem 2 and the aforementioned fact that

@2gt(�)=@�@�
0 obeys a uniform law of large numbers.
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Figure 1: Rejection rates of the 5%-level LR test of H0 : �1 = 0:9 for T = 100 (solid

line), T = 200 (long dashes) and T = 500 (dashes). The data are generated from a

model with �1 = 0:9� c=
p
T .
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Figure 2: Autocorrelation function of the U.S. in�ation. The dashed line depicts the

upper bound of the approximate 95% con�dence band.

Figure 3: Quantile-quantile plots of the residuals of the AR(3,0)-N and AR(0,3)-t

models.
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Table 1: Finite-sample properties of the ML estimator.
DGP

�1= 0:9; '1= 0:9 �1= 0:9; '1= 0:1 �1= 0:1; '1= 0:9
T Parameter Mean St.dev. Mean St.dev. Mean St.dev.
100 �1 0.882 0.048 0.871 0.063 0.108 0.097

'1 0.874 0.051 0.107 0.095 0.869 0.064
200 �1 0.892 0.032 0.888 0.030 0.101 0.058

'1 0.888 0.033 0.102 0.058 0.888 0.029
500 �1 0.897 0.019 0.896 0.016 0.100 0.035

'1 0.896 0.019 0.100 0.035 0.896 0.016

The DGP is the AR(1,1) model where the error term follows the t-distribution with
3 degrees of freedom and � = 0.1. The results are based on 10,000 realizations.

Table 2: Rejection rates of the Wald and likelihood ratio (LR) tests.
DGP

�1= 0:9; '1= 0:9 �1= 0:9; '1= 0:1 �1= 0:1; '1= 0:9
T Parameter Wald test LR test Wald test LR test Wald test LR test
100 �1 0.081 0.059 0.060 0.075 0.066 0.061

'1 0.091 0.075 0.061 0.055 0.067 0.083
200 �1 0.074 0.056 0.059 0.062 0.060 0.054

'1 0.075 0.061 0.057 0.052 0.057 0.062
500 �1 0.063 0.055 0.054 0.055 0.056 0.051

'1 0.064 0.058 0.057 0.053 0.055 0.056

See notes to Table 1. The �gures are rejection rates of Wald and LR tests of the null
hypothesis that the parameter equals the true value. The nominal size of the tests is 5%.

Table 3: Simulation results on model selection by maximizing the likelihood function.

DGP
T �1= 0:9; '1= 0:9 �1= 0:9; '1= 0:1 �1= 0:1; '1= 0:9

AR(2,0) AR(1,1) AR(0,2) AR(2,0) AR(1,1) AR(0,2) AR(2,0) AR(1,1) AR(0,2)

100 765 8077 1158 844 5472 3684 3608 5402 990
200 205 9463 332 219 6806 2975 3034 6699 267
500 5 9991 4 4 8501 1495 1458 8538 4

See notes to Table 1. Each �gure indicates the number of times the model in question maximizes the
likelihood function out of 10,000 realizations.
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Table 4: Estimation results of the autoregressive models for the demeaned U.S. in�a-
tion.

Model
AR(3,0)-N AR(3,0)-t AR(2,1)-t AR(1,2)-t AR(0,3)-t

�1 0.310 0.326 0.678 0.944
(0.079) (0.078) (0.137) (0.034)

�2 0.195 0.212 0.194
(0.082) (0.083) (0.118)

�3 0.363 0.366
(0.080) (0.076)

'1 �0.308 �0.619 0.278
(0.127) (0.077) (0.080)

'2 �0.319 0.281
(0.075) (0.070)

'3 0.274
(0.070)

� 2.222 2.327 2.161 2.256
(0.237) (0.246) (0.209) (0.341)

� 5.018 5.046 5.461 3.743
(2.555) (2.555) (2.776) (1.398)

Log-likelihood �317.255 �314.812 �321.573 �312.006 �309.155

Ljung-Box (4) 0.306 0.446 < 0.001 0.512 0.209
McLeod-Li (4) 0.003 0.086 0.004 0.356 0.166

AR(r; s) denotes the autoregressive model with the rth and sth order polynomials �(B)
and '(B�1), respectively. N and t refer to Gaussian and t-distributed errors, respectively. The
�gures in parentheses are standard errors. Marginal signi�cance levels of the Ljung-Box and
McLeod-Li tests with 4 lags are reported.
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