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Lévy Subordinator Model of Default Dependency

B. S. BALAKRISHNA∗

March 14, 2010; Revised: July 22, 2010

Abstract

This article presents a model of default dependency based on Lévy subordinator.
It is a tractable dynamical model, computationally structured similar to the one-factor
Gaussian copula model, providing easy calibration to individual hazard rate curves
and efficient pricing with Fast Fourier Transform techniques. The subordinator is an
alpha=1/2 stable Lévy process, maximally skewed to the right, with its distribution
function known in closed form as the Lévy distribution. The model provides a reason-
able fit to market data with just two parameters to assess dependency risk, a measure
of correlation and that of the likelihood of a catastrophe.

Correlation products are derivatives sensitive to default correlation among a collection of
credit names. Pricing of these involves either directly or indirectly modeling default depen-
dency among the credit names. Market standard among such models is still the Gaussian
copula model, a one-factor model that enables easy quotation of market prices. But, it is
well-known that the model is inadequate to price nonstandard products.

Major attraction of the Gaussian copula model is its simplicity and tractability. It can
easily be calibrated to individual hazard rate curves. It can be formulated in closed form
providing a semi-analytical framework for pricing. It admits efficient pricing with recursive
methods or Fast Fourier Transform techniques. As it turns out, there exists another model
similar in architecture that also enjoys these properties. Unlike the Gaussian copula model,
it is a two-parameter model, but is able to offer a reasonable explanation of the correlation
smile. The two parameters provide the two measures necessary to assess dependency risk, a
measure of correlation and that of the likelihood of a catastrophe. The model is dynamical
based on the Lévy subordinator, an alpha=1/2 stable Lévy process maximally skewed to
the right, whose distribution function is expressible in closed form and is known as the Lévy
distribution. Though it is inevitable that, with a model of such few parameters, there is
bound to exist a residual smile, the ability to capture the smile characteristics will be helpful
in sensitivity analysis and stress testing.

Issues with the Gaussian copula model have been addressed before. Many authors have
presented models going beyond the Gaussian copula, and the following is obviously a limited
review of the literature. Brigo, Pallavicini and Torresetti [2010] provide an account of the
developments in this field. Hull and White [2006] introduce an implied copula model that can
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calibrate consistently across all CDO tranches for a given maturity. Brigo, Pallavicini and
Torresetti [2006] provide a fit across tranches as well as maturities in a generalized Poisson
cluster loss model. Balakrishna [2009] models the jump distribution in an intensity based
model. A doubly stochastic framework for intensity modeling is introduced in Duffie and
Garleanu [2001]. Joshi and Stacey [2005] consider an intensity based modeling of business
time as a gamma process. Chapovsky, Rennie and Tavares [2007] model default intensity
as a jump-diffusion process. Errais, Giesecke and Goldberg [2006] present a model based on
affine point processes.

An approach using Markov chains is presented in Di Graziano and Rogers [2005]. Puty-
atin, Prieul and Maslova [2005] use a Markovian approach with a Poissonian mixing distri-
bution. Bennani [2005] presents a Markov functional approach to instantaneous loss rate.
Sidenius, Piterbarg and Andersen [2005] consider a no-arbitrage approach to modeling fu-
ture loss distribution. Overbeck and Schmidt [2005] propose a threshold model based on
time-changed Wiener processes. Albanese, Chen, Dalessandro and Vidler [2006] present a
structural model based on spectral analysis. Baxter [2007] presents a structural framework
using Lévy processes. Albrecher, Ladoucette and Schoutens [2007] present a unified approach
to generic one-factor Lévy models. For an introduction to Lévy processes and their financial
applications, see, for instance, Applebaum [2005].

The article is organized as follows. Section 1 formulates one-factor models independent
of the factor dynamics. Section 2 realizes this framework with Lévy processes called subordi-
nators, and presents a specific model based on the Lévy subordinator. Section 3 introduces
large homogeneous pool approximation. Section 4 discusses semi-analytical framework to
compute expected loss for a finite number of names with Fast Fourier Transform techniques.
Section 5 discusses CDO pricing semi-analytically and via a Monte Carlo algorithm. Section
6 discusses random recovery rate. Section 7 concludes with a summary. Tables 1-3 present
the results of calibrating the model to CDX.NA.IG and iTraxx Europe CDOs.

1 One-Factor Formulation

Consider a model wherein common economic variables determine default dependency. Fac-
tors governing default dependency can be considered to be functions of the sample paths
followed by the common variables. In a simplified version of the model, only one such
path-function would be relevant. Let Ft() be the cumulative distribution function of this
path-function at time t. Given a value for Ft(), defaults are considered to be independent of
each other such that, for the probability Pij⋅⋅⋅(t) that one or more names labeled {i, j, ⋅ ⋅ ⋅}
are in the defaulted state at time t, we may write

Pij⋅⋅⋅(t) =

∫ 1

0

dF [pi(F, t)pj(F, t) ⋅ ⋅ ⋅] . (1)

Here pi(F, t) is the probability that ith name is in the defaulted state at time t given that Ft()
has value F . This expression does not depend on the past history of the common factor.
That such a formulation is possible, at least in principle, can be appreciated in a large
homogeneous collection of credit names (discussed in section 3) wherein pi(F, t) itself can be
viewed upon as a path-function and identified with the fraction of names in the defaulted
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state at time t. Just as this suggests that a homogeneous collection should be describable
by a one-factor model, a heterogeneous collection is expected to be describable by number
of factors not more than the number of heterogeneous name types in the collection.

The above formulation of one-factor models, though appears rather simple and straight-
forward, has the attractive feature that the time-dependence of the common factor has
disappeared into the integration variable F . As we will see, this helps us define a model
independent of the dynamics governing the common factor. In fact, it lets us define a model
independent of the common factor itself since the F -variable, being uniformly distributed,
hides all the intricacies of the common factor. Though the model can be viewed as dynamical
at the effective level, that is after the F -integration, specifying the common factor and its
dynamics can be helpful in providing a full specification of the model dynamics, in particular
an extension of (1) to joint distribution of default times. Such an extension however is not
needed for CDO pricing that is the main focus of the present article.

Consider F as some indicator of economic developments, say with increasing F corre-
sponding to less favorable economic conditions. This suggests that the conditional survival
probability qi(F, t) ≡ 1 − pi(F, t) decreases as a function of F for all t > 0. Let F = 1
correspond to the worst case scenario, that of total collapse with all the names defaulting,
so that qi(1, t) = 0. At the F = 0 end, the common variables could be considered to be
ineffective in causing defaults so that qi(0, t) would be firm-specific, say e−�i(t), where �i(t) is
a deterministic increasing function of t with �i(0) = 0. Further qi(F, t), in particular contri-
bution from the common factor, is expected to be a non-increasing function of t, starting at
one and ending up at zero as t runs from zero to infinity. These properties of qi(F, t) suggest
that we look for a stochastic process Φi(t) such that

qi(F, t) = e−�i(t)E
{
1Φi(t)≥F

}
, (2)

where E{⋅} denotes expectation and 1{⋅⋅⋅} is the indicator function. Φi(t)s are independent
stochastic processes associated with the credit names, taking values in [0, 1] with Φi(0) = 1
and Φi(∞) = 0 and having only non-increasing sample paths. For the individual credit
name, its default probability Pi(t), or equivalently its survival probability Qi(t) ≡ 1− Pi(t),
can now be expressed as

Qi(t) =

∫ 1

0

dFqi(F, t) = e−�i(t)E

{∫ 1

0

dF1Φi(t)≥F

}
= e−�i(t)E {Φi(t)} . (3)

Satisfying this ensures that the model gets calibrated to individual hazard rate curves.
The above one-factor formulation covers some of the well-known one-factor models. For

instance, the standard one-factor Gaussian copula model is recovered with �i(t) = 0 and

Φi(t) = N

(
1√
�

(√
1− �Zi −Ki(t)

))
, (4)

where N() is the cumulative standard normal distribution function, Zi is a standard normal
random variable associated with the ith credit name, � is the correlation parameter and
Ki(t) = N−1(Pi(t)). This follows after writing F = N(−Y ) where Y is standard normally
distributed. The copula results from a straightforward extension of expression (1) to joint
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distribution of default times. However, the model lacks dynamics as is evident from above
and has no support for firm-specific risk. It is not the natural choice from the point of view
of the present formulation of one-factor models.

In our case, it is more convenient to work with Λi(t) ≡ − ln Φi(t), a non-decreasing
stochastic process taking values in [0,∞] with Λi(0) = 0 and Λi(∞) = ∞. The conditional
survival probability qi(F, t) then reads

qi(F, t) = e−�i(t)E
{
1Λi(t)≤− lnF

}
. (5)

For the individual survival probability Qi(t), this gives

Qi(t) = e−�i(t)E
{
e−Λi(t)

}
. (6)

We may also express the joint survival probability QΩ(t) for a list of names in Ω as

QΩ(t) = e−
∑

i∈Ω
�i(t)E

{
e−Maxi∈ΩΛi(t)

}
, (7)

where Maxi∈Ω picks up the largest Λi(t) in the list Ω. This follows from the fact that Λi(t)s
are independent stochastic processes. This result is not needed for our discussion to follow,
but it is interesting to note that it defines the model with no explicit reference to the common
factor that has been integrated away.

Though not needed for the article, we may note here that a straightforward extension of
(1) to joint distribution of default times is

Prob(�i ≤ ti, �j ≤ tj, ⋅ ⋅ ⋅) =
∫ 1

0

dF [pi(F, ti)pj(F, tj) ⋅ ⋅ ⋅] , (8)

where �is are random default times. This is made possible because the variable F has no
memory of the time horizon. The resulting model can be formulated as a first passage model
with the crossing of barrier F by the non-increasing Φi(t) triggering default of the ith credit
name, conditional on surviving firm-specific risk factors. F is then a random variable and
one possible interpretation is that of − lnF as a common age limit and Λi(t)s as intrinsic
age processes. The barrier formulation is reminiscent of a barrier diffusion model, but the
relationship, if any, is not clear yet, though the first passage time distribution of a Brownian
motion is known to follow the Lévy distribution and, as we will see next, the same distribution
turns out to be relevant here as well.

2 Lévy Subordinator Model

The above formulation of one-factor models left us with individual stochastic processes that
are a priori expected to be quite complicated. Fortunately, as we will see below, they can
be realized neatly with a class of Lévy processes with non-decreasing sample paths known
as subordinators. Of these, a stable process called the Lévy subordinator1 turns out to be
the appropriate one to choose.

1In the literature, one sometimes finds the term “Lévy subordinator” used for all subordinators. As in
Applebaum [2005], it is used here just for the � = 1/2, � = 1 stable process. Similarly, the term “Lévy
distribution” is used here just for the distribution of that process.
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Let Xi(t), i = 1, ⋅ ⋅ ⋅ , n be n independent subordinators for a collection of n credit names.
For a parsimonious model, let us assume that they are identically distributed. Let �(u) be
their Laplace exponent given by

E
{
e−uXi(t)

}
= e−t�(u). (9)

Given such subordinators, let us set

�i(t) = (1− ��(1))�i(t), Λi(t) = Xi(��i(t)). (10)

This introduces � as one of the parameters of the model. �i(t) is derived from the individual
survival probability Qi(t) as

�i(t) ≡ − lnQi(t). (11)

Now, individual hazard rate curves are automatically calibrated to, since

Qi(t) = e−�i(t)E
{
e−Λi(t)

}
= e−(1−��(1))�i(t)E

{
e−Xi(��i(t))

}
= e−�i(t). (12)

As for the conditional survival probability, we get

qi(F, t) = e−(1−��(1))�i(t)E
{
1Xi(��i(t))≤− lnF

}
= e−(1−��(1))�i(t)g(− lnF, ��i(t)), (13)

where g(x, t) = E
{
1Xi(t)≤x

}
is the cumulative distribution function of Xi(t). Note that,

due to the introduction of �, an overall scale for �(1) can be conveniently chosen. Allowing
F → 0 in the above result and requiring qi(F, t) ≤ 1 implies ��(1) ≤ 1 so that �i(t) remains
non-negative as is expected of the firm-specific contribution.

A subclass of subordinators are stable processes having index of stability � ∈ (0, 1) and
skew parameter � = 1. Their distributions are not known in closed form except for the
� = 1/2 stable process called the Lévy subordinator. The cumulative distribution function
of the Lévy subordinator is the Lévy distribution (�(u) =

√
u+ �u)

g(x, t) = 2N
(
−t/

√
2(x− �t)

)
, (14)

where N() is the cumulative standard normal distribution function. This includes a non-
negative drift component �t introducing � as the second of our model parameters, so that
the distribution has support only to the right of �t. With the Lévy subordinator chosen for
Xi(t), the above distribution gives us for the conditional survival probability

qi(F, t) = 2e−(1−�(1+�))�i(t)N
(
−��i(t)/

√
−2(lnF + ���i(t))

)
. (15)

Consistency requirement ��(1) ≤ 1 here reads �(1 + �) ≤ 1.
Result (15) defines our two-parameter Lévy subordinator model. Though, in general, the

two parameters could be different for different names, and time-dependent as well (subject to
qi(F, t) non-increasing with respect to t), they are considered uniform and constant for ease
of calibration. Default correlation can be computed given the two-point survival probability∫ 1

0
dFqi(F, t)qj(F, t), and is found to have the behavior �� − (2�2/�)�(t) ln �(t) as �(t) → 0

in a homogeneous collection. It is more convenient to regard �, or more appropriately ��(1),
as some correlation measure. Positive drift forces qi(F, t) to zero above F = e−���i(t). This
F -threshold is name-dependent, but, in the large homogeneous pool approximation discussed
below, it implies a finite probability of all the names in the pool defaulting, � measuring the
likelihood of such a catastrophe.
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3 Large Homogeneous Pool

Because the present model is structured very similar to the Gaussian copula model, efficient
pricing techniques of the latter can be directly employed in the present case. One of them
is the large homogeneous pool approximation that can be a useful tool since it admits an
explicit expression for the loss distribution.

Consider a homogeneous collection of n credit names. The joint default probability that
k or less number of names are in the defaulted state at time t and the rest are not is

P{k}(t) ≡
k∑

j=0

(
n

j

)∫ 1

0

dF [pt(F )]j [1− pt(F )]n−j , (16)

where pi(F, t) has been written as pt(F ) for simplicity. For an infinitely large homogeneous
pool of names, that is as n → ∞, it is well-known that, by the law of large numbers, the
above simplifies to

Gt(�) ≡ P{�n}(t) =

∫ 1

0

dF1pt(F )≤� , (17)

where � = k/n is the fraction of names in the defaulted state at time t. This indicates that
Gt(�) can be obtained by summing up the region of F over which pt(F ) ≤ �.

We have considered pt(F ) to be an increasing function of F . Hence, Gt(�) can be obtained
by solving pt(F ) = � for F = Gt(�) (note that this suggests, as remarked earlier, that the
variable underlying the common factor may be envisioned as the fraction of names defaulted
in a large homogeneous pool). When �(1 + �) ≤ 1 as is required for consistency, there is a
�min(t) below which Gt(�) = 0,

�min(t) = 1− e−(1−�(1+�))�(t). (18)

This increases with t starting from zero at t = 0. For � above �min(t), Gt(�) is

Gt(�) = exp

{
−���(t)− 1

2
(��(t))2

[
N−1

(
1

2
(1− �)e(1−�(1+�))�(t)

)]−2
}
, � ≥ �min(t).

(19)
Note that Gt(�) → e−���(t) as � → 1 so that there is a probability mass at � = 1 as observed
earlier, suggesting a finite probability 1− e−���(t) of a total collapse.

The expected loss per tranche size for a tranche with attachment point a and detachment
point b can be computed as

L(t)[a,b] = 1− 1

�b − �a

∫ �b

�a

d�Gt(�), (20)

where �a = a/(1−R), �b = b/(1−R) and R is the uniform recovery rate (this known result

follows from the usual expressions). Note that
∫ 1

0
d�Gt(�) = e−�(t) as expected. The above

shows that the expected loss becomes 100% of the tranche size once �min(t) crosses �b, if b
is small enough for this to occur within the maturity of the trade. This leads to overpricing
of the equity tranches. Finite n and heterogeneity is expected to offer better pricing by
smoothening out the small � behavior.

6



4 Finite n with FFT

Large homogeneous pool approximation yields fast results, but at the expense of accuracy.
As is well-known, many of the factor models admit efficient pricing for finite n with recursive
methods or Fast Fourier Transform (FFT) techniques. Being structured similar to the Gaus-
sian copula model, the present model can be handled analogously. The following outlines the
steps involved in computing with FFT. To obtain the loss distribution for finite n, consider
the loss variable at time t conditional on F given by

ℒ(F, t) =
n∑

i=1

Li�i(F, t), (21)

where �i(F, t) is the conditional default indicator at time t and Li = (1 − Ri)wi, Ri being
the recovery rate and wi the fraction of the total pool notional associated with the ith name.
Though not explicitly shown, Li can be dependent on both F and t (as in section 6 on
random recovery rate). Default indicators being independent conditional on F , the above
has the characteristic

E
{
eiuℒ(F,t)

}
=

n∏

m=1

[
qm(F, t) + pm(F, t)e

iuLm

]
, (22)

where i =
√
−1. This characteristic is the Fourier transform of the density function of the

loss distribution (conditional on F unless mentioned otherwise). Hence, the loss distribution
can be obtained by inverting it using FFT techniques. The result can be used to compute
the expected loss per tranche size for a tranche with attachment point a and detachment
point b according to

L(F, t)[a,b] = 1− 1

b− a

∫ b

a

dxHt(F, x), (23)

where Ht(F, ⋅) is the cumulative loss distribution function.
FFT requires discretization of u. Discretization is straightforward if Li’s are uniform

at L across the collection (L = (1 − R)/n if Ris are uniform). Inversion then yields the
loss distribution at loss-points j = 0, ⋅ ⋅ ⋅ , n in units of L. This gives the default probability
density P[j](F, t), the sum of products of various combinations of j of the pi(F, t)s and n− j
of the qi(F, t)s. Consider it extended up to j = N − 1 ≥ n by padding with zeros where N
is a power of 2, as is usually done for an efficient FFT. In this case, (22) reads

N−1∑

j=0

P[j](F, t)e
i!jk =

n∏

m=1

[
qm(F, t) + pm(F, t)e

i!k
]
, k = 0, ⋅ ⋅ ⋅ , N − 1, (24)

where ! = 2�/N . This can easily be computed and inverted using FFT techniques to obtain
P[j](F, t), j = 0, ⋅ ⋅ ⋅ , n, and hence its cumulative counterpart Gt(F, �) (that corresponds to
Ht(F, jL)) where � = j/n is the fraction of names in the defaulted state. Expected loss per
tranche size is then

L(F, t)[a,b] = 1− 1

�b − �a

∫ �b

�a

d�Gt(F, �), (25)
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where �a = a/(nL), �b = b/(nL), and Gt(F, �) is flat in-between successive �−points. Inte-
gration of L(F, t)[a,b] over F gives L(t)[a,b], the unconditional expected loss per tranche size.
This integration is deferred to the end of computations for efficiency reasons.

5 CDO Pricing

The analytical results for the expected loss can be used to price the CDO tranches in the
usual way. The default leg of a tranche per tranche size can be priced as

DL[a,b] =

∫ 1

0

dF

{∫ T

0

D(t)dL(F, t)[a,b]

}
, (26)

where T is the maturity and D(t) is the discount factor for the time period (0, t). Similarly
the premium leg per tranche size per unit spread can be priced as

PL[a,b] =

∫ 1

0

dF

{
N�∑

i=1

�i(ti)D(ti)
[
1− L(F, ti)[a,b]

]
}

+ PL′
[a,b], (27)

where �i(ti) is the accrual factor for the period (ti−1, ti), tN�
= T and N� is the number of

periods. PL′
[a,b] is the contribution from accrued interest payments made upon default,

PL′
[a,b] =

∫ 1

0

dF

{
N�∑

i=1

∫ ti

ti−1

�i(t)D(t)dL(F, t)[a,b]

}
, (28)

where �i(t) is the accrual factor for the partial period covering (ti−1, t). Given the leg values,
fair spread can be obtained by dividing the default leg by the premium leg, after taking care
of any upfront payments.

It is found to be efficient to perform the numerical integration over F after the expressions
within the curly brackets are computed over a sufficiently fine time-grid. Time-steps making
up the grid can be as wide as the periods themselves for efficient pricing, and hence the factors
multiplying the increments dL(F, t)[a,b] are evaluated at mid-points of time-steps. The super
senior tranche can be priced like an ordinary tranche along with a part of the notional that
is a fraction R of the total notional of the underlying credit default swaps outstanding,
or, if recovery rates are nonuniform, sum of fractions Ri of the individual notionals of the
underlying credit default swaps outstanding.

Though the model can be handled semi-analytically as detailed above, a Monte Carlo
simulation algorithm can be a useful tool to price non-standard products. It can also be useful
for pricing standard tranches as it is found to be efficient, accurate, easily implementable
and does not involve discretization of time. The following algorithm can be viewed as
simulating the model defined by expression (8) or simply as a method of computing the
above integrals. If desired, but at the expense of efficiency, it can be generalized to simulate
a more sophisticated model dynamics by simulating a stochastic process with non-decreasing
sample paths chosen for the common variable underlying F . To improve efficiency, quasi
random sequences such as Sobol sequences can be used to generate each of the independent
uniform random numbers.
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The algorithm reads as follows.
1. Draw a uniformly distributed random number F and n independent uniformly dis-

tributed random numbers ui, i = 1, ⋅ ⋅ ⋅ , n.
2. For each credit name i, first determine whether it defaults before the time horizon T

by checking if qi(F, T ) < ui where qi(F, .) is given in equation (15). If so, solve the equation
qi(F, ti) = ui for �i(ti). Determine default time ti of credit name i by a table look up into its
hazard rate curve.

3. Given the default times before the time horizon, price the instrument. For the next
scenario, go to step 1.

4. Average all the prices thus obtained to get a price for the instrument.
Given a scenario of default times, it is straightforward to price the CDOs. One proceeds

processing the defaults one by one, starting from the first up to maturity, picking up payments
by the default leg, switching to the next tranche whenever a tranche gets wiped out, at
the same time computing the premium legs per unit spread for all the surviving tranches.
Whenever a default leg pays out the loss amount, the notional of that tranche gets reduced by
the same amount, and the notional of the super senior tranche gets reduced by the recovery
amount (when the super senior is the only survivor, it gets treated like a default swap). The
leg values can be added across tranches to obtain those for the index default swap. Fair
spreads can be computed given the leg values at the end of the simulation.

6 Random Recovery Rates

Random recovery rates are considered helpful in better pricing of senior tranches and have
been discussed within the context of the Gaussian copula model by Andersen and Sidenius
[2004]. Here, let us consider a similar approach with an emphasis on tractability and ran-
domness of recovery rates arising from a decreasing dependence on F . Just in this section,
pi(F, t) is denoted as p(F, �) without the name-subscript and with the �(t)−dependence made
explicit. In fact, all time-dependences are expressed here as a dependence on �.

Let R̃(F, �) be the random recovery rate for use in semi-analytical pricing. A tractable
choice that has a decreasing dependence on F is, for some positive �,

R̃(F, �) = R0(�)− (R0(�)−R1)F
�. (29)

This decreases from R0(�) to R1 (assuming R0(�) > R1) as F runs from zero to one. For
simplicity, only R0 is considered as �−dependent. R0(�) gets related to R(�) used in building
the hazard rate curve. To see this, consider the expected recovery for the period (0, �),

∫ 1

0

dFR̃(F, �)p(F, �) = R(�)(1− e−�). (30)

This introduces R(�) to be related to R(�). The integral can be evaluated to determine
R0(�) in terms of R(�) as

R0(�) = R1 +
(
R(�)−R1

) [
1− 1− e−c�

(1 + �)(1− e−�)

]−1

,

where c = 1 + � (�(1 + �)− �(1)) = 1 + �
(√

1 + �+ ��− 1
)
, (31)
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where �(u) is the Laplace exponent of the subordinator (
√
u+�u for the Lévy Subordinator).

Decreasing F−dependence of R̃(F, �) implies R0(�) > R(�) > R1. For constant or decreasing

R(�) (and constant �), R0(�) is a decreasing function of �. Requirement R̃(F, �) ≤ 1 is thus
satisfied by ensuring R0(0) ≤ 1.

If constant, R(�) can be identified with the flat recovery rate R used in building the hazard
rate curve. We may also consider R(�) as �−dependent to accommodate a �−dependent
R(�). Since R(�)

(
1− e−�

)
is the expected recovery for the period (0, �), the period recovery

rate R(�) is related to the instantaneous recovery rate R(�) as

R(�) =
1

1− e−�

∫ �

0

d�e−�R(�). (32)

This can be useful when R(�) is modeled in line with some of the empirical findings sup-
porting an inverse relationship between recovery rates and hazard rates.

The instantaneous random recovery rate denoted R̂(F, �), in a model of the kind implied

by expression (8), can be obtained from R̃(F, �) as

R̂(F, �) =
∂�

(
R̃(F, �)p(F, �)

)

∂�(p(F, �))
. (33)

This expresses the fact that expected recovery R̃(F, �)p(F, �) for the period (0, �) conditional

on F gets contribution at rate R̂(F, �)∂�(p(F, �)). No simple criterion is available here to

ensure that R̂(F, �) is within bounds. R̂(F, �) is the recovery rate to be used in the Monte-
Carlo algorithm presented earlier.

7 Conclusions

The article has presented a one-factor model of default dependency to capture the correlation
smile. It is driven by the Lévy subordinator, an alpha=1/2 stable process maximally skewed
to the right whose distribution function is known in closed form as the Lévy distribution.
An attractive feature of the model is its tractability, at par with that of the Gaussian copula
model. It gets automatically calibrated to individual hazard rate curves. It can be used for
pricing both semi-analytically by employing recursive methods or Fast Fourier Transform
techniques and via a Monte Carlo algorithm. Being structured similar to the Gaussian copula
model, it has a further advantage that it can easily be implemented within the framework
of the existing computational infrastructure.

As can be seen from Table 1, despite having only two parameters at its disposal, the
model is able to capture the correlation smile reasonably well. Market quotes are as on
October 2, 2006 (source: Brigo, Pallavicini and Torresetti [2006]). Calibration is done for
a homogeneous collection, with constant interest rates and recovery rates, and with hazard
rates flat in-between maturities. Parameter � is helpful in generating a significant spread
for the super senior tranche and is expected to play a more significant role during distressed
market conditions. Quality of the fits can be improved with random recovery rates discussed
in section 6 as demonstrated in Tables 2 and 3. Further improvement is possible with an
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appropriate choice of the recovery rate used in building the hazard rate curve. Minimized
function is w(P −D)2 summed over the tranches where P and D are the present values of
the premium and default legs. If w = 1 so that absolute errors are considered, calibration
tends to emphasize fitting to the equity tranche. If w = 1/P 2 so that relative errors are
considered, the emphasis tends to be on fitting to the senior tranche. A more reasonable
distribution of errors is obtained with intermediate weights such as w = 1/P .

We modeled the individual process Λi(t) as a time-changed Lévy subordinator. Other
subordinators can also be attempted such as the inverse Gaussian subordinator that is a
natural extension of the Lévy subordinator. Alternately, the conditional survival probability
qi(F, t) can be modeled directly, for instance as a mixture of Lévy distributions. Though such
extensions do not appear to improve the fits presented here, they may be helpful under other
market conditions. Λi(t) can also be modeled as the time-integral of a nonnegative stochastic
process, perhaps mean-reverting, that in some sense can be interpreted as stochastic default
intensity. Such model variations result in individual survival probabilities that are not as
easily calibrated to. Though it is simpler and to some extent equivalent when the intensity
process is a stable process, the model presented here is the simplest still resulting in a
reasonable fit to market data.

Though the model has been developed with an application to CDOs in mind, it could
be useful in other disciplines that involve modeling a dependent set of events. The present
model provides two measures to assess dependency risk, that of correlation and that of the
likelihood of a catastrophe. Simplicity and tractability with its large homogeneous pool
approximation, an efficient semi-analytical framework and a Monte Carlo algorithm makes
the model an attractive choice.
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Table 1: Fixed Recovery Rate: Best fits to the five tranches of CDX.NA.IG and iTraxx
Europe CDOs∗, obtained for a homogeneous collection using semi-analytical pricing with
FFT. Interest rate is constant at 5.0% and 3.5% respectively. Hazard rate curve is flat in-
between maturities, built with a recovery rate of 30%. Recovery rate used in CDO pricing
is also 30%. Equity tranche is quoted as an upfront fee in percent (plus 500bp per year
running) and the other tranches are quoted as spreads per year in bp. The three rows under
each maturity present respectively the quotes, results and delta hedge ratios.

CDX.NA.IG7
0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 0-100% �, �

3y 9.75 7.90 1.20 0.50 0.20 24.0
10.27 7.75 1.38 0.58 0.16 0.08 24.0 0.36, 0.0
34.43 0.88 0.13 0.06 0.01 0.00 1.0

5y 30.50 102.00 22.50 10.25 5.00 40.0
31.17 104.59 22.03 10.78 5.34 1.98 40.0 0.60, 0.09
24.24 5.97 1.13 0.49 0.19 0.05 1.0

7y 45.63 240.00 53.00 23.00 7.20 49.0
46.00 248.74 50.74 21.84 8.90 2.67 49.0 0.61, 0.09
16.30 10.37 2.31 0.89 0.30 0.06 1.0

10y 55.00 535.00 123.00 59.00 15.50 61.0
56.05 522.03 138.61 51.88 16.94 3.81 61.0 0.61, 0.09
8.48 12.81 5.34 1.89 0.51 0.08 1.0

iTraxx Europe 6
0-3% 3-6% 6-9% 9-12% 12-22% 22-100% 0-100% �, �

3y 3.50 5.50 2.25 18.0
4.14 6.95 1.64 0.76 0.24 0.08 18.0 0.46, 0.0
34.60 0.94 0.20 0.09 0.03 0.00 1.0

5y 19.75 75.00 22.25 10.50 4.00 1.50 30.0
19.96 77.04 20.60 10.28 5.03 1.40 30.0 0.72, 0.06
26.65 5.51 1.40 0.65 0.28 0.06 1.0

7y 37.12 189.00 54.25 26.75 9.00 2.85 40.0
37.24 202.40 52.19 24.09 10.59 2.37 40.0 0.70, 0.07
19.42 10.18 2.80 1.21 0.48 0.08 1.0

10y 49.75 474.00 125.50 56.50 19.50 3.95 51.0
52.11 451.33 135.58 57.26 22.02 3.60 51.0 0.68, 0.07
10.66 14.01 5.88 2.45 0.85 0.10 1.0

∗Market quotes as on October 2, 2006. Source: Brigo, Pallavicini and Torresetti [2006].
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Table 2: Random Recovery Rate-1: Best fits to the five tranches of CDX.NA.IG and iTraxx
Europe CDOs∗, obtained for a homogeneous collection using semi-analytical pricing with
FFT. Interest rate is constant at 5.0% and 3.5% respectively. Hazard rate curve is flat in-
between maturities, built with a recovery rate of 30%. Recovery rate used in CDO pricing is
random as discussed in section 6. Parameter R1 is set to 10%. Equity tranche is quoted as
an upfront fee in percent (plus 500bp per year running) and the other tranches are quoted as
spreads per year in bp. The three rows under each maturity present respectively the quotes,
results and delta hedge ratios.

CDX.NA.IG7
0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 0-100% �, �, �

5y 30.50 102.00 22.50 10.25 5.00 40.0
30.52 102.09 22.32 10.35 5.00 2.78 40.0 0.42, 0.12, 4.59
24.67 5.60 1.21 0.49 0.19 0.05 1.0

7y 45.63 240.00 53.00 23.00 7.20 49.0
46.21 242.63 54.03 21.71 7.73 2.97 49.0 0.43, 0.10, 3.52
16.64 9.86 2.47 0.95 0.28 0.07 1.0

10y 55.00 535.00 123.00 59.00 15.50 61.0
57.21 525.36 133.55 53.94 16.47 3.32 61.0 0.48, 0.05, 7.24
8.28 13.38 4.87 1.82 0.54 0.08 1.0

iTraxx Europe 6
0-3% 3-6% 6-9% 9-12% 12-22% 22-100% 0-100% �, �, �

5y 19.75 75.00 22.25 10.50 4.00 1.50 30.0
20.12 76.31 21.32 10.07 4.44 1.37 30.0 0.54, 0.05, 6.58
27.12 5.13 1.47 0.67 0.27 0.05 1.0

7y 37.12 189.00 54.25 26.75 9.00 2.85 40.0
37.43 192.25 53.61 24.22 9.86 2.65 40.0 0.50, 0.08, 4.15
19.92 9.39 2.81 1.27 0.47 0.09 1.0

10y 49.75 474.00 125.50 56.50 19.50 3.95 51.0
53.41 445.61 134.65 57.58 19.99 3.56 51.0 0.45, 0.08, 2.89
10.67 14.32 5.61 2.54 0.85 0.10 1.0

∗Market quotes as on October 2, 2006. Source: Brigo, Pallavicini and Torresetti [2006].
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Table 3: Random Recovery Rate-2: Best fits to the five tranches and three maturities of
CDX.NA.IG and iTraxx Europe CDOs∗, obtained for a homogeneous collection using semi-
analytical pricing with FFT. Interest rate is constant at 5.0% and 3.5% respectively. Hazard
rate curve is flat in-between maturities, built with a recovery rate of 30%. Recovery rate
used in CDO pricing is random as discussed in section 6. Parameter R1 is set to 10%. Equity
tranche is quoted as an upfront fee in percent (plus 500bp per year running) and the other
tranches are quoted as spreads per year in bp. The three sets of rows present respectively
the quotes, results and delta hedge ratios.

CDX.NA.IG7
0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 0-100% �, �, �

5y 30.50 102.00 22.50 10.25 5.00 40.0
7y 45.63 240.00 53.00 23.00 7.20 49.0
10y 55.00 535.00 123.00 59.00 15.50 61.0
5y 31.17 104.75 23.75 10.65 4.52 2.08 40.0 0.46, 0.08, 6.46
7y 46.82 237.40 53.05 22.47 7.98 2.79 49.0
10y 56.96 515.01 130.15 52.64 16.45 4.08 61.0

5y 24.60 5.60 1.26 0.52 0.18 0.05 1.0
7y 16.72 9.92 2.28 0.95 0.29 0.07 1.0
10y 8.32 13.31 4.73 1.79 0.52 0.09 1.0

iTraxx Europe 6
0-3% 3-6% 6-9% 9-12% 12-22% 22-100% 0-100% �, �, �

5y 19.75 75.00 22.25 10.50 4.00 1.50 30.0
7y 37.12 189.00 54.25 26.75 9.00 2.85 40.0
10y 49.75 474.00 125.50 56.50 19.50 3.95 51.0
5y 20.14 73.61 19.56 9.24 4.28 1.57 30.0 0.50, 0.07, 5.25
7y 38.24 190.49 51.89 23.52 9.49 2.42 40.0
10y 53.34 436.93 127.56 57.72 21.85 3.84 51.0

5y 26.54 4.97 1.34 0.60 0.24 0.09 1.0
7y 20.13 9.54 2.70 1.23 0.45 0.08 1.0
10y 10.68 14.54 5.21 2.33 0.87 0.11 1.0
∗Market quotes as on October 2, 2006. Source: Brigo, Pallavicini and Torresetti [2006].
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