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Abstract

A special characteristic of the patent system is that it features mul-
tiple patent-policy levers that can be employed by policymakers. In
this study, we develop a quality-ladder model to analyze the optimal
mix of patent instruments. Speci�cally, we consider (a) patent breadth
and (b) the division of pro�t in research joint ventures. We analyt-
ically derive optimal patent policies and then calibrate the model to
quantitatively evaluate the welfare gain from optimizing both patent
instruments as compared to optimizing only one patent instrument.
In summary, we �nd that the welfare gain can be substantial.
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1 Introduction

A special characteristic of the patent system is that it is a multi-dimensional
policy system in the sense that it features multiple patent-policy levers, such
as patent length and patent breadth, that can be employed by policymakers.
Given this notable feature of the patent system, we develop a quality-ladder
model to analyze the optimal mix of patent-policy levers. In this study, we
consider two patent instruments, namely, patent breadth and a pro�t-division
rule in research joint ventures (RJVs). Our results can be summarized as
follows. In the theoretical analysis, we analytically derive the optimal mix
of patent breadth and the pro�t-division rule. Then, in the quantitative
analysis, we numerically evaluate the welfare gain from choosing both patent
instruments optimally as compared to choosing only patent breadth opti-
mally given any pro�t-division rule. We �nd that the welfare gain can be as
large as 5% of consumption per year.
RJVs have been an important focus of some policy reforms that we brie�y

discuss here, and some of these reforms involve multiple patent-policy levers.
The importance of RJVs was �rstly emphasized by Penrose (1959) who argue
that forming RJVs is a useful way for �rms to gain access to external comple-
mentary technological resources for R&D. For example, in order to foster a
more cooperative research environment in the US, policymakers enacted the
National Cooperative Research Act of 1984 "to promote research and de-
velopment, encourage innovation, stimulate trade, and make necessary and
appropriate modi�cations in the operation of the antitrust laws."1 Another
example is the Third Amendment to the Chinese Patent Law that was ap-
proved in December 2008 and came into e¤ect in October 2009.2 One purpose
of this patent reform is to encourage the exploitation of jointly owned patents.
For example, "Article 15 provides that the exploitation of patent rights be-
tween co-owners should be determined by an agreement. Where an agree-
ment is not available, any co-owner may exploit the patent alone or grant
general licenses (i.e., non-exclusive licenses) to others to exploit the patent,
and that any licensing fee received shall be shared between the co-owners."3

In our theoretical analysis, we model this patent-policy lever using a pro�t-

1This act was subsequently expanded into the National Cooperative Research and
Production Act of 1993.

2See, for example, Yang and Yen (2010) for a review of the patent-policy changes in
this amendment.

3See Yang and Yen (2010, p. 8).
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division rule in RJVs. In addition to encouraging the exploitation of jointly
owned patents, this patent reform also involves other policy changes, such
as increasing statutory damages and administrative �nes, and heightening
patentability requirement. In other words, this policy amendment involves
the reform of multiple patent-policy levers instead of a single patent-policy
lever. A contribution of the present study is to use a quality-ladder model
to demonstrate the welfare di¤erence between optimizing multiple patent
instruments and optimizing a single patent instrument.
This study relates to the patent-design literature. In his seminal study,

Nordhaus (1969) characterizes optimal patent length and shows that it bal-
ances between the social bene�t of innovation and the social cost of mo-
nopolistic distortion. However, Nordhaus only considers patent length as the
single patent-policy lever. Subsequent studies by Tandon (1982), Gilbert and
Shapiro (1990), Klemperer (1990) and Denicolo (1996) analyze the optimal
mix of patent instruments, such as patent length, patent breadth and com-
pulsory licensing.4 The present study complements these interesting partial-
equilibrium analyses by revisiting the optimal mix of patent instruments in
a quantitative dynamic general-equilibrium (DGE) framework, which allows
for an explicit consideration of economic growth and social welfare.
In the literature on patent policy and economic growth, the seminal DGE

analysis on optimal patent length is Judd (1985), who shows that the op-
timal patent length can be in�nite in a speci�c environment. In contrast,
Futagami and Iwaisako (2007) show that the optimal patent length is usually
�nite in the Romer model. While these studies focus on patent length, other
studies analyze the growth and welfare e¤ects of other patent instruments
in R&D-based growth models. See, for example, Cozzi (2001) on intellec-
tual appropriability, Li (2001) on lagging patent breadth, O�Donoghue and
Zweimuller (2004) on leading patent breadth and patentability requirement,
Furukawa (2007) on patent protection against imitation, and Chu (2009) on
blocking patents. The present paper complements these studies by analyzing
the optimal mix of multiple patent instruments, which is often neglected in
this literature.5

The rest of this study is organized as follows. Section 2 describes the
model. Section 3 de�nes the equilibrium and characterizes the equilibrium

4See Scotchmer (2004) for a comprehensive review of this patent-design literature.
5A notable exception is Iwaisako and Futagami (2003). However, their study is quali-

tative in nature while the present study also provides a quantitative analysis.
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allocation. Section 4 derives optimal patent policies and calibrates the model
to provide a quantitative analysis. The �nal section concludes.

2 The model

To consider the optimal mix of patent-policy levers, we modify the Grossman-
Helpman (1991) quality-ladder model by incorporating into the model (a)
patent breadth that determines the markup and (b) competitive RJVs in
which the division of pro�t is subject to a pro�t-division rule. In their seminal
study, Kamien et al. (1992) de�ne a competitive RJV as an inter�rm arrange-
ment in which each �rm decides its own R&D investment taking the other
�rm�s R&D investment as given and the �rms share their innovation.6 We
adopt this setup to reformulate the R&D sector of the Grossman-Helpman
model.7 Given that the quality-ladder model has been well-studied, we brie�y
describe the familiar features to conserve space and discuss the new features
in more details.

2.1 Households

There is a unit continuum of identical households. Their lifetime utility is
given by

U =

1Z

0

e��t lnCtdt, (1)

where � > 0 is discount rate, and Ct is the consumption of �nal goods at
time t. Households maximize utility subject to asset accumulation given by

:

At = RtAt +Wt � PtCt. (2)

Pt denotes the price of �nal goods at time t. Each household supplies one
unit of labor (chosen as the numeraire) to earn the wage Wt (normalized to

6See also Greenlee (2005) for an interesting analysis on competitive RJVs.
7See also Cozzi (1999) and Cozzi and Tarola (2006) for an interesting analysis on

cooperative RJVs in R&D-based growth models.
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unity). At is the value of assets owned by households, and Rt is the nominal
rate of return. The familiar Euler equation is

:

Et=Et = Rt � �, (3)

where Et � PtCt is the nominal expenditure on consumption.

2.2 Final goods

Final goods are produced by a standard Cobb-Douglas aggregator over a unit
continuum of di¤erentiated intermediate goods Xt(i) indexed by i 2 [0; 1].

Yt = exp

0
@

1Z

0

lnXt(i)di

1
A . (4)

This sector is perfectly competitive, and �nal-goods �rms take both the out-
put and input prices as given. From standard cost minimization, the price
index of �nal goods can be expressed as

Pt = exp

0
@

1Z

0

lnPt(i)di

1
A , (5)

where Pt(i) is the price of Xt(i). The conditional demand curve for Xt(i) is

Xt(i) = PtYt=Pt(i). (6)

2.3 Intermediate goods

There is a unit continuum of di¤erentiated intermediate goods indexed by
i 2 [0; 1]. Each intermediate goods i is produced by a monopolistic leader,
who holds a patent on the latest innovation. This industry leader dominates
the market temporarily until the arrival of the next innovation (i.e., the Arrow
replacement e¤ect).8 The production function for the leader of intermediate
goods i is

Xt(i) = z
qt(i)Lt(i). (7)

8See Cozzi (2007) for a discussion on the Arrow e¤ect in the quality-ladder model.
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The parameter z > 1 is the step size of a productivity improvement, and qt(i)
is the number of productivity improvements that have occurred in industry i
as of time t. Lt(i) is the number of production workers employed in industry
i. Given zqt(i), the industry leader�s marginal cost of production is

MCt(i) = Wt=z
qt(i). (8)

We follow the standard approach in the literature to consider Bertrand
competition. Under Bertrand competition, the pro�t-maximizing price for
the current leader is a markup over the marginal cost.

Pt(i) = �tMCt(i), (9)

where �t = z
bt and bt is the level of patent breadth at time t. Grossman and

Helpman (1991) assume complete patent protection against imitation (i.e.,
bt = 1). Li (2001) generalizes the patent regime to allow for incomplete patent
protection (i.e., bt 2 (0; 1)). Because of incomplete protection, the current
leader�s innovation enables the former leader to increase her productivity
by a factor of z1�bt without infringing the current leader�s patent. There-
fore, the limit-pricing markup for the current leader is zbt. O�Donoghue and
Zweimuller (2004) refer to bt 2 (0; 1) as lagging patent breadth (i.e., backward
protection against imitation), and they also consider leading patent breadth
bt 2 f2; 3; :::g, which captures forward protection against subsequent innova-
tion. We follow the formulation in O�Donoghue and Zweimuller (2004) here.
In the presence of leading breadth, a pro�t-sharing arrangement between gen-
erations of patentholders is needed, and we consider the optimal frontloading
pro�t-sharing arrangement that is to allow the most recent innovator to ob-
tain all the pro�ts.9 Combining lagging breadth and leading breadth with
the frontloading pro�t-sharing arrangement, bt 2 (0;1) simply becomes a
continuous variable.10 A larger patent breadth enables the current leader to

9See O�Donoghue and Zweimuller (2004) and Chu (2009) for a more detailed discus-
sion. In the present study, it is appropriate to consider the frontloading pro�t-sharing
arrangement because our focus is on optimal patent policies.
10Let�s consider an example of bt = 1:5 for illustration. In this case, the integer 1

refers to the degree of leading breadth, and the decimal 0.5 refers to the degree of lagging
breadth. A leading breadth of degree one implies that the most recent innovator infringes
the patent of the second-most recent innovator, and they consolidate their market power
giving rise to a markup of z2 if lagging breadth were complete. However, an incomplete
lagging breadth of 0.5 implies that the third-most recent innovator is able to imitate half
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charge a higher markup, and the resulting increase in pro�t improves incen-
tives for R&D. For the rest of this study, we use �t to denote patent breadth
for convenience and consider changes in �t coming from changes in bt only.
Finally, the amount of monopolistic pro�t is

�t(i) =

�
�t � 1

�t

�
Pt(i)Xt(i) =

�
�t � 1

�t

�
PtYt (10)

for i 2 [0; 1], and the second equality of (10) follows from (6).

2.4 R&D joint ventures

Denote Vt(i) as the value of the latest innovation in industry i. Because
�t(i) = �t for i 2 [0; 1] from (10), Vt(i) = Vt in a symmetric equilibrium that
features an equal arrival rate of innovation across industries.11 The familiar
no-arbitrage condition for Vt is

RtVt = �t +
:

V t � �tVt, (11)

which equates the interest rate to the asset return per unit of asset. The
asset return is the sum of (a) the pro�t �t received by the patentholder,

(b) the potential capital gain
:

V t, and (c) the expected capital loss due to
creative destruction �tVt, where �t is the industry-level Poisson arrival rate
of innovation.
Greenlee (2005) provides a survey of empirical evidence to show that �rms

in RJVs tend to behave competitively rather than cooperatively. Therefore,
we consider competitive RJVs and assume that a successful innovation re-
quires R&D inputs from two types of entrepreneurs, which we label as type-1
and type-2 entrepreneurs. This formulation is also consistent with the em-
pirical evidence summarized in Greenlee (2005) that "�rms perceive gaining
access to complementary knowledge as the single most important objective

of the innovation owned by the second-most recent innovator, and the resulting Bertrand
competition between the third-most recent innovator and the coalition (formed by the
most recent innovator and the second-most recent innovator) pushes the markup down to
z1:5.
11We follow the standard approach in the literature to focus on the symmetric equilib-

rium. See Cozzi et al. (2007) for a theoretical justi�cation for the symmetric equilibrium
in the quality-ladder model.
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in research consortia." In the economy, there is a unit continuum of each
type of entrepreneurs. For simplicity, we consider a Cobb-Douglas functional
form for the individual-level arrival rate of innovation.12

e�t = '(H1;t)�(H2;t)1��, (12)

where � 2 (0; 1).13 H1;t and H2;t denote R&D labors employed by type-1
and type-2 entrepreneurs respectively.
In the case of a successful innovation, the two entrepreneurs sell the patent

to a manufacturer, and they share the value of the patent according to a
pro�t-division rule st 2 (0; 1). A type-1 entrepreneur receives stVt while
a type-2 entrepreneur receives (1 � st)Vt. This division of pro�t can be
viewed as a bargaining outcome, and the bargaining power of each side can
be in�uenced by patent policy. Therefore, it is not unreasonable to treat st
as a policy variable. The expected return to R&D for a type-1 entrepreneur
is

�1;t = stVte�t �WtH1;t, (13)

and the expected return to R&D for a type-2 entrepreneur is

�2;t = (1� st)Vte�t �WtH2;t. (14)

In equilibrium, the �rst-order conditions for H1;t and H2;t become

�stVt�t = WtH1;t, (15)

(1� �)(1� st)Vt�t = WtH2;t. (16)

Equations (15) and (16) imply that the R&D sector generates positive pro�ts,
which are transferred back to the households.14 Combining (15) and (16)
yields the equilibrium ratio of H1;t to H2;t given by

H1;t
H2;t

=
st

1� st

�
�

1� �

�
. (17)

12In an unpublished appendix (see Appendix B), we derive optimal patent policies for
the more general CES speci�cation.
13In equilibrium, �t = e�t.
14Therefore, households� assets include patents and the ownership of R&D enterprises.
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3 Decentralized equilibrium

The equilibrium is a time path fCt; Yt; Xt(i); Lt; H1;t; H2;t;Wt; Rt; Vt; Pt; Pt(i)g,
t � 0. Also, at each instant of time,

� households maximize utility taking fRt; Pt;Wtg as given;

� competitive �nal-goods �rms produce fYtg to maximize pro�t taking
fPt; Pt(i)g as given;

� monopolistic intermediate-goods �rms produce fXt(i)g and choose fPt(i)g
to maximize pro�t taking fWtg as given;

� R&D entrepreneurs choose fH1;t; H2;tg to maximize expected pro�t tak-
ing fWt; Vtg as given;

� the labor market clears such that Lt +H1;t +H2;t = 1; and

� the goods market clears such that Yt = Ct.

3.1 Equilibrium allocation

Proposition 1 shows that given a stationary path of patent breadth � and
pro�t-division rule s, the economy is on a stable and unique balanced-growth
path, along which the equilibrium allocation of labor inputs is stationary.

Proposition 1 Given constant � and s, the economy always jumps to a
unique and stable balanced-growth path.

Proof. See Appendix A.

Imposing balanced growth on (11) yields Vt = �t=(�+�). From (10), the
production-labor share of output is WtLt = PtYt=�. Substituting these two
conditions along with (10) and (12) into (15) yields

�+ '(H1)
�(H2)

1�� = �s(�� 1)'

�
H2
H1

�1��
L. (18)
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Combining (17), (18) and the labor-market-clearing condition yields the equi-
librium allocation of labor inputs given by

L =
�=['s�(1� s)1����(1� �)1��] + 1=[s� + (1� s)(1� �)]

(�� 1) + 1=[s� + (1� s)(1� �)]
, (19)

H1 =

�
s�

s� + (1� s)(1� �)

�
(1� L), (20)

H2 =

�
(1� s)(1� �)

s� + (1� s)(1� �)

�
(1� L). (21)

To ensure the non-negativity of R&D labors, we impose a lower bound on
R&D productivity ', which we label as Condition R.

' >
�=(�� 1)

s�(1� s)1����(1� �)1��
. (R)

It is useful to note that Condition R implies L < 1.
Substituting (7) into (4) yields Yt = ZtLt, where the aggregate level of

technology is de�ned as

Zt � exp

0
@

1Z

0

qt(i)di ln z

1
A = exp

0
@

tZ

0

��d� ln z

1
A , (22)

where the second equality can be obtained by appealing to the law of large
numbers. Finally, di¤erentiating the log of (22) with respect to t yields the

growth rate of technology given by gt �
:

Zt=Zt = �t ln z.

4 Optimal mix of patent instruments

Before we derive the optimal mix of patent breadth and the pro�t-division
rule, we �rstly derive the �rst-best allocation of labor inputs. Given the
balanced-growth behavior of the economy, the lifetime utility of households
in (1) can be re-expressed as

U =
1

�

�
lnC0 +

g

�

�
, (23)
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where g = � ln z and C0 = Z0L. Maximizing (23) subject to L+H1+H2 = 1
yields the �rst-best allocations fL�; H�

1 ; H
�

2g.

L� =
1

��(1� �)1��

�
�

' ln z

�
, (24)

H�

1 = �(1� L
�), (25)

H�

2 = (1� �)(1� L
�). (26)

Therefore, to achieve the �rst-best allocation of labor inputs, we need two
policy instruments. In our model, patent breadth serves the purpose of
optimizing the relative allocation of production labor L and R&D labors
fH1; H2g. It is useful to note that a larger patent breadth increases H1 and
H2 but decreases L. As for the pro�t-division rule, it serves the purpose of
optimizing the relative allocation of R&D labors. An increase in s changes
the incentives of type-1 and type-2 entrepreneurs giving rise to an increase
in H1 relative to H2.
When both patent instruments are chosen optimally, the optimal pro�t-

division rule is
s� = 0:5 (27)

regardless of the value for �.15 Equations (25) and (26) show that H�

1=H
�

2 =
�=(1 � �), which can be satis�ed in (17) if and only if s = 0:5. Intuitively,
the optimal H�

1=H
�

2 is solely determined by the relative input share �=(1��)
while the market-equilibrium allocation is determined by the relative division
of pro�t s=(1 � s) in addition to the input share. Therefore, to achieve the
optimal allocation, the e¤ect of s=(1�s) in the market equilibrium should be
eliminated by setting s=(1� s) = 1. As for optimal patent breadth, equating
(19) and (24) and setting s� = 0:5 yields

�� = 2

�
��(1� �)1��

'

�
+ 1

�
ln z � 1. (28)

Proposition 2 When both patent instruments are chosen optimally, the op-
timal pro�t-division rule is s� = 0:5 and optimal patent breadth is given by
�� in (28). Also, �� increases in ' and z but decreases in �:

15In an unpublished appendix (see Appendix B), we show that this result is robust to
generalizing (12) to a CES speci�cation.
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Proof. See (27) and (28). At s� and ��, the equilibrium labor allocations in
(19) to (21) coincide with the �rst-best labor allocations in (24) to (26).

Intuitively, an increase in ' or z strengthens the positive e¤ect of R&D on
economic growth, so that �� is increasing in ' and z. In contrast, an increase
in � reduces the bene�t of a higher growth rate on social welfare, so that �� is
decreasing in �. Substituting s� and �� into g = (' ln z)(H1)

�(H2)
1�� yields

the �rst-best growth rate given by

g� = (' ln z)��(1� �)1�� � �. (29)

4.1 Optimal patent breadth

In this section, we derive optimal patent breadth for any given s. Using (20)
and (21), we can rewrite (23) as

U =
1

�

�
lnL+

' ln z

�

�
s�(1� s)1����(1� �)1��

s� + (1� s)(1� �)

�
(1� L)

�
, (30)

where Z0 is normalized to unity, and L is given by (19). Di¤erentiating (30)
with respect to � yields

@U

@�
=
1

�

�
1

L

@L

@�
�
' ln z

�

�
s�(1� s)1����(1� �)1��

s� + (1� s)(1� �)

�
@L

@�

�
, (31)

where
@L

@�
= �

L

(�� 1) + 1=[s� + (1� s)(1� �)]
. (32)

Substituting (32) into (31) and setting @U=@� = 0 yield ���, which denotes
the optimal patent breadth for any given s.

L�� � Lj�=��� =
s� + (1� s)(1� �)

s�(1� s)1����(1� �)1��

�
�

' ln z

�
. (33)

Substituting (33) into g = (' ln z)(H1)
�(H2)

1�� yields the growth rate at
� = ���.

g�� � gj�=��� = (' ln z)�
�(1� �)1���� �, (34)
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where � � s�(1� s)1��=[s�+ (1� s)(1� �)] � 1 is a composite parameter.
Comparing (29) and (34) shows that g�� � g�. Intuitively, without the opti-
mal pro�t-division rule, the economy allocates too much labor to production
(i.e., L�� � L�) and fails to achieve the optimal allocation of R&D labors
H1 and H2. As a result of the suboptimal allocation of R&D labors, the
economy exhibits a lower growth rate than the �rst-best allocation.

Proposition 3 Suppose that only the patent breadth is chosen optimally.
Then, the equilibrium growth rate would be lower than the case in which both
patent instruments are chosen optimally.

Proof. Comparing (29) and (34) shows that g�� � g� because � � 1, which
becomes a strict inequality unless s = s� = 0:5.

As for social welfare, we can derive the welfare di¤erence �U � U��U��,
where U�� � U j�=��� , as follows.

�U =
1

�

�
ln � +

(' ln z)��(1� �)1��

�
(1� �)

�
� 0, (35)

where � = s�(1�s)1��=[s�+(1�s)(1��)] � 1 as de�ned before; therefore,
ln � � 0 and 1�� � 0. It can be shown that � is an inverted U-shape func-
tion in s and reaches its maximum of one at s = 0:5. As for the relationship
between �U and �, di¤erentiating (35) with respect to � shows that

@�U

@�
� 0, � �

1

��(1� �)1��

�
�

' ln z

�
, (36)

where the second inequality can be re-expressed as

1 �
s� + (1� s)(1� �)

s�(1� s)1����(1� �)1��

�
�

' ln z

�
= L��, (37)

which is guaranteed to hold by Condition R. Therefore, �U is an U-shape
function in s and reaches a minimum of zero at s = s� = 0:5.

13



4.2 Quantitative analysis

In this section, we calibrate the model to illustrate quantitatively the welfare
gain from choosing both patent instruments optimally as compared to choos-
ing only patent breadth optimally. In Table 1, we numerically evaluate �U
in (35) for s 2 [0:2; 0:8]. We consider f�; z; '; �g = f0:04; 1:10; 1:15; 0:50g
as our benchmark parameter values. For easier interpretation, we express
the welfare di¤erence in terms of equivalent variation in consumption �ow
denoted by � � exp(��U) � 1. More formally, � is de�ned as U(C�0 ; g

�) =
U(C��0 (1 + �); g

��).

Table 1: E¤ects of s on growth and welfare
s 0:2 0:3 0:4 0:5 0:6 0:7 0:8
g�� 0:4% 1:0% 1:4% 1:5% 1:4% 1:0% 0:4%
� 5:2% 2:8% 0:7% 0% 0:7% 2:8% 5:2%

Table 1 shows that going from optimizing only patent breadth to opti-
mizing both patent instruments can lead to a welfare gain of as large as 5%
of consumption per year. The magnitude of the welfare gain depends on the
value of '. When we consider a larger (smaller) value of ', both the growth
rate and the welfare gain become larger (smaller). Given a long-run growth
rate of at least 1.5%, we consider a value of 1.15 for ' to be conservative.

5 Conclusion

In this study, we have developed a simple quality-ladder model to analyze
the optimal mix of patent instruments. Even in our simple model, we �nd
that optimizing a single patent instrument is insu¢cient for the economy to
achieve the socially optimal allocation of factor inputs. Therefore, in the
more complicated real world, it is unlikely that optimizing a single patent
instrument would be su¢cient for achieving the social optimum. This �nding
suggests that future studies on optimal patent protection may want to further
explore the multiple dimensionality of the patent system in order for their
analysis to be more suitable for policy applications.
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Appendix A

Proof of Proposition 1. Substituting (17) into (15) yields

�Vt = Wt, (A1)

where � � 's�(1�s)1����(1��)1�� is a composite parameter. Normalizing

Wt to unity implies that
:

V t = 0 for all t. Consequently, (11) becomes

Rt =
�t
Vt
� �t. (A2)

Combining (10) and (A1) yields

�t
Vt
= �

�
�� 1

�

�
Et. (A3)

Substituting (17) into (12) yields

�t = '

�
H2;t
H1;t

�1��
H1;t = '

�
(1� s)(1� �)

s�

�1��
H1;t. (A4)

Substituting (17) into the labor-market-clearing condition yields

1 = Lt +H1;t +H2;t = Lt +

�
s� + (1� s)(1� �)

s�

�
H1;t. (A5)

Using the production-labor share of output (i.e., WtLt = Et=�), we have

Lt = Et=�. (A6)

Substituting (A2) - (A6) into (3) yields
:

Et
Et
=
�

�

�
�� 1 +

1

s� + (1� s)(1� �)

�
Et�

�

�s+ (1� �)(1� s)
��. (A7)

Equation (A7) implies that the dynamics of Et is characterized by saddle-
point stability such that Et always jumps to its interior steady-state value
given by

E = �

�
�=� + 1=[�s+ (1� �)(1� s)]

(�� 1) + 1=[s� + (1� s)(1� �)]

�
. (A8)

Otherwise, Et = �Lt approaching zero violates the utility maximization of
households while Et = �Lt approaching � violates the pro�t maximization
of R&D entrepreneurs. Equation (A6) implies that the stationarity of Et
ensures the stationarity of Lt, which in turn ensures the stationarity of H1;t
and H2;t.
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Appendix B (not for publication)

In this appendix, we consider a CES speci�cation for e�t given by

e�t = '
�
�H

"�1

"

1;t + (1� �)H
"�1

"

2;t

� "

"�1

. (B1)

Noting (13) and (14), the �rst-order conditions are

�sV '
�
�H

"�1

"

1;t + (1� �)H
"�1

"

2;t

� 1

"�1

H
�
1

"

1;t = Wt, (B2)

(1� �) (1� s)V '
�
�H

"�1

"

1;t + (1� �)H
"�1

"

2;t

� 1

"�1

H
�
1

"

2;t = Wt (B3)

These conditions imply that

H1
H2

=

�
�s

(1� �) (1� s)

�"
, (B4)

Wt

Vt
= '

�
�"s"�1 + (1� �)" (1� s)"�1

� 1

"�1 , (B5)

e�t = (1� �)�" (1� s)�" '
�
�"s"�1 + (1� �)" (1� s)"�1

� "

"�1 H2;t, (B6)

e�t = (�s)�" '
�
�"s"�1 + (1� �)" (1� s)"�1

� "

"�1 H1;t. (B7)

Using the labor-market-clearing condition, we can show that

H1 +H2 = 1� L =
((�s)" + (1� �)" (1� s)")�

'
�
�"s"�1 + (1� �)" (1� s)"�1

� "

"�1

. (B8)

It is useful to note that V = �= (�+ �) and � = E(�� 1)=� = WL(�� 1)
hold on the balanced growth path. Therefore,

�+ � = (�� 1)
WL

V
= (�� 1)L'

�
�"s"�1 + (1� �)" (1� s)"�1

� 1

"�1 . (B9)

Combining (B8) and (B9), we can determine the rate of innovation � as
follows.16

� =
'
�
�"s"�1 + (1� �)" (1� s)"�1

� 1

"�1 (�� 1)� �

1 + (�� 1)[(�s)" + (1� �)" (1� s)"]=[�"s"�1 + (1� �)" (1� s)"�1]
.

(B10)

16It is useful to note that

� = (��1)'
�
�"s"�1 + (1� �)" (1� s)

"�1

� 1

"�1

�(��1)
((�s)

"
+ (1� �)

"
(1� s)

"
)

�"s"�1 + (1� �)" (1� s)
"�1

���.
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Substituting (B10) into (B6) - (B8) yields

L =
�=
h
'
�
�"s"�1 + (1� �)" (1� s)"�1

� "

"�1

i
+ 1=[(�s)" + (1� �)" (1� s)"]

(�� 1)=[�"s"�1 + (1� �)" (1� s)"�1] + 1=[(�s)" + (1� �)" (1� s)"]
,

(B11)

H1 =
(�s)"

(�s)" + (1� �)" (1� s)"
(1� L), (B12)

H2 =
(1� �)" (1� s)"

(�s)" + (1� �)" (1� s)"
(1� L). (B13)

To calculate the optimal distribution, we will consider

maxU =
1

�

�
lnZ0 + lnL+

� ln z

�

�

subject to L + H1 + H2 = 1 and � = '
�
�H

"�1

"

1 + (1� �)H
"�1

"

2

� "

"�1

. The

solution to this problem gives rise to

L =
1

[�" + (1� �)"]1=("�1)

�
�

' ln z

�
, (B14)

H1 =
�"

�" + (1� �)"
(1� L) , (B15)

H2 =
(1� �)"

�" + (1� �)"
(1� L) . (B16)

Therefore, when both patent instruments are chosen optimally, the optimal
pro�t-division rule continues to be

s� = 0:5, (B17)

and the optimal patent breadth is

�� = 2

�
[�" + (1� �)"]1=("�1)

'

�
+ 1

�
ln z � 1. (B18)
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