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Multiple Equilibria and Chaos in a Discrete Tâtonnement Process  
 

 
Abstract 

The purpose of this note is to demonstrate a sufficient condition for discrete tâtonnement process to 

lead to chaos in a general equilibrium model with multiple commodities. The result indicates that as 

the speed of price adjustment increases the discrete tâtonnement process is complex in a general 

equilibrium economy in which there are multiple equilibria. 
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1. Introduction  

 

Over the past decades a considerable number of studies have been made on the 

tâtonnement process. The papers by Arrow and Hurwicz (1958), Arrow and Hahn (1971), 

and Negishi (1958) have proved that the continuous tâtonnement process converges to 

the unique equilibrium price under global gross substitutability. Recent major 

contributions to the tâtonnemnt process have been devoted to instability of discrete 

tâtonnemnt process, The papers by Bala and Majumdar (1992), Day and Pianigiani 

(1991), Day (1994) and Mukherji (1999) show that the discrete tâtonnemnt process may 

lead to chaotic dynamics under global gross substitutability. Further, Goeree et al. 

(1998), Junistra (1997, 1999), Saari (1985), and Weddepohl (1995) show that the discrete 

tâtonnement processes become unstable and exhibit chaos as the speed of price 

adjustment increases.  

This paper further examines the dynamics of the discrete-time tâtonnemnt process in 

a competitive economy in which there are multiple equilibria1. We demonstrate that as 

the adjustment speeds of prices are sufficiently fast, the discrete tâtonnement process is 

chaotic in the competitive economy in which there are multiple equilibria. The result 

can be demonstrated by Hatta’s theorem (Hatta (1982)).  

                                                   
1 Kaizouji (1994) demonstrate sufficient conditions for the discrete-time tâtonnement process to lead 
to chaos in the competitive economy with only two commodities by applying Yamaguchi-Matano 
theorem (Yamaguchi and Matano (1981)). This paper extends the theorem to the economy with n 
commodities. 



 

In section 2, we introduce the theorem on the existence of equilibria in Warlasian 

economy proposed by Dierker (1972) and Varian (1975). In section 3, we demonstrate 

sufficient conditions for tâtonnement process to lead to chaos in the economy which has 

multiple equiribria by applying the Hatta theorem (Hatta (1982)). A few concluding 

remarks are given in section 4.  

 

2. Multiple equilibria  
 

We consider an economy ξwith commodities 1,..., .h l=  Let  
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denote the open price simplex. We suppose that the economy has continuously 

differentiable excess demand function 1( ,..., ,...., ) : l
h l S RV V V V= ® , which fulfills 

Walras’ law, i.e., 
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=å  for all p SÎ . By Walras’ law these zeros coincide 

with the zero of 1
1 1( ,..., ,...., ) : l

h lz S RV V V -
-= ® . Assume that the Jacobian of the excess 

demand function z is non-zero at all equilibria. It implies that the economy is regular 
in the sense of Debreu (1972). Dierker (1972) demonstrates that a regular economy has 
an odd number of equilibria. Further, under this assumption of desirability of all 
commodities, that is, one assume that as the price of a good goes to 0, its excess demand 
becomes positive, Varian (1975) demonstrates that if the Jacobian matrix det( ( ))Dz p-  
of the excess supply function z- is positive at all equilibria, there is exactly one 
equilibrium. Their theorems mean the following:  
 
If the Jacobian matrix det( ( ))Dz p-  of the excess supply function z- is negative at all 

equilibria, there are at least three equilibria.  

 

3. The Tâtonnemant Process 
 

In this paper we focus attention to the discrete tâtonnemnet process. The discrete 



tâtonnement process can be generally formalized as  

, 1 , ( ), 1, 2,..., 1,j t j t j tp p z p j nl+ - = = -                   (2) 

wherel denotes the speed of adjustment. The dimension of the tâtonnemnet process is a 

discrete n-1 dimensional system. 

Suppose that the Jacobian matrix of the excess supply function is positive, that is, there 

are multiple equilibria. Under a large value of the speed of the adjustment, it is shown 

that two of the equilibria are snapback repeller (Marotto (1978)). Here we present the 

result more formally.  

 

Proposition. For all regular economies which the Jacobian matrix of the excess supply 
function is positive, there exists a finite 0l such that for any 0l l> the discrete 

tâtonnement process (2) is chaotic in the sense of Li and Yorke.  

 

The proof of the proposition is given by Hatta (1982) (see Appendix).  
 
4. Concluding Remarks  
 

One should note that the condition which we present is sufficient condition for chaos of 

the tâtonnement process, but not necessary condition. The condition on the existence of 

multiple equilibria can be weakened. One can show that in regular economics which 

have the unique equilibrium, the discrete tâtonnment process is chaotic for a large 

value of the speed of adjustment while the continuous tâtonnemnt process converges to 

the unique equilibrium.  
 
5. Appendix: The theorem of Hatta  
 
Consider an n-dimensional difference equations,  

1 ( ), .nt t tx x f x x Rl+ = + Î        (A) 

Let f be continuous differentiable in nR . Suppose there exist u v¹ such that  
( ) ( ) 0F u F v= = , det ( ) 0F u ¹ and det ( ) 0F v ¹ . Then there exists a positive constant c 

such that for any s c> the difference equation (A) is chaotic in the sense of Li and 



Yorke.  
 
The proof of the theorem is given by Hatta (1982).  
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