
Munich Personal RePEc Archive

Predictive ability of Value-at-Risk

methods: evidence from the Karachi

Stock Exchange-100 Index

Iqbal, Javed and Azher, Sara and Ijza, Ayesha

28 January 2010

Online at https://mpra.ub.uni-muenchen.de/23752/

MPRA Paper No. 23752, posted 10 Jul 2010 01:17 UTC



 1 

Predictive Ability of Value-at-Risk Methods: Evidence from 

the Karachi Stock Exchange-100 Index 

 
 

 

 

 

By 

 

JAVED IQBAL* 

 

SARA AZHER 

 

and  

 

AYESHA IJAZ 

 

Department of Statistics, Karachi University 

 

 

 

 

 

 

 

* Corresponding Author: Email: Javed_uniku@yahoo.com 

 

 

 

We thank participants of 4
th

 Mathematics Colloquium at Institute of Business 

Management for helpful comments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

 

ABSTRACT 

 
Value-at-risk (VaR) is a useful risk measure broadly used by financial institutions all 

over the world. VaR is popular among researchers, practitioners and regulators of 

financial institutions.  VaR has been extensively used for to measure systematic risk 

exposure in developed markets like of the US, Europe and Asia. In this paper we analyze 

the accuracy of VaR measure for Pakistan’s emerging stock market using daily data from  

the Karachi Stock Exchange-100 index  January 1992 to June 2008. 

 

We computed VaR by employing data on annual basis as well as for the whole 17 year 

period. Overall we found that VaR measures are more accurate when KSE index return 

volatility is estimated by GARCH (1,1) model  especially at 95% confidence level. In this 

case the actual loss of KSE-100 index exceeds VaR in only two years 1998 and 2006.  At 

99% confidence level no method generally gives accurate VaR estimates. In this case 

‘equally weighted moving average’, ‘exponentially weighted moving average’ and 

‘GARCH’ based methods yield accurate VaR estimates in nearly half of the number of 

years. On average for the whole period 95% VaR is estimated to be about 2.5% of the 

value of KSE-100 index. That is on average in one out of 20 days KSE-100 index loses at 

least 2.5% of its value. 

 

We also investigate the asset pricing implication of downside risk measured by VaR and 

expected returns for docile portfolios sorted according to VaR of each stock. We found 

that portfolios with higher VaR have higher average returns. Therefore VaR as a measure 

of downside risk is associated with higher returns. 
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1. INTRODUCTION 

Accurate and meaningful measure of risk has always been of interest in business and 

finance. Starting since the mid-1990s a measure of risk known as Value-at-Risk (VaR) 

has emerged as the most popular risk measure for investors in financial securities, banks 

and investment companies and the regulating authorities that regulate this type of 

institutions. VaR is a single number that summarizes potential risk arising from a broad 

spectrum of causes e.g. investment risk, operational risk, liquidity risk and credit risk. 

VaR is defined as the maximum expected loss of a portfolio over a given holding period 

at a specified confidence level.  Mathematically, let tP  be the price of a financial asset on 

day t. A k-day VaR on day t is defined by 

 

 P( ktP   − tP  ≤ VaR(t, k, α)) = 1 − α.                                                                                 (1) 

Figure 1 illustrates that 95% VaR is simply the 5% 

quantile of the return distribution.  Hence unlike some risk measures which consider 

both upside and downside movement of asset return as risky such as beta , VaR is a true 

downside risk measure.  

 

Figure 1: Illustration of 95% VaR 

The concept of VaR has been adopted by regulators. For instance VaR has been a 

component of both the Basel I and Basel II recommendations on banking laws and 

regulations issued by the Basel Committee on Banking Supervision. In Pakistan also the 
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Security and Exchange Commission of Pakistan (SECP) has stressed the importance of 

VaR measures for brokerage houses to measure their risk exposure.   

 

For meaningful measure of risk exposure, the holding period holding should be selected 

to approximate one’s trading behavior. Liquid markets such as banks and portfolio 

managers typically find their portfolio change dramatically from one day to the next, and 

so consider a one-day holding period to be appropriate. On the other hand individual 

investors will typically maintain a portfolio intact for a longer period such as a month or 

longer. In this paper we employ one day holding period so we consider a relatively active 

portfolio managers’ perspective. 

 

A stock market index tracks the overall movement in the common stock prices. Many 

investment companies and fund managers investment in securities whose values are 

associated with the index value, these securities are known as index fund. This paper is 

concerned with the accuracy of different methods of computing VaR associated with 

index fund that is linked with the Karachi Stock Exchange 100 (KSE-100) index. A well 

functioning stock market is considered leading indicators of the economy. Accurate 

assessment of risk inherent in the stock index fund is therefore important at 

macroeconomic level as well.   

 

2. REVIEW OF THE LITERATURE  

There is now a huge and increasing literature on value-at-risk. Some selected papers are 

reviewed here. Darbha (2001) investigated the value-at-risk for fixed income portfolios, 

and compared alternative models including variance-covariance method, historical 

simulation method and extreme value method. He finds that extreme value method 

provides the most accurate VaR estimator in terms of correct failure ratio. Cheong (2006) 

compared the power-law value-at-risk (VaR) evaluation with quantile and non-linear 

time-varying volatility approaches. A simple Pareto distribution is proposed to account 

the heavy-tailed property in the empirical distribution of returns. The results evidenced 

that the predicted VaR under the Pareto distribution exhibited similar results with the 

symmetric heavy-tailed long-memory ARCH model. However, it is found that only the 
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Pareto distribution is able to provide a convenient framework for asymmetric properties 

in both the lower and upper tails. Inui, Kijima and Kitano (2007) shows that  VaR is 

subject to a significant positive bias. They show that VaR has a considerable positive bias 

when used for a portfolio with fat-tail distribution. Lima and Neri (2007) compared four 

different Value-at-Risk (VaR) methodologies through Monte Carlo experiments. Their 

results indicate that the method based on quantile regression with ARCH effect 

dominates other methods that require distributional assumption. In particular, they show 

that the non-robust methodologies have higher probability of predicting VaR’s with too 

many violations.  McMilllan and Speight (2007) investigated the value-at-risk in 

emerging equity markets. Comparative evidence for symmetric, asymmetric, and long-

memory GARCH models is also provided. In the analysis of daily index data for eight 

emerging stock markets in the Asia –Pacific region, in addition to the US and the UK 

benchmarks, they found both asymmetric and long memory features to be important 

considerations in providing improved VaR estimates.  Pownall, and  Koedijk (1999) 

examined the downside risk in Asian equity markets. They observe that during periods of 

financial turmoil, deviations from the mean-variance framework become more severe, 

resulting in periods with additional downside risk to investors. Current risk management 

techniques failing to take this additional downside risk into account will underestimate 

the true value-at-risk.  Lan, Hu and Jhonson (2007) employed different combinations of 

resampling techniques, which include the bootstrap and jackknife. Unlike previous 

studies that only take into consideration the uncertainty of VaR arising from the 

estimation of conditional volatility, they also account for the uncertainty of VaR resulted 

from the estimation of the conditional quantile of the filtered return series. The jackknife 

seems to be very useful in improving forecast precision. 

 

Bali and Cakici (2004) is among very few papers who consider the VaR from an asset 

pricing perspective. They investigated the relationship between portfolios ranked 

according to value-at-risk and expected stock returns. They conclude that value at risk, 

size and liquidity can explain the cross-sectional variation in expected returns, but market 

beta and total volatility have almost no power to capture the cross-section of expected 
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returns at the stock level. Furthermore, the strong positive relationship between average 

returns and VaR is robust for different investment horizons and loss-probability levels.   

 

3. VALUE-AT-RISK METHODOLOGIES 

 

3.1 PARAMETRIC METHODS OF VaR 

The parametric methods assume a standard probability model for asset returns to simplify 

the calculation of VaR. In this case only the mean and the variance of portfolio returns 

over the holding period are required. The serial independence assumption allows the 

calculation of VaR over a longer horizon by multiplying the daily variance by the square 

root of time. The VaR estimated for time t given observations upto time t-1 of a single 

asset can thus be expressed as: 

 

                      tZVVaR ttttt  
***

1/ 1/                                                  (2) 

Where Vt is the initial value of the asset, Zα is the variate that corresponds to the 

confidence level α (for example, 1.645 at the 95% confidence level)  1/ tt
 is the 

volatility of the asset returns, and Δt is the holding period. 

In case of daily returns the holding period Δt is 1.i.e, 

                            1/
**

1/   ttttt
ZVVaR                                                         (3)                                

From above equation, we know that VaR is a simple function of the return volatility. A 

variety of techniques can be used to estimate the volatility. 

 

EQUALLY WEIGHTED MOVING AVERAGE METHOD (EQWMA) 

The computation of Value-at-Risk by equally weighted moving average explains the 

probable loss for the portfolio under different circumstances. Here we describe the value 

at risk by EQWMA as the maximum possible loss that can enter within a certain time 

with a certain significance level. The basic formula for computing the value-at-risk is 

given in eq. (3) 
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Where Z  the value of confidence level and the EQWMA figure outs the portfolio 

variance by employing a predetermined amount of historical data and placing equal 

weight on each return observation as: 

                             )(
1

1 21

1/  


 



t

kts
stt X

k
                                       (4)        

Where t  is the standard deviation of variance–covariance at day t, k denotes the number 

of observations, XS is the portfolio return at day s, and µ is the mean of portfolio returns. 

 

EXPONENTIALLY WEIGHTED MOVING AVERAGE METHOD (EWMA) 

The exponentially weighted moving average method places different weights to 

observations within the sample window. The more recent returns receive more weights 

than previous ones, and the weight grows exponentially. The root of variance–covariance 

of a portfolio is expressed as 

            )()1( 21 1

1/
  







 xs

t

kts

st

tt
                                            (5) 

where λ  (0, 1) is the decay factor. In this study, we use λ = 0.94 in accordance with the 

RiskMetrics.   

 

EQUALLY WEIGHTED MOVING AVERAGE WITH T-DISTRIBUTION METHOD 

(EQWMAT ) 

The return distributions of the majority financial assets are fat-tailed, thus the supposition 

of a normal distribution may underestimate the VaR. To consider this inadequacy, we 

also assume that the   returns have the Student-t distribution based on the equally 

weighted moving average method (EQWMAT).  Jorion (1997) suggests that the Student-t 

distribution with six degrees of freedom provides a better fit for most financial asset 

returns. We follow this suggestion in calculating the VaR.  The formula for computing 

the value-at-risk from EQWMAT is given by   

                                (6)            

 
 1/

**
1/   ttttt TVVaR
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1/ tt  in the above equation is same as specified for EQWMA and T  is the quantile of 

T-distribution. 

AUTOREGRESSIVE CONDITIONAL HETROSKEDASTICITY MODEL (ARCH) 

Financial market volatility is a core issue to the theory and practice of value-at-risk, asset 

pricing, asset allocation and risk management. It is broadly accepted among both 

practitioners and academics that volatility varies over time. Stock volatility is simply 

defined as conditional variance, or standard deviation of stock returns that is not directly 

observable. Since the best decision of investors relies on variance of returns that can 

change over time, it is important to model and forecast conditional variance. Engle 

(1982) developed the Autoregressive Conditional Heteroskedasticity (ARCH) model and 

Bollerslev (1986) generalized it to GARCH (Generalized ARCH) model.  

Assume that returns are generated by the ARMA (1, 1) model the ARCH (1) model can 

be specified as follows:  

                uurr tttt 11110                       ttt vu                 (7) 

The 1/ tt  is given by 

               2
1

2
110

2
1/   tttt u                                                        (8) 

To completely specify a GARCH-type model an assumption about the error distribution 

tu should be made. It is more appropriate to assume that the errors have a heavy tailed 

distribution rather than Gaussian distribution. Here we have employed Generalized Error 

Distribution in GARCH estimation given by: 
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 tz     (9) 

Here the error term is denoted by tz  and ν is a positive shape parameter governing the 

thickness of the tail behavior of the distribution. For ν = 2 GED reduces to the standard 

normal distribution, for 2v  the distribution has tails thicker than the normal 
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distribution and for and 2v  the tails are thinner than the normal distribution. For ν 

→ ∞ we get  the uniform distribution. 

VaR is then computed as follows 

                                1/1/ **   tttt GVVaR t
                                            (10) 

Here G is the 95% or 99% quantile of the GED distribution 

3.2 NONPARAMETRIC METHODS OF CALCULATING VaR 

Non-parametric method take a dataset of returns (historical or realistically simulated) and 

find the loss that is exceeded only a percent of the time corresponding to your confidence 

interval in the dataset. In other words, look at the actual histogram rather than the normal 

distribution that approximates it. And also if you do have enough tail data, the non-

parametric method can give you a more accurate measure of skew and kurtosis risk and 

other higher moments. The normal distribution cannot fully capture the asymmetric 

returns. We mitigate this limitation by two non-parametric methods, the methods which 

come under the heading of parametric method of calculating VaR are given by Historical 

Simulation (HS) and Bootstrap Method (BS) 

HISTORICAL SIMULATION METHOD 

Historical simulation approach of value-at-risk is similar to the equally weighted moving 

average, as it is based on a specific quantity of past historical observations. Rather than 

using these observations to calculate the portfolio’s standard deviation, however, 

historical simulation approaches use the actual percentiles of the observation period as 

value-at-risk measures. This method makes no assumptions on the distribution of the 

underlying assets, and does not need to calculate any parameters. The process of the 

historical method is straightforward as explained in the following two steps. 

1- Obtain a satisfactory amount of historical returns of assets. 

2- Sort the portfolio returns in ascending order to achieve the empirical distribution. VaR 

is the percentile that corresponds to the specified confidence level. 

 

For instance, for an observation period of 500 days, the 99th percentile historical 

simulation VaR measure is the sixth largest losses observed in the sample of 500 
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outcomes. The historical simulation approach accurately reflects empirical skewness, 

kurtosis and any non-linear time-varying variance-covariance matrix. Jorion (1997) 

indicates that the historical method allows for both nonlinear and non-normal 

distributions, and also accounts for fat tails and avoids model risk. However, it requires a 

sufficient amount of history data. 

 
The  BOOTSTRAP METHOD 

Bootstrapping is a re-sampling method developed by Efron (1979) that has a wide variety 

of applications. It can be used to simulate the sampling distribution of estimators and to 

derive standard errors of a complicated estimator. We assume that the log-returns of the 

Karachi Stock Exchange (KSE) index are independent and identically distributed. We 

resample B=100 samples each of size 500 daily returns from the empirical distribution. 

VaR is computed from each sample and the average VaR is employed as Bootstrap VaR 

estimate.   

According to Jorion (1997), the bootstrap method allows for fat tails, jumps, and any 

departure from the normal distribution, and is able to take correlations across series into 

account. The main drawback of this method is that it may not approximate the actual 

distribution well when the sample size is small. Furthermore, any pattern of time 

variation is violated by random re-sampling. 

4. TESTING ACCURACY OF VaR METHODS 

To assess the accuracy of various VaR models we employ Kupiec (1995) Likelihood 

Ratio procedure of   backtesting.  If computed VaR underestimates the actual portfolio 

loss, it is denoted as an “exception.” and if say 95% VaR is accurate, the sample 

proportion of exceptions should not be significantly different from 5%. The following 

discussion  is based on Angelidis et al. (2004). Let 



T

t

tIN
1

be the number of days over 

a T period that the portfolio loss was larger than the VaR estimate, where 
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Hence, N is the observed  number of exceptions in the sample. Kupiec (1995) suggests 

the proportion of failure test (PF test), in which a log-likelihood ratio test (LR test) is 

used to assess the accuracy of a VaR model. If the model is correct, the number of 

failures follows a binomial distribution ),(~ pTBN  

 

 

                          (11) 

 

Where N is the number of failures, T is the total number of trials, and p is the probability 

of a failure on any one of the independent trials. Thus, the LR test statistic is given by 

 

                    

      (12) 

Where N/T is observed probability of failures, and p is expected probability of failures 

Under the null hypothesis that the excepted exception frequency, H0: pTN / .  

Asymptotically, the LR test statistic follows a Chi-Square distribution with 1 degree of 

freedom. For example, for the 95% VaR, if the value of Kupiec LR test is greater then 

the 8414.3  then the null hypothesis is rejected implying that the VaR does not provide 

accurate loss proportion. 

 

5. THE DATA 

The sample data consists of KSE100 index daily log-returns from January 1992 to June 

2008, a total 4298 daily observations. The observed returns of KSE-100 index are 

presented in Figure 2. The behavior of daily log returns clearly exhibit the volatility 

clustering phenomenon, large changes in index values tend to cluster.  From the figure we 
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can see that the log returns are highly volatile during the time period 1998-1999 and after 

this year the log returns are slightly less volatile.  

KSE-100 Log returns
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  Figure 2. Time series behavior KSE-100 index returns 1991-2008  

 

6. EMPIRICAL RESULTS 

The below tables shows the summary of one-day based VaR of entire sample period of 

1992 to 2008. Table 1 indicates that the estimated average 95% VaR as a percent of 

initial KSE-100 index portfolios is approximately 2.5% for the six methods. 

 

Table 1: Average VaR as percent of initial portfolio (KSE-100 index) value for 

different methods for period 1992-2008 

C.L. 95% 99% 

METHODS Avg VaR (%) Stdev(VaR) Avg VaR (%) Stdev(VaR) 

1-EQWMA 2.548 0.601 3.603 0.851 

2-EXPWMA 2.311 1.052 3.268 1.487 

3-EQWMAT 2.458 0.580 3.975 0.938 

4. GARCH 2.400 1.207 4.082 2.055 

4-BS 2.547 0.721 4.361 1.518 

5-HS 2.524 0.705 4.328 1.385 
 

Table 2 presents the percentage of cases in which actual loss of KSE-100 index value 

exceeds the 95% VaR estimated by different methods over the sample periods. These 
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VaR exceptions are computed annually and for the whole period 1992-2008.  The table 

also indicates (by * sign) the significant Kupiec LR test statistics at 5% level. Note that in 

some cases estimated proportion of exceptions is close to the nominal exception of 0.05, 

yet the differences in the number of exceptions N influence the value of Kupiec test 

statistic. 

Table 2: Percentage of Exceptions of VaR through different method 

C.L. 95% 

METHODS   EQWMA 

 

EXPWMA EQWMAT GARCH BS HS 

1992-2008 0.053 0.061* 0.056* 0.064* 0.054* 0.055* 

1992 0.047 0.024* 0.051* 0.059 0.094* 0.098 

1993 0.011* 0.038 0.011* 0.038 0.027* 0.027* 

1994 0.058 0.085* 0.062* 0.069 0.077* 0.081 

1995 0.085* 0.092* 0.092* 0.077 0.069* 0.077* 

1996 0.065 0.061 0.073* 0.042 0.042* 0.042 

1997 0.054 0.034 0.057* 0.065 0.057* 0.057 

1998 0.115* 0.084* 0.123* 0.096* 0.115* 0.119* 

1999 0.015* 0.027 0.019* 0.054 0.015* 0.019* 

2000 0.023* 0.069 0.023* 0.05 0.023* 0.023 

2001 0.031 0.073 0.034* 0.05 0.038* 0.034 

2002 0.031 0.042 0.031* 0.054 0.038* 0.038 

2003 0.057 0.031 0.061* 0.061 0.061* 0.061 

2004 0.023* 0.061 0.023* 0.038 0.019* 0.019 

2005 0.092* 0.050 0.104* 0.077 0.092* 0.096* 

2006 0.092* 0.104* 0.096* 0.104* 0.077* 0.081* 

2007 0.038 0.073 0.038* 0.077 0.019* 0.019 

2008 0.061 0.107 0.061* 0.092 0.053* 0.046 

 
 

 The proportion of exceptions is the proportion of days when actual loss (i.e. difference 

between yesterdays and today’s KSE-100 index value) exceeds VaR.  For overall time 

period the EQWMA method provided the proportion of exception which is 0.053 that is 

closest to the nominal proportion of 0.05.  Next comes the Bootstrap method i.e. 0.054.  

However it is the GARCH model which dominates since in this case in only two of the 
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17 years the VaR is violated. The Kupiec test is rejected by all methods in the year 1998 

including GARCH. The reason might be the higher level of volatility owing to nuclear 

tests by Pakistan and India in1998. 

 

7. VaR and Expected Returns 

 

We now investigate whether stock portfolios with higher downside risk measured by VaR 

earn higher expected returns. To the best of our knowledge the relationship between 

expected return and VaR as downside risk measure has not been investigated in emerging 

markets. However conducting asset pricing tests with daily data is problematic due to 

non-normality of daily returns and infrequent trading of stocks in an emerging market. 

We therefore employ monthly continuously compounded stock returns on 232 stocks 

from the Karachi Stock Exchange from October 1992 to June 2008. The stock prices 

were obtained from DataStream data base. We constructed decile portfolios by sorting 

stocks into 99%, 95% and 90% VaR and obtained average returns and average VaR for 

each decile portfolios. Following Bali and Nusret (2004) we used historical simulation 

method to estimate VaR. We used from 24 to 60 monthly returns (as available) to 

estimate the mean and the cutoff return for each confidence level. The 99%, 95% and 

90% confidence level VaRs were measured by the first lowest, third lowest, and sixth 

lowest observation of 60 monthly returns in December of each year staring from 1995.   

 

We tested whether the 99%, 95% and 90% VaR portfolios can produce larger and 

statistically significant cross-sectional variation in monthly expected returns in the 

emerging market under study. Starting from 1995, in December of each year, we sorted 

all sample of 232 KSE stocks by 99%, 95% and 90%  VaR to determine the decile 

breakpoints for each VaR measure. Based on the breakpoints, we allocated stocks to 

99%, 95% and 90% VaR deciles. Decile 1 consist of the 10 percent of stocks with the 

lowest VaR, and decile 10 represents the stocks with the highest VaR. We also computed 

the equally weighted average returns for the stocks in each decile. The portfolios are 

rebalanced each December in the following years. Table 3 presents the average returns of 

the VaR portfolios for all deciles as well as the estimated regression coefficients ̂  ̂ , 
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2
R and the corresponding t-statistics of following cross-sectional regression of average 

returns of the 10 decile portfolios on the average VaR of the portfolios:  

iii VaRR    i= 1, 2, ..10                                                                        (13) 

Table3 shows that when portfolios are formed according to 99%, 95%, and 90% VaR, 

average stock returns are positively correlated with VaR. In other words, stocks with the 

highest maximum likely loss measured by VaR have highest average returns. From the 

lowest 1 percent VaR decile to the highest 1 percent VaR decile, average returns on VaR 

portfolios increase from 0.958 percent a month to 7.829 percent a month which amounts 

to 82.45% annual return differential. This increase in not monotonic, for example using 

99% VaR going from 8th to 9th decile portfolio result in lower average return. The overall 

evidence of positive risk-return relationship is nevertheless very strong. Our results are in 

sharp contrast to the US result of Bali and Nusret (2004) who estimated an annual return 

differential of 11.52% between highest and lowest VaR deciles.  This has obviously an 

important result for investment allocation perspective. A similar strong positive 

relationship is also observed between average returns and the 95 percent and 90 percent 

VaRs. 

 
Table 3: Average Monthly Return of Portfolios sorted by 99%, 95%, and 90% VaR, 

August 1992-June 2008  
 

Decile 99% VaR Return % 95% VaR Return % 90% VaR Return % 

Low VAR 2.85 0.96 0.32 1.03 0.74 1.66 

2 17.72 2.39 10.85 3.42 5.88 0.82 

3 21.67 4.07 13.95 1.92 9.13 4.08 

4 25.16 3.73 16.03 2.88 11.08 3.65 

5 28.57 3.38 17.87 4.74 12.59 4.03 

6 31.89 5.23 20.36 5.57 14.10 4.32 

7 35.44 5.14 22.48 5.43 16.09 4.46 

8 40.45 5.89 25.34 5.47 18.20 6.62 

9 47.64 4.68 28.62 6.19 20.64 6.39 

High VAR 60.68 7.83 34.76 6.48 24.51 7.09 

Coefficients ̂  ̂  ̂  ̂  ̂  ̂  

  0.93 0.11 0.94 0.18 0.75 0.27 

t-Stat ist ics 2.45*  8.04*  1.95* *  9.79*  1.07 6.76*  

R-Square 0.86  0.83  0.86  
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Note: T-statistics are based on heteroskedasticity consistent standard error. 

* and ** represent significance at 5% and 10% level of  significance respectively. 

 

The results show that the greater a portfolio’s potential fall in value, the higher is the 

expected return. The portfolios of higher-VaR stocks appear produce higher returns than 

the portfolios of lower-VaR portfolios. To measure the degree of positive correlation 

between average stock returns and VaR, we regressed the average returns from the decile 

portfolios on the average level of 99%, 95%, and 90% VaR. The results indicate that the 

coefficients on VaR are highly significant, with R2 values ranging from 83 percent to 86 

percent. 

 

8. CONCLUSION 

Measuring the exposure to market risk of portfolio investments has always been an 

important issue for investors, financial institutions and regulators. Various risk exposure 

methods have been employed. Value-at-risk has recently become very popular measure 

of risk exposure since it describes systematic risk in term of a monetary number which 

are easier to understand by practitioners. This can be comparable to other risk measure 

such as beta risk which is standardized covariance of asset return and the market returns 

which is not easier to understand.    

 

There are few studies that have compared the accuracy of VaR models in measuring 

accuracy of risk exposure to securities in emerging markets. Since the economic, 

financial, political and regulatory environment of emerging market is different form the 

developed markets, such a contribution is important.   

 

In this study we have employed several parametric and non-parametric methods to 

estimate value-at-risk of funds represented by Karachi Stock Exchange-100 index 

portfolio. The methods include four parametric methods ‘equally weighted moving 

average’, ‘exponentially weighted moving average using normal and t-distribution of 

return distribution and the GARCH model. We also employed two non-parametric 
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methods namely ‘Historical Simulation’ and the ‘Bootstrap’ method where the quantiles 

of simulated return are employed in VaR calculation.  

 

In each case VaR is computed using 95% and 99% confidence level. The accuracy of 

each method is tested using Kupiec LR test. We analyzed the accuracy of one day VaR 

methods using 17 years of daily data from 1992 through 2008 on KSE-100 index returns. 

The results indicate that in general at 95% confidence level ‘exponentially weighted 

moving average method appears to yield accurate VaR estimates in 12 out of 17 years 

period on annual basis. ‘Historical Simulation’ method appears to be a close competitor 

in which Kupiec test is not rejected in 11 out of 17 years.   Overall we found that VaR 

measures are more accurate when KSE index return volatility is estimated by GARCH 

(1,1) model  especially at 95% confidence level. In this case the actual loss exceeds VaR 

in only two years 1998 and 2006 i.e. on an annual basis in 15 of the 17 years Kupiec test 

is not rejected.  On average for the whole period daily VaR is estimated to be about 2.5% 

of the value of KSE-100 index.  

 

Finally using monthly data of 232 stocks from the KSE we found that higher VaR stock 

is associated with higher average return. One average the higher VaR portfolio generates 

84% higher return than the lowest VaR portfolio. This result has obvious implication for 

investment allocation and financial analysis. 
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