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Abstract

This paper studies information acquisition under competitive pressure and proposes a model

to examine the relationship between product market competition and the level of innovative

activity in an industry. Recent empirical papers point to an inverted-U shape relationship

between competition and innovation. Our paper o¤ers theoretical support to these results while

employing a more accurate de�nition of innovation than the previous literature; more precisely,

we isolate innovation from riskless technological progress. The �rms in our model learn of an

invention and decide on whether and when to innovate. In making this decision, �rms face

a trade-o¤ between seeking a �rst-mover advantage and waiting to acquire more information.

By recognizing that a �rm can intensify its innovative activity on two dimensions, a temporal

and a quantitative one, we show that �rms solve this trade-o¤ precisely so as to generate the

inverted-U shape relationship. When the competition in the pre innovation market is su¢ciently

high, the level of competition in the post innovation market is endogenous. We investigate the

welfare e¤ects of innovation under competitive pressure and �nd conditions that determine the

socially optimal level of competition. We study the e¤ects that the degree of technological

spread in the industry has on innovation and highlight the roles that strategic uncertainty and

the discreteness of the information acquisition process play in this context.
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1 Introduction

This paper studies information acquisition under competitive pressure and employs the resulting

model to investigate the relationship between the degree of competition in an industry and the level

of innovative activity. The clear policy implications of the nature of this relationship generated a

large body of literature investigating it. Starting with the seminal work of Schumpeter(1943), the

objective of these studies has been to determine whether there is an optimal market structure that

results in the highest rate of technological advance. In particular, this literature tried to reconcile

the intuitive appeal of the Schumpeter�s assertion that only large �rms possessing a signi�cant

amount of monopoly power have the resources and incentives to engage in risky innovative activity,

with a substantial amount of empirical literature that suggested the opposite. Although results

vary, more recent empirical papers, such as Aghion, Bloom, Blundell, Gri¢th and Howitt (2005)

(henceforth, ABBGH(2005)) suggest an inverted-U shape relationship between product market

competition and innovation.1 According to these studies, for low levels of competition an increase

in competition induces more innovation, while for higher values of competition, as competition

increases, �rms become less innovative.

Our paper adopts a microeconomic approach and studies the innovation process at �rm level

by following a new project through its stages of development. The �rms in our dynamic model

become sequentially aware of an invention and decide on whether and when to undertake a costly

investment in innovation. In taking this decision, �rms face a trade-o¤ between seeking a �rst-mover

advantage and waiting to acquire more information. There are a number of novel contributions that

our study brings to the literature on innovation. First, we identify the trade-o¤ between information

acquisition and competitive pressure as su¢cient to generate the empirically observed inverted-U

shape relationship. Second, we project the level of innovative activity on two dimensions, a risk

dimension and a quantitative dimension, and unveil the e¤ect of this breakdown in explaining that

relationship. Third, our model o¤ers theoretical support to the newest empirical �ndings while

employing a more accurate de�nition of innovation than the one used in ABBGH(2005), which is

the only other paper to present a theoretical model that obtains the inverted-U shape relationship.2

More precisely, the results in ABBGH(2005) hinge on including in the de�nition of innovation the

technological advancements made at no cost by laggard �rms who copy the technology of the

leader.3 In contrast, the de�nition in our model is consistent with the standard interpretation of

1Scherer (1967) is the �rst empirical paper to uncover this shape. See also Scott (1984) or Levin et al. (1985).
2The vast majority of the theoretical literature on this topic suggested a monotone relationship. For instance,

Caballero and Ja¤e (1993) or Martin (1993) support the Schumpeterian hypothesis while Schmidt (1997) or Aghion,
Harris and Vickers (1997) predict a positive relationship between competition and innovation. Boone (2000) �nds
conditions under which more competitive pressure induces either more or less innovation, while Boone (2001) presents
a model that can generate non-monotone relationships of any nature. See also the discussion in Section 2 of this
paper of the Kamien and Schwartz (1976) "decision theoretic" model.

3 If the de�nition of innovation in ABBGH(2005) does not include these zero cost technological advancements, their
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innovation as being something new, di¤erent and usually better than what existed before.4 We

therefore isolate the innovative activity from riskless technological progress. Finally, we also study

the e¤ects that the degree of technological spread in the industry has on innovation and highlight

the roles that strategic uncertainty and the discreteness of the information acquisition play in this

context.5

The typical stages in the development of a new commercial product or process are presented in

the following �gure:6

Applied research is aimed at gaining knowledge that will address a speci�c problem or meet

a speci�c need within the scope of that particular entity; successful applied research results in

an invention or the discovery of an idea that should work. In the invention stage, the idea also

passes through its �rst tests. This is the research part of the phrase "research and development".

The product development, also called the innovation stage, is the �rst commercial application of

an invention; it requires re�nement of the invention and the developing of a marketable product.

Large R&D labs spend most of their resources on innovation.7 The ideas generated through applied

main monotonicity result does not hold anymore unless the hazard rate of these events is insigni�cant. However, for
small values of this hazard rate, it is straightforward to see that their model predicts that the industry structure will
be such that the Schumpeterian e¤ect will always dominate.

4Schumpeter(1934) de�nes economic innovation as the introduction of a new good, the introduction of a new
method of production, the opening of a new market, the use of a new input of production or the implementation of
a new organizational structure.

5Also, our model can be seen as a study of product innovation in which new products are introduced in the market.
This di¤ers from most of the current theoretical literature on innovation, including ABBGH(2005), which focuses on
the study of technological advancements that consist of process innovations in which existing products are produced
at a lower average cost.

6See Mans�eld (1968b) for an excellent in depth analysis of the innovation decision making at �rm level.
7For instance, of the $208.3 billion spent on industrial R&D in the United States in 2004, $155.1 billion (or 74.5

percent) were spent for development. Source: National Science Foundation, Division of Science Resources Statistics.
2008. Research and Development in Industry: 2004.
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research go through a screening process and a small share of them end up being implemented in

marketable products.8

The model in our paper has a set of �rms who, sequentially, become informed about an invention

that could render future gains to its investors, provided that it is a success from technological and

business standpoints. Once a �rm learns of the invention, it has the option of investing in the

project at any time. Initially, the �rm�s knowledge about the feasibility of the project is scarce, so

investment is relatively risky.9 As time passes, the �rm acquires additional information, and is able

to better assess its chances of success.10 The additional information may eventually lead the �rm

to decide not to invest in the project. This may make waiting bene�cial because it can potentially

help avoid the �nancial losses associated with the development of an unsuccessful product. On the

other hand, in our model, earlier investors end up releasing the product earlier, and thus enjoy a

natural �rst-mover advantage.11

These two features of the model induce a trade-o¤ in the �rm�s problem between investing

early to enjoy the �rst-mover advantage, and waiting to acquire new information and reduce the

risk of investment. Mans�eld(1968b, p. 105) underlies this trade-o¤ in the �rm�s decision making

process. As he states, one the one hand, "there are often considerable advantages in waiting,

since improvements occur in the new product and process and more information becomes available

regarding its performance and market". On the other, "there are disadvantages... in waiting,

perhaps the most important being that a competitor may beat the �rm to the punch...". He

concludes: "if the expected returns... justify the risks and if the disadvantages of waiting outweigh

the advantages, the �rm should innovate. Otherwise it should wait. Pioneering is a risky business;

whether it pays o¤ is often a matter of timing". Now clearly, the presence of this trade-o¤ suggests

8To illustrate this breakdown of the development process, Kotler and Armstrong (2005) quote a management
consultant as saying: �For every 1000 ideas, only 100 will have enough commercial promise to merit a small-scale
experiment, only 10 of those will warrant substantial �nancial commitment, and of those only a couple will turn out
to be unquali�ed successes�.

9Mans�ed et al. (1977, p. 9) found that the probability that an R&D project would result in an economically
successful product or process was only about 0.12; the average probability of technical completion for a project was
estimated to be 0.57.
10This information can be technological, in the form of test results, or knowledge about the technological trend

for the complementary products. For instance, the potential developers of a new hybrid car may have had an
incentive to wait, so that more e¢cient electric batteries would be produced. Second, this new information could
also be commercial in the form of marketing research. For instance, the same hybrid car manufacturer may have
waited to study whether and how many consumers would be willing to compromise and accept the relatively weaker
performance of this new product. Third, the information may come in the form of knowledge about the overall
economic environment. For instance, hybrid cars were only moderately, if at all, successful until just a few years ago,
but they are in relatively high demand now.
11For instance, while there are plenty of hybrid models that have been launched recently, the earlier investors,

Toyota and Honda have a clear technological and commercial advantage in that market. As Porter (1990) states:
"early movers gain advantages such as being �rst to reap economies of scale, reducing costs through cumulative
learning, establishing brand names and customer relationships without direct competition, getting their pick of best
sources of raw materials and other inputs... The innovation itself may be copied but the other competitive advantages
often remain". See Lieberman and Montgomery (1988) for a comprehensive review of the theoretical and empirical
literature analyzing the �rst mover advantage in innovation.
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that, generically, �rms will neither invest immediately in all inventions nor wait until all uncertainty

is removed. However, it is not immediately clear how �rms adjust their innovative activity in

response to a change in competition. Moreover, it is not a priori obvious whether this adjustment

is monotonic as most other theoretical papers concluded or non-monotonic as the newest empirical

evidence suggests. Studying how �rms make these adjustments is the main objective of the paper.

A more innovative industry is de�ned to be one in which �rms allocate a larger budget to the

innovative activity.12 There are two channels for a �rm to increase its innovative expenditures.

First, the �rm can invest earlier in any given project, thus undertaking riskier projects.13 Given

a constant �ow of ideas, this leads to more inventions reaching the innovation stage where the

substantial �nancial commitment to the project is made. Second, the �rm may decide to invest

in an increasing fraction of the projects that attain a certain probability of success. An increase

in this fraction leads to an increase in the level of innovative activity. We will show that for

low levels of competition, �rms invest in all projects that attain a likelihood of success higher

than a certain threshold. For these low values, as competition increases, the threshold decreases

and thus �rms undertake riskier projects and become more innovative. On the other hand, for

high levels of competition, �rms react to an increase in competition by investing in a decreasing

fraction of the projects that reach a given threshold, thus being less innovative. This suggests

that when the pre innovation level of competition is high, the competition in the post innovation

markets is endogenous. More precisely, as competition increases, the fraction of �rms that undertake

any speci�c project decreases, lowering the post innovation level of competition. From a policy

perspective, this �nding implies that the positive welfare e¤ects of increasing competition have

only a limited scope. Finally, we show that for high values of competition, if the technological

spread in the industry increases when competition increases, �rms also respond by investing in

safer projects; this further decreases the level of the innovative activity.

The key driving force in our model is the e¤ect of an increase in product market competition

on the marginal cost of waiting for more information. For low levels of competition, �rms expect

positive pro�ts from innovation and invest in all projects that are su¢ciently safe. They decide

on the optimal moment of investment by comparing the marginal bene�t and the marginal cost of

waiting for more information. When competition increases, the marginal cost of waiting increases

exceeding the marginal bene�t earlier and thus inducing �rms to invest earlier. On the other

12AGBBH (2005) employ patent count data as a primary measure of innovation, but as a robustness check, they
also use R&D expenditures as an alternative measure. The same inverted-U shape relationship emerges.
13From a policy perspective, taking a riskier decision is, on the one hand, decreasing total welfare, because of the

expenses incurred on projects that ultimately prove unsuccessful. On the other hand, it also implies that a successful
product will be released earlier; this improves welfare by delivering the corresponding bene�ts earlier and by generating
other further inventions based on that new product. Basically, �rms in any industry almost always develop a new
product that would deliver positive economic pro�ts almost surely, provided that the required �nancial means are
available. But if the �rm or industry has waited a long period of time before making the investment, it cannot
necessarily be considered innovative. For instance, any major car manufacturer would invest in the development of
a hybrid car now, but only a few of them were willing to take that risk 20 years ago.
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hand, for the higher values of product market competition, each �rm�s expected pro�t from the

innovation approaches the competitive outcome and becomes virtually zero. When competition

further increases, to continue to break even, �rms need to be less innovative. They do this by

investing in a decreasing fraction of projects. While investing later would ensure non negative

expected pro�ts, the resulting strategy pro�le would not be an equilibrium. This is because the

marginal cost curve would continue to shift up and therefore the trade-o¤ between marginal cost

and marginal bene�t of waiting would continue to be solved at earlier times.

The dynamic setting of the model allows studying the case when the increase in competition

alters the technological spread in the industry, de�ned as the length of time it takes for all �rms to

make the technological breakthrough. In our model, �rms are not informed of the exact moment

when other �rms learned of the same invention.14 The absence of this piece of information and the

fact that the �rm�s payo¤ depends on the investment decisions of the other �rms in the industry

introduces strategic uncertainty in the �rms� decision problems. An increase in technological spread

then leads each �rm to assign a higher probability to the event that the innovation has already

started in the industry at any given moment. This induces more pessimistic beliefs about the

number of �rms who will invest before the next piece of information arrives and thus increases the

marginal cost of waiting. As argued above, the upward shift of the marginal cost curve induces

�rms to invest earlier for low levels of competition. For high values of competition, the e¤ect of the

belief updating is of second order, and is compensated by the �rst order e¤ect of the decrease in the

fraction of projects that are undertaken. On net, the marginal cost decreases, which induces �rms

to invest later, thus further reducing innovation. Thus, for higher values of competition, when the

technological spread increases, �rms invest in a decreasing fraction of projects and wait longer.

In addition to the key comparative static result with respect to the value of product market

competition discussed above, the model o¤ers other predictions of interest. First, when the in-

novation costs increase, �rms react by investing later for all values of competition. Second, an

increase in the speed of learning induces �rms to invest in safer projects. Third, the innovation

maximizing level of competition is essentially independent of the cost of innovation. Fourth, the

model is successful at supporting additional empirical regularities that ABBGH(2005) observed.

Thus, we show that a lower level of technological dispersion in an industry results in an inverted-U

shape with a higher peak attained for a lower level of competition. Finally, we also investigate the

welfare e¤ects of innovation under competitive pressure. A social planner that aims at designing the

market structure most conducive of innovation has to take into account the e¤ects of an increase

in competition on the post innovation social welfare, on the �rms� risk taking behavior, on the

timing of innovations and on the degree of redundancy in parallel innovations. We �nd conditions

that determine the level of competition that optimizes these welfare e¤ects of innovation and argue

14The sequential awareness assumption from our model is similar to the one used in Abreu and Brunnermeier
(1993) in a model of �nancial bubbles and crashes.
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that, generically, this level is di¤erent than the one that maximizes the industry-wide innovative

activity.

A more comprehensive review of the literature is presented in section 2. The model is presented

in section 3, while the analytical results, their discussion and a numerical example are presented in

section 4. We also discuss in section 4 the welfare e¤ects of innovation and the case of continuous

information acquisition. The conclusion is in section 5. Most of the proofs are relegated to the

appendix.

2 Review of the Literature

Schumpeter (1943) considered innovation to be the main determinant of technological progress

and an engine of economic growth and development. Discussing the role of market structure

in enhancing innovation, he distinguished between static and dynamic e¢ciency by arguing: "a

competitive market may be perfectly suitable vehicle for static resource allocation, but the large

�rm operating on a concentrated market is the most powerful engine of progress and ... long-

run expansion of total output" (Cohen and Levin, 1989, p. 1060). Motivated by Schumpeter�s

conjecture, many empirical studies have investigated the role that the �rm�s size and the level of

product market competition play in in�uencing the innovative activity.15

The �rst of Schumpeter�s claims to be extensively tested is that the possession of some ex

ante market power is required for �rms to have the means and incentives to engage in signi�cant

innovation activity. Supporters of the Schumpeterian view argued that larger �rms have better

access to capital, are less risk averse due to diversi�cation and enjoy economies of scale (the returns

from innovation are higher when the �rm has a large volume of sales over which to spread the �xed

costs of R&D) and economies of scope (large �rms can bene�t from positive spillovers between

various research programs) from innovation. On the other hand, the opponents of the theory

argued that as the size of the �rm increases, the e¢ciency in R&D is undermined by the loss of

managerial control, while the incentives of individual scientists and engineers become attenuated.

Empirical studies by Scherer (1984), Pavitt (1987), Blundell, Gri¢th and Van Reenen (1999) found

a positive linear relationship between �rms� size and the intensity of the R&D activity, Bound et al.

(1984) found evidence contrary to this claim, and Cohen et al. (1987) found no conclusive e¤ect.

Second, Schumpeter argued that innovation should increase with ex post market power because less

competition increases the rewards that are associated with successful innovations. This argument

is in fact the basis of the current patent laws, which provide the expectation of ex-post market

power as an incentive to innovate. In this line of research, studies such as Fellner (1951), Arrow

(1962), Bozeman and Link (1983) have supported Schumpeter�s hypothesis, whereas Porter (1990),

15A detailed literature review of the earlier empirical literature can be found in Cohen and Levin (1989).
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Comanor and Scherer (1995), Geroski (1995), Baily and Gersbach (1995) and Nickell (1996) rejected

it. On the other hand, more recent studies, that allowed for �exible non linear relationships, such

as Scherer (1967), Scott (1984), Levin et al. (1985) and ABBGH (2005) found evidence of the

inverted-U relationship between R&D intensity and market concentration.16

The theoretical literature on this topic is also vast and with mixed results. Earlier papers,

such as Loury (1979), Grossmann and Helpman (1991), Aghion and Howitt (1992), Caballero and

Ja¤e (1993), Martin (1993) sought to con�rm the Schumpeterian hypothesis.17 On the other hand,

inspired by the seminal work of Hart (1983), more recent theoretical papers focusing on managerial

incentives, such as Schmidt (1997), Aghion, Dewatripont and Rey (1997) or Aghion, Dewatripont

and Rey (1999), proposed models in support of a positive correlation between competition and inno-

vation.18 The main weakness of this strand of literature is that it hinges on the pro�t maximization

assumption at the managerial level being replaced with a less convincing assumption of minimizing

innovation costs, subject to the constraint that the �rm does not go bankrupt.19 Other theoretical

papers in support of the positive relationship are Reinganum (1983), who shows that the existence

of a potential entrant induces the incumbent to be more innovative when innovation is uncertain,

Aghion, Harris and Vickers (1995), whose approach is close to the one from ABBGH (2005), and

Aghion and Howitt (1996) who endogenize the rate at which �rms switch from old technologies to

new, and show that an increase in the substitutability between the old and new product lines will

induce �rms to adopt the new technologies faster. Boone (2000) obtained conditions under which

more competitive pressure induce either more or less innovation to individual �rms depending on

their e¢ciency level.

ABBGH (2005) and Kamien and Schwartz (1976) are the only other theoretical models to

obtain the inverted-U shape relationship. ABBGH (2005) argue that the escaping the competition

e¤ect of an increase in innovation in response to an increase in competition is stronger in neck-

and-neck industries,20 while the opposite Schumpeterian e¤ect is stronger in less neck-and-neck

industries. The inverted-U shape curve emerges because the fraction of neck-and-neck industries

in the economy changes in response to a change in competition. As explained in the introduction,

this result hinges on the extensive de�nition of innovation that is employed. Kamien and Schwartz

(1976) present a model of innovation under rivalry in which �rms decide on the optimal moment to

innovate while facing the following trade-o¤. On the one hand, spending more time on developing

a product induces an decreased and convex cost of innovation. On the other, it increases the

risk that some rival �rm would innovate �rst. As in our model, �rms adjust their innovation

16When ABBGH(2005) imposed a linear relationship in their regression analysis, the results were consistent with
the ones from the earlier empirical literature, which had yielded a positive slope. This suggests a possible explanation
for the previous spurious conclusions.
17See Cohen and Levin (1989) for a detalied overview of this literature.
18See Aghion and Howitt (1998) and Boone (2000) for excellent reviews of this literature.
19These innovation costs are seen to increase the manager�s e¤ort in adapting to the new technology.
20Neck-and-neck industries are de�ned as industries in which �rms are at technological par.
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behavior in a manner consistent with the inverted-U shape relationship between competition and

innovation. However, there are a number of shortcomings in the model of this paper. First, the

measure of rivalry that Kamien and Schwartz use, the expected time of innovation by the other

�rm, leaves aside other interesting cases - for instance, the case in which an increase in competition

is associated with a decrease in post innovation pro�ts. Second, and more importantly, the model

ignores potential strategic considerations. While the �rm under consideration changes its behavior

by investing earlier or later as a response to the rival�s expected time of innovation, the rival does

not do so.

At a formal level, our paper is also related to the very broad literature on timing of irreversible

actions under uncertainty. Closer to our study, Jensen (1982) presents a model of information

acquisition in which the incentive to innovate earlier is provided by the discounting of future rev-

enues rather than the competitive pressure. Chamley and Gale (2005) study a model of endogenous

information acquisition in which �rms learn about the pro�tability of a common value investment

from the actions of the other players, while Decamps and Mariotti (2004) allow in addition for a

private value component of the investment and for exogenous information. Caplin and Leahy (1993)

develop a model in which investors learn of the pro�tability of new industries from the success of

the earlier entrants. Unlike these papers, in our model information is purely exogenous, but the

incentive to invest early is determined endogenously. Finally, the experimentation literature (see

Bolton and Harris (1999) or Cripps, Keller and Rady (2005)) studies the trade-o¤ between current

output and information that can help increase output in the future. In a di¤erent direction, our

paper shares the �rst-mover advantage in innovation feature with the patent race literature (see for

instance the seminal paper by Reinganum (1982)).21 What distinguishes the current model from

this literature is mainly the source of uncertainty. In the patent race literature, the uncertainty was

generated by the fact that the technological advancements were the outcome of a random process,

or by the fact that the �nish line was random. In contrast, in our model, the uncertainty stems

from the fact that the �rm does not know whether the project is successful or not; in other words,

it does not know the state of the world.

3 The Model

3.1 The Technology

There is a continuum of identical and risk neutral �rms who, sequentially, learn of an invention

at moments denoted by ti for �rm i. A mass a of �rms becomes aware at each instant t, with

21An detailed review of the earlier patent race literature can be found in Reinganum (1989).
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t 2 [t0; t0 + ��], � > 1 and � > 0.22 The moment t0 is not known by any of the �rms, but it

has a prior distribution, which is common knowledge among the �rms in the industry. This prior

distribution is uniform on the real line.23 After the �rm learns of the new idea, it may invest in its

development at any time with a one-time sunk �xed cost c of innovating.24 As we argue later, a

can be interpreted as a counterpart of the Lerner index, that is, an inverse measure of the ability

of the �rms in an industry to collude. On the other hand, ��, the length of the so called awareness

window, constitutes a measure of the technological spread in the industry.

The timeline corresponding to the case in which the �rm i waits � time units before investing,

is presented in the Figure 2.

The information acquisition is modelled as follows.25 Before moment ti, the �rm�s R&D de-

partment engages in applied research aimed at gaining knowledge with the purpose of using that

knowledge for commercial purposes.26 At moment ti, when �rm i becomes aware of an invention,

22As standard in the literature, the continuum hypothesis employed here can be interpreted simply as the distrib-
ution of the unknown locations on the timeline of a �nite number of �rms.
23We use this nonstandard distribution to avoid boundary e¤ects. As an alternative to using it we may discard the

assumption of the existence of a common prior. Thus, instead of having the posterior beliefs of the �rms about t0
at the initial moment when they become aware of the invention be derived from a common prior about t0, we may
consider directly that these beliefs are actually the �rm�s prior on t0 at that moment.
24 It is straightforward to see that the cost c can be interpreted in the rest of the model as the expected present

value of all future expenditures on the development of this new product, without changing the qualitative results.
Thus, the speci�cation of a one time cost is inessential. Also, to simplify the analysis, we assumed that the research
phase is costless; this assumption can be easily dropped, but all the salient results remain the same.
25Since the necessary tests should be identical for all �rms, it is natural to have all �rms go through the same

information acquisition process. This can be slightly relaxed to have each �rm i believe that the rest of the �rms go
through the same information acquisition process as the process that �rm i goes through.
26Note here that, before becoming aware of the invention, the �rm is completely unaware of the model as a whole.

In other words, only at the exact instant when the �rm learns about the new idea, does the �rm also learn about the
model as presented here. This is intuitive in that it makes sense for a �rm to not hold beliefs about the characteristics
of an object of which it is unaware. Moreover, this unawareness assumption can be discarded if we interpret the
notion of "becoming aware" as discovering the product. For instance, all �rms in an industry might be looking for
a cure for some disease and have the same common prior about the model as described above. However, only those
that discover a potential cure for that disease contemplate an investment decision. This interpretation allows for a
common prior of the model, while still preserving the sequential awareness assumption.
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it has a belief p0 about the chance of the investment project being ultimately successful.
27 Then,

after every � units of time, the �rm performs a test against some of the potential technological

or commercial problems that the project might encounter. In the state of the world in which the

project is successful, the tests are always passed. If the project is unsuccessful, some tests may

still be passed.28 Slightly more formally, if the project is successful, the signal received is always

�Pass�. If the project is unsuccessful, the signal may be either �Pass� or �Fail�. The unconditional

probability of a �Pass� signal to be received at moment ti+ t, where t 2 �Z+ � f�; 2�; 3�; :::; tM ��g,

is e��� < 1. At the time tM � min ft 2 �Z+ : t � �� � �� ln p0g, which is the �rst moment when

the posterior probability that the project is successful is no lower than e���, the �rm receives a

"Pass" signal if and only if the project is successful. Thus, at tM + � if all tests have been passed,

the �rm knows for sure that the project is successful. In Appendix A4, we present the speci�c se-

quence of conditional probabilities that generate this signal structure in a manner consistent with

Bayesian updating.

There are three salient features in our model. The �rst is that �rms are not informed of the exact

moment when other �rms became aware of the same invention. This assumption has three merits.

First, it captures the real world uncertainty that �rms face. Second, it e¤ectively induces a smooth

marginal cost of waiting and thus a smooth payo¤ function essential for equilibrium existence.

Finally, it helps obtaining the inverted-U shape when the increase in competition is associated with

an increase in the technological spread in the industry. The second feature is that of a discrete

information acquisition. Besides being more descriptive of how information arrives in reality, this

discreteness helps deliver the main results of the paper together with the strategic uncertainty

assumption. The last salient feature of the model is a single crossing property between the marginal

cost of waiting and the marginal bene�t of waiting, as functions of time, in equilibrium. The

marginal cost of waiting for more information is naturally increasing over time since, in expectation,

the marginal loss from a late release is higher when the product is closer to being a success than

when the product is just in an early stage of testing. On the other hand, the speci�c signal structure

de�ned above is chosen precisely because it implies a marginal bene�t of waiting that is constant in

time, which immediately ensures the single crossing property. The constant marginal bene�t and

the rest of the functional forms make the analisys of our discrete dynamic model tractable, and

allow for a closed form solution and thus for potential further applications. However, by following

the intuitive arguments o¤ered for the main results of the paper, it will be clear that these results

27Mans�eld (1968a, ch.3) presents in detail the process by which R&D proposals and budgets were generated and
evaluated within the central research laboratory of a major electronic, electrical equipment and appliance manufac-
turer. The three dimensions on which projects were evaluated were: (1) probabilities of commerical and technical
success; (2) additional pro�t generated; (3) cost of innovation. Each proposed project was assigned precise estima-
tions for each of these variables at di¤erent levels of management. This anectdotal evidence underlies the importance
that measurable risk of investment plays in the innovative decision-making process at �rm level.
28This signal structure is clearly restrictive in some respects: we do not allow for negative signals that lower the

belief in the success of the project, but do not completely eliminate that possibility. Yet, the model is su¢ciently
general and versatile to be able to capture many dynamic investment problems that �rms are likely to face in reality.

11



hold for more general speci�cations that imply the single crossing property.

3.2 The Payo¤s

At moment ti + t, if �rm i invests in a project which will ultimately turn out to be successful, its

post innovation pro�ts are given by:29

�(t; ti; t0) = 1�m(tjti; t0)�
1

2
n(tjti; t0) (1)

where m(tjti; t0) is the measure of �rms that innovate before �rm i and n(tjti; t0) is the measure of

�rms that innovate at the same time as �rm i. To isolate the e¤ect of the competitive pressure in

inducing �rms to invest earlier, we assume no intertemporal discounting. The functional form in

(1) can be seen as a reduced form of a model in which �rms that invest in innovation earlier have

a higher chance of releasing the product earlier and thus of enjoying the �rst mover advantage.

Alternatively, one may think of the functional form as a reduced form for a patent race model in

which �rms that invest earlier have a higher chance of winning.30 The motivation for the particular

e¤ect of n(tjti; t0) on �(t; ti; t0) is a natural rationing rule in which, if a mass of �rms innovate at

the same time, each of these �rms is considered to have a median rank in the group. The functional

form in (1) ensures that the total amount of pro�ts available from a successful innovation across the

industry does not depend on the particular distribution of the moments when �rms in the industry

innovate. We state this fact formally in the following Remark. For an arbitrary distribution of

innovation times in the industry, denote by G(t) the measure of �rms who has invested by time t.

Remark 1 The total amount of pro�ts earned in the industry is independent of the distribution

G(�).

Proof. See Appendix A1.

29Note that t does not represent a calendar time, as t0 or ti represent, but it is the length of time passed since
the �rm became aware of the innovation. The conditioning on t0 is required because this determines the measure of
�rms who became aware of the innovation before t+ ti.
30One could make the post innovation pro�ts depend also on the measure of �rms that invest after �rm i. In that

case a su¢cient statistic for the �rm i�s pro�ts would be the pair (�; �i), where � is the total measure of �rms that
stay in the post innovation market and �i 2 [0;�] is the rank of �rm i. In this case, in a second stage of the game
that would follow all investment decisions and full information revelation, the laggard �rms that would experience
negative post innovation pro�ts would exit the market. The only o¤ equilibrium path actions would be for some
�rms incuring negative pro�ts to stay in the market and for some �rms making positive pro�ts to exit it. Standard
backward induction arguments reveal these possible devitations to be inconsequential for the �rst stage. Thus, in
the �rst stage of the game, which is the model we are analyzing in this paper, all �rms would know �. To avoid
uninteresting complications, we specify the post innovation pro�ts only as a function of the rank �i as in (1).
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We will consider throughout the paper that c is high enough so that if all �rms released the

product before �rm i, then, even if the project succeeds, �rm i makes negative pro�ts, i.e.

(1� a��)� c < 0 (2)

This condition eliminates the uninteresting case in which �rms wait so long that they eventually

invest in innovation under almost certainty. In real world, laggard �rms frequently choose not to

invest in innovation, and instead they either purchase the license for the new product, wait for the

patent to expire, or copy the new technology through reverse engineering if it is not protected.

3.3 The Measure of Competition

Competition has been modeled in the literature in several ways.31 Boone (2008) shows that the

salient feature common to all theoretical parametrizations of competition is that an increase in

competition always raises the relative pro�t shares of the more advanced �rms and reduces the

pro�ts of the least advanced �rm active in the industry. We show in Appendix A2 that in our model

these conditions are satis�ed when the increase in competition is parametrized by an increase in

a, an increase in �, or an increase in a�.32 A higher value of a means that the product market

competition increases while the length of the awareness window �� remains �xed. We de�ne the

technological spread in an industry to be the length of time it takes for all �rms to learn of the

innovation. Thus, an increase in a is associated with an increase in competition that does not

change the technological spread in the industry.

On the other hand, an increase in � parametrizes an increase in competition that also increases

the technological spread. For instance, if the number of �rms in the industry increases, one would

expect that it takes longer for all of them to discover a solution to a certain problem. In fact,

using the total factor productivity as a proxy for the technological level of a �rm and the price-cost

margin to measure competition, ABBGH(2005) show empirically that the average technological

gap in an industry increases with competition.33 In our paper, we will focus the discussion on the

31For instance, papers such as Dasgupta and Stiglitz (1980) or Martin (1993) identify an increase in competition
with an increase in the number of active �rms in the industry. On the other hand, ABBGH(2005), Aghion and
Howitt (1992) or Grossman and Helpman (1991) identify it with a more agressive interaction among �rms and thus
with decrease in the �rms� rents. Finally, Vives (1999, chap 6) presents conditions under which Bertrand equilibria
are more competitive than Cournot equilibria.
32To understand this, assume that there are m �rms in the industry and that starting at t0 �rms become aware of

the invention at constant rate a. Then, if �rms become aware independently of each other, the resulting arrival process
is distributed Poisson(a), while, conditional on t0, the time T

m when the mth �rm becomes aware is distributed
Gamma(m; a). In particular, the expected time for the mth �rm to learn of the invention is E(Tm) = m

a
. In other

words, the total number of �rms in the industry can be written as m = aE(Tm). Thus, an increase in the number
of �rms can be parametrized either by an increase in a or an increase in E(Tm) or an increase in aE(Tm). For
tractability reasons, in our model, conditional on t0, the time T

m is deterministic and takes value �.
33Clearly that, by parametrizing an increase in competition with an increase in a� coupled with a decrease in �,

one could study the e¤ects on innovation of an increase in competition that decreases the technological spread.
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two polar cases when the competition is measured by a or �. To simplify exposition, with a slight

abuse of notation, we denote by x the parameter that measures the value of competition, and we

will specify precisely which case we consider only when the distinction is meaningful.

As a side point here, note that while in the above the parameter a was interpreted as the

mass of �rms in the industry that learn of the invention at any particular time, it can also be

interpreted simply as the inverse measure of the degree to which the �rms in the industry are able

to collude.34 Therefore, our model can also be used, for instance, to describe a duopoly, in which

an increase in a is associated with a decrease in the ability of the two �rms to collude. Since each

candidate parameter for measuring competition in our model can be interpreted in a variety of

ways, depending on how competition is measured in a particular application, we remain agnostic

with respect to exactly what these parameters mean precisely. This preserves the highest level of

generality for our model.

4 Results

4.1 The Equilibrium

The main result of the paper describes the symmetric equilibrium of our model. This equilibrium is

completely characterized by the time �rms wait before investing, �(x), and by the probability with

which �rms pursue the project, �(x). As common for other models with mixed-strategy equilibria,

�(x) can also be interpreted as the fraction of projects into which the �rm invests, and we will

sometimes refer to it as such in the rest of the paper. Proposition 2 and its corolaries describe the

salient qualitative features of the equilibrium of our model. The proof of these results as well as

more precise statements, with the exact conditions determining �(x), �(x) and the cuto¤ x, can be

found in Appendix B.

Proposition 2 In equilibrium, there exists a threshold x such that:

(i) For x < x, �(x) = 1 and �rms expect strictly positive pro�ts from innovation.

(ii) For x > x, �(x) < 1 and �rms expect zero pro�ts from innovation.

Corollary 3 When x := a, for a > a, all �rms wait the same amount of time �(a) before mixing

between investing and not investing. When x := �, there exists a sequence �0 = � < �1 < �2 < :::

and j 2 f0; 1g such that:

34To see this, note �rst that the expected measure of �rms who became aware of the invention before any given
�rm is a ��

2
. Therefore, in a symmetric equilibrium, the expected pro�t of any �rm, given that the project ends up

being successful, is 1 � a ��
2
� c. This is also the average pro�t of the �rms across the industry. So an increase in a

lowers the average pro�ts in the industry.

14



(i) for � 2 [�2k+j ; �2k+j+1] �rms wait �(�) before mixing between investing and not investing.

(ii) for � 2 [�2k+j+1; �2k+j+2], �rms mix among investing after �(�), investing after �(�) + �,

and not investing at all.

As corollary 3 states, for some values of � > � all �rms wait the same amount of time �(�) before

mixing between investing and not investing, while for the rest of the values of � > �, �rms mix

among three options and thus there are two possible equilibrium waiting times. In Appendix B4 we

�nd conditions under which �rms invest as soon as they learn of the invention and conditions under

which they invest only in perfectly safe projects. As expected, �rms invest immediately when p0 is

su¢ciently high, and wait until they remove all uncertainty if the level of competition is su¢ciently

low.35 The next two results discuss comparative statics. First, denote by pt the belief of �rm i in

the success of the project at ti + t.

Corollary 4 (i) �(x) is increasing in c for all levels of competition.

(ii) p�(x) is increasing in � for all levels of competition.

The proof of this corollary follows immediately from the precise characterization of the equi-

librium in Proposition 2. The �rst statement of the corollary suggests that when the innovation

costs are higher, �rms wait more before innovating. Put di¤erently, the higher the pro�ts that the

innovations promise in case of success, the more risky the projects undertaken. Second, � measures

the speed of learning. Thus, the corollary states that, all else being equal, when �rms learn faster

about the pro�tability of new products, they end up investing in safer projects. The e¤ect on

the equilibrium value of waiting time is ambiguous because while an increase in � increases the

equilibrium value of the belief in the ultimate success of the project, it also increases the speed of

learning and thus, that belief level may be attained earlier. To pin down the sign of that e¤ect

precisely, one needs to know the values of the rest of the parameters of the model.

The comparative static of interest is the one with respect to the measure of competition. The

result is presented in the next corollary.

Corollary 5 For x < x, �(x) is decreasing. For x > x, �(x) is decreasing, while �(x) is constant

when x := a, and increasing when x := �.

35For certain values of the parameters, there exist equilibria as described by Proposition 2 in which �(�) > ��.
Thus, in this type of equilibrium there is a moment when there are more than enough �rms in the industry aware of
the invention to invest and render the pro�ts of the remaining �rms negative without any of them actually investing
yet. Moreover, in an equilibrium in which �(�) > 2��, there is a moment when all �rms know that the remaining
�rms know about the invention and still nobody invests. These types of equilibria are sustainable because, while all
�rms may know of the invention and know that everyone else knows and so on up to any �nite level, the invention is
not common knowledge among the �rms until the product is actually released in the market for the �rst time.
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We present �rst the intuition for this Corollary for the case when the increase in competition

is parametrized by an increase in a. First, for low levels of competition, the post innovation

pro�ts from a successful project are signi�cant, and thus �rms expect strictly positive pro�ts from

innovation. Therefore, the optimality condition that drives the �rm�s response is the one that solves

the trade-o¤ between the marginal cost (henceforth, denoted MC) and marginal bene�t (MB) of

waiting for an additional informative signal. The MC of waiting for �rm i is the expected decrease

in post innovation rents due to the expected loss in �rst mover advantage.36 On the other hand,

the MB is the additional information provided by the signal; in monetary terms, the MB can be

measured as the expected forgone costs on an unsuccessful project. As explained in Section 3.1,

the MC and MB curves satisfy a single crossing property.

An increase in a shifts the MC curve upwards, while the MB curve is una¤ected. Therefore,

for small values of a, as a increases, �rms respond by waiting less in equilibrium. In the literature,

this is called the "escaping the competition e¤ect". Above a certain level of competition, a, there is

no symmetric pure strategy equilibrium. If all �rms that became aware of the new product before

some �rm i, have already invested at the �rst moment when the MC of waiting exceeds the MB

for �rm i, then the expected measure of �rms who would release the product before �rm i would

be too high for �rm i to expect non-negative pro�ts from investing in the project. Conversely, if

�rms were to just respond to the increase in competition by investing later, then each �rm would

have an incentive to deviate and invest earlier. Thus, no symmetric pure strategy equilibrium, in

which all �rms invest in the project is sustainable.

Instead, for a > a �rms mix between innovating and not innovating, thus e¤ectively investing

in only a fraction of the projects. Therefore, they respond to increased competition by being less

innovative. In line with the Schumpeterian argument, the explanation is that in highly competitive

industries, the potential revenues from a successful new product are divided among many �rms

and thus each �rm�s expected pro�t from the innovation is virtually zero. When the technological

spread does not change, �rms reduce their level of innovative activity by investing with a decreasing

probability �(a) 2 (0; 1). This endogenizes the level of competition in the post innovation markets

and allows �rms to expect nonnegative pro�ts. Note that if �(a) did not decrease, but instead �rms

would continue to invest later, the MC curve would continue to shift up as a increases. Thus, the

trade-o¤ between the MC and MB of waiting, which determines the moment when the expected

pro�ts from innovation are at their highest level, would continue to be solved earlier. But these

maximum pro�ts would be negative. Thus, �(a) needs indeed to decrease when a increases.

To understand the intuition for Corollary 5 in the case when the increase in competition also

increases the technological spread in the industry, we �rst provide intuition for why the MC of

36We use the terms "marginal cost" and "marginal bene�t" in a loose sense, without giving a precise formal
de�nition. We employ them only to provide intuition regarding the trade-o¤ that the �rms face in deciding on
whether to wait for one more piece of information or to invest immediately.
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waiting increases when � increases, and discuss the elasticity of the MC curve with respect to �.

We do these for the simplest case in which all �rms wait for � periods before investing and restrict

attention to the case when t < � . Thus, note �rst that at ti �rm i�s posterior of t0, F0(�) is uniform

on [ti � ��; ti]. Second, conditional on any t0, �rm i will know that, according to the equilibrium

strategies of the other �rms, the measure of �rms who have already invested at any moment ti + t

is

m(tjti; t0; � ; x) � amin(��;max(ti + t� � � t0; 0)) (3)

Note that innovation has already started at moment ti + t, that is, m(tjti; t0; � ; x) > 0 if and only

if t0 2 [ti � ��; ti � (� � t)]. Then, the expected measure of �rms who have invested at ti + t is

�(tjti; � ; x) � Et0 [m(tjti; t0; � ; x)] =

Z ti

ti���
m(tjti; t0; � ; x)dF0(t0) (4)

It follows that 1
a
@
@t
�(tjti; � ; x) =

R ti�(��t)
ti���

dF0(t0); this is precisely the measure of the set of

values of t0 for which innovation has already started in the industry at moment ti + t. Thus,

waiting for additional �t time units increases the expected measure of �rms who have invested

by a�t multiplied by the probability that innovation has started in the industry. Straightforward

calculations show that @2

@�@t
�(tjti; � ; �) > 0. It follows that the instant MC of waiting at ti + t,

MC(t; �) = pt
@
@t
�(tjti; � ; �) is increasing in �. This is because an increase in technological spread

induces more pesimistic beliefs about the moment when �rms started learning of the innovation. To

understand this, note �rst that from the view point of �rm i, the earliest moment that innovation

could have started is ti+����, and second that � and t are �xed. Therefore, when � increases, �rm

i assigns a higher probability at moment ti + t to the event that innovation has already started.
37

This makes waiting more costly. Finally, @ lnMC(t;�)
@ ln � � 1 for t 2 [� � ��

2 ; � ], so the MC curve is

inelastic with respect to �, for t close to � . Intuitively, when t is close to � , �rm i already assigns

a high probability that innovation has started, so an increase in the technological spread does not

alter the beliefs signi�cantly. For later use, note also that the MC curve becomes almost perfectly

inelastic at � � � as � ! 0. A somewhat similar argument shows that when t � � , MC(t; �) is

again increasing in � and inelastic with respect to � for t 2 [� ; � + ��
2 ]. Since for t � � , the event

that some �rms have started investing has probability one, the main di¤erence is that an increase

in � increases the measure of the set of values of t0 for which all �rms have already invested.

Now, for � < �, as argued above, when � increases the MC increases and �rms invest earlier.

Above �, where the expected pro�ts become zero, if �rms were to just wait longer as � increases,

without a corresponding decrease in �(�), the MC curve would continue to shift up. This would

37The probability as of moment ti + t that the innovation has started is Pr (t0 2 [ti � ��; ti � (� � t))) =
���(��t)

��
.

This closed form solution is due to the simplicity of the posterior F0(�), but since � � t is �xed, the intuition is clearly
valid for all su¢ciently well behaved families of distributions fF �0 (�) : � > 0g, parametrized by �, the �nite length of
the support of F �0 (�).
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lead �rms to solve the trade-o¤ earlier and incur negative pro�ts. Thus �(�) must decrease. More

precisely, �(�) must decrease so that the expected pro�ts in equilibrium, p�(�)
�
1� 1

2a�(�)��
�
stay

at zero, as necessary for the �rms to be willing to randomize. As shown above, in equilibrium, the

MC curve is inelastic with respect to � around � . On the other hand, the MC curve is unit elastic

with respect to �.38 This is because the decrease in �(�) decreases the density of �rms who invest

at any particular moment; therefore the total measure of �rms who invest in any time period �

decreases by exactly the same fraction that �(�) decreases. Since the magnitudes of the percentage

changes in �(�) and � must be equal to keep expected pro�ts at zero, the e¤ect of the decrease in

�(�) dominates around � and thus lowers the marginal cost. On the other hand, since the MC is

increasing in time, the only relevant section of the MC curve for determining the new equilibrium

waiting time is the middle segment around � . Since the curve shifts down on this part, �rms end

up investing later.

Note the distinct channels through which the two parameters a and � increase the MC of

waiting. An increase in a increases the expected measure of �rms who invest in the time it takes

to acquire a new signal or increase the potential loss in post innovation pro�ts from being beaten

to the punch by another �rm.39 On the other hand, an increase in � alters the beliefs that �rms

have regarding the event that innovation has already started in the industry. This underlies the

role that uncertainty plays in delivering the results of the model. Absent uncertainty, theMC does

not increase when � increases; the MC of waiting would be either a or 0 depending on whether

innovation has started or not in the industry. This would imply, for instance, that �rms do not

respond by investing earlier for low values of competition.40

38As shown in the proof of Proposition 2, the MC of waiting for one more signal is pt�(x)a�
�

1� 1
2�

�

. The unit

elasticity is an artifact of the linearity of pro�ts in (1). A more general su¢cient condition for this argument to go
through is the the MC is elastic with respect to �a. This is equivalent to the MC being convex in �a and with � in
(1) being concave and decreasing in m(tjti; t0) +

1
2
n(tjti; t0). A concave speci�cation of � allows for a less steep fall

in pro�ts for the earliest innovators. This is consistent with the presence of some further uncertainty regarding the
time of release which smooths the expected payo¤s and thus weakens the �rst mover advantage in innovation.
39To understand this, assume a simple setup in which, if the project is successful, the �rst �rm investing in the

product has a payo¤ of 1 and all the others have a payo¤ of x. Then, conditional on the product being ultimately
successful and on no other �rm having already invested, the expected loss in post innovation rents from waiting for
one more piece of information is 1 � x multiplied by the probability p that some other �rm invests in the product
in that period. Clearly, if an increase in competition is associated with an increase in the number of �rms in the
industry, then p should increase when the number of �rms in the industry increases. On the other hand, if the
increase in competition a¤ects the post innovation pro�ts, the following Boone (2008), the increase in competiton
should decrease x. In both cases, the conditional MC, which is p (1� x) increases.
40As a side point, note that �rms invest earlier for high values of competition if the increase in competition is

associated with a lower level of technological spread in the industry. To see this, consider an increase in a coupled
with a decrease in � that increases the value of a�. To keep �(a; �)a� constant as required by the zero pro�t condition,
a�(a; �) must increase by the same fraction that � decreases. Since MC (�; �) is more elastic with respect to a�(a; �)
than with �, this would make MC (�; �) shift up and thus it would induce �rms to continue investing earlier even
after they make zero pro�ts. In this case the additional risk undertaken would be compensated by a lower level of
competition in the post innovation market.
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4.2 A Numerical Example

In this section, we illustrate the above theoretical results with a numerical example. We calibrated

the model with the following values of the parameters: c = 0:3, � = 0:4, � = 0:2. To also describe

the timing of innovation for the higher values of competition, we allowed for the technological spread

increases with competition and considered � = 100a. The following �gure presents the results of

Proposition 2 by plotting the range of possible values for the equilibrium value of 1�p� against the

total measure of competition a��, as the level of competition increases. Note that 1� p� measures

the risk that �rms undertake, and thus it is a measure of the innovation intensity in the industry.

The step function from Figure 3 depicts the equilibrium values of 1� p� .

For any given value of competition, �rms stop waiting for additional information if two condi-

tions are satis�ed. First, their belief in the feasibility of the project should be high enough that

they expect non-negative pro�ts from that investment. When all �rms invest in the project, for

any amount of time t spent on acquiring additional information, this condition is satis�ed whenever

1�pt is below the curve h in Figure 3. Second, theMC of waiting for one more piece of information

should exceed the MB of waiting for that information. In Figure 3, this is the case whenever 1�pt

is below the curve f2. Since the MC is increasing in time, it is su¢cient to impose this condition

at � , so 1� p� should fall below the curve f2.

On the other hand, �rms need to postpone investing in innovation for � periods, which can

only happen if their belief in the feasibility of the project is low enough. More precisely, if 1 � pt

were below f2 and below h, for some t < � , �rms would deviate from the equilibrium strategy and

invest earlier. Since the MC is increasing in time, a su¢cient condition for the equilibrium to be

sustainable is that �rms have an incentive to wait at � � �. In Figure 3 this is the case whenever

1 � p��� is above f2. Now, f1 is de�ned such that whenever 1 � p��� is above f2, 1 � p� is above
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the curve f1. Therefore, in order for all �rms to wait for no more or less than � time units, 1� p�

should fall in the area between the curves h, f1 and f2. Therefore, for low levels of competition the

bounds that drive the equilibrium value of 1 � p� are f1 and f2, which as Corollary 5 also shows

are both increasing in competition. Thus, for small values of the competitive fringe, �rms react to

an increase in competition by being more innovative.

The shaded area between the curves g1, g2 and h represents the range of possible equilibrium

values of 1 � p� for the higher levels of competition. Curves g1 and g2 are the counterparts of f1

and f2 subject to the constraint that the expected pro�ts are zero. If the increase in competition is

associated with an increase in a, then the two curves are horizontal. Notice that there exist certain

values of a�� in between a1�1� and a2�2� or above a2�2�, where the shaded area between the curves

g1 and g2 does not contain any of the possible values of 1 � p� .
41 The motivation for this fact is

rather involved and its presentation is deferred to the Appendix. As stated in Corollary 3, for those

values of competition, �rms mix among three options and thus there exist two di¤erent possible

values of the equilibrium belief. It is possible that when competition increases above the highest

level that allows for a pure strategy equilibrium, �rms mix among three options rather than two

as in Figure 3. Graphically, this occurs if the curve h does not intersect at the peak a horizontal

hashed line representing a value of 1 � p� , but instead intersects one of the vertical hashed lines.

Figure 3 con�rms the fact that for these higher values of competition, �rms react in equilibrium by

being less innovative when the competition in the industry increases.

4.3 The Innovation Maximizing Level of Competition

To provide some additional testable implications of our model, we examine the behavior of the

peak of the inverted-U shape curve. More precisely, we �rst investigate the e¤ect of a change in the

cost of innovation on the values of competition that maximize the innovation in the industry and

on the corresponding equilibrium risk of innovation. Second, we argue that our model supports

theoretically two additional empirical facts uncovered by ABBGH(2005). These facts describe the

behavior of the peak of the curve in response to a change in the average technological gap in

the industry. For uniformity of exposition, we de�ne the set of innovation maximizing levels of

competition to be the set of values of competition that induce the pure strategy equilibrium with

the shortest waiting time. An inspection of Figure 3 reveals that due to the discrete information

acquisition process, there exists a range of values of x that maximize innovation. In particular, in

Figure 3, these values are in between the levels of competition corresponding to the intersections

of the highest horizontal line 1 � p� with the curves f2 and h. However, as mentioned at the end

of section 4.2, if the curve h intersects a vertical hashed line at the peak, the upper bound of this

set is instead determined by the intersection of 1� p� with the curve f1.

41The possible levels for 1� p� can be infered in the �gure from the values that the step function takes below a��.
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To understand the conditions that determine this set of values, note �rst that as stated in

section 4.2, the MC of waiting at � is higher than the MB of waiting at � when 1 � p� is below

the curve f2, and is equal precisely when the two curves intersect. So the lower bound of the

interval, denoted by x0 is determined by the conditon that the MC and the MB of waiting at

ti + � are equal at the lowest possible equilibrium value of p� . Denoting by S the event that the

project is successful and by F the event that the signal received is "Fail", the MB of waiting is:

c � Pr(F jS) � Pr(S). Since Pr(F jS) = 0, it follows that the MB of waiting is c � Pr (F ). On the

other hand, assuming that all other �rms invest after waiting for � time units, the MC of waiting

at moment ti + t for �rm i is the (expected) pro�t at moment ti + t, pt [1� �(tjti; � ; x)], minus the

expected value as of moment ti+ t of the (expected) pro�ts at moment ti+ t+ �. This second value

is pt+� [1� �(t+ �jti; � ; x)] �Pr
�
F
�
+0 �Pr (F ). Since pt = pt+� Pr

�
F
�
, it follows then immediately

that the MC at ti+ t equals pt [�(t+ �jti; � ; x)� �(tjti; � ; x)]. We have then that x0 is determined

by:

p�(x0) [�(� (x0) + �jti; � (x0) ; x0)� �(� (x0) jti; � (x0) ; x0)] = cPr (F ) (5)

The upper bound of the interval, denoted by x, is determined by one of the following two conditions.

If the bound is at the intersection of h and 1� p� , then the condition is that �rms expect precisely

zero pro�ts from innovation for that value of p� while they all invest. Using the notation introduced

in (4), we can write this condition as42

p�(x1) [1� �(� (x1) jti; � (x1) ; x1)]� c = 0 (6)

On the other hand, if the upper bound is instead at the intersection of f1 and 1� p� , the condition

is that the MC and the MB of waiting at ti + � � � are equal at the lowest possible equilibrium

value of p� . Using the same reasoning as above, it can be argued that the corresponding equation

is:

p�(x2)�� [�(� (x2) jti; � (x2) ; x2)� �(� (x2)� �jti; � (x2) ; x2)] = cPr (F ) (7)

For any value of the parameter of interest, equations (5), (6) and (7) determine the two bounds

x0 (�) and x (�) = minfx1 (�) ; x2 (�)g.

Comparative statics with respect to the cost of innovation. The following proposition

describes the comparative statics of the set [x0(c); x(c)] with respect to c:

Proposition 6 There exist three values of competition xL < xM < xH such that for all values of c,

we have x0(c) 2 [xL; xM ] and x(c) 2 [xM ; xH ]. Moreover, there exists a sequence c0 < c1 < c2 < :::

such that:

(i) when c = ck for some k � 0, x0(c) = xM = x(c);

42Since �(� (x) jti; � (x) ; a; �) =
1
2
a��, equation (6) provides a simple functional form for p�(x).
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(ii) as c increases on (ck�1; ck], x0(c) increases continuously from xL to xM , while x(c) �rst

increases continuously from xM to xH and then decreases continuously from xH to xM ;

(iii) �(x) = k� for all x0(c) � x � x(c) and c 2 (ck�1; ck].

Proof. See Appendix C1.

The upper bound increases when driven by f1 and decreases when driven by h. To understand

the result, note that since � (x0(c)) = � (x(c)), by substituting p�(x0(c)) from (6) into (5), it follows

that the MC and MB curves at the peak of the inverted-U curve are proportional to the cost

of innovation c. Thus the adjustments of the MC and MB curves have the same amplitude at

the peak. Therefore, the set of values of competition that make the values of the MC and MB

approximately equal at the peak is the roughly the same for all values of c. This is precisely

what Proposition 6 suggests. In the limit, as � ! 0, the interval colapses to a single point and

the maximizing level of competition is the same for all values of c.43 Therefore, a change in the

cost of innovation does not have a meaningful e¤ect on the level of competition that maximizes

innovation. Finally, (iii) states that as the cost of innovation increases, the minimum possible

equilibrium waiting time increases. This is natural since at the peak of the inverted-U curve, �rms

make almost zero expected pro�ts so when the cost of innovation is higher, �rms need to invest in

safer projects to ensure non negative pro�ts.

Comparative statics with respect to the average technological gap. ABBGH(2005)

also study the relationship between the properties of the peak of the inverted-U shape curve and

the degree of what ABBGH(2005) call the "neck-and-neckness" of an industry. The measure of the

degree of neck-and-neckness in an industry that ABBGH(2005) use is the inverse of the average

technological gap between the �rms in an industry and the technological leader of that industry.44

Using as a proxy for the technological gap between two �rms the time between the moments when

the �rms make a certain technological breakthrough, that is, between the moments when the �rms

learn of the new invention, the average technological gap in our model is 1
��

R ��
0 xdx = ��

2 . So � is

also a measure of the average technological gap. In the empirical part of the paper, ABBGH(2005)

show in Figure III that for the subsample of industries with a higher degree of neck-and-neckness,

the inverted-U curve has a higher peak and attains this peak at a lower level of competition than

the curve corresponding to the entire sample of industries. However, while the theoretical model

in ABBGH(2005) does support the �rst of these two results, it does not support the second one.

We will show next that our model replicates both of these two additional empirical regularities if

our measure of technological gap can be considered as a proxy for the measure that ABBGH(2005)

use.

43Note that this result, as well as the result of Proposition 7 below, does not hinge on a constant value of the MB
of waiting.
44ABBGH(2005) use the total factor productivity of a �rm as a measure of the �rm�s technological level.
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In order to study the comparative statics with respect to the average technological gap, we

will vary s � ��, while holding the total level of competition as measured by a�� constant. This

means that when s increases, a will decrease precisely so as to keep � � a�� constant. Thus, in

the following, � will parametrize the level of competition. Holding � constant ensures that the

change in the technological gap does not induce a change in competition, so that the desired e¤ect

is precisely identi�ed. In line with the notation introduced above,
�
�0(s); �(s)

�
will denote the set

of values of competition that maximize innovation.

Proposition 7 There exists a sequence s0 < s1 < s2 < ::: such that:

(i) as s increases on (sk�1; sk], �0(s) and �(s) increase continuously in s;

(ii) when s = sk for some k � 0, �0(s) = �(s);

(iii) �0(sk�1) < �0(sk), �(sk�1) < �(sk);

(iv) �(�) = �k for all �0(s) � � � �(s) and s 2 (sk�1; sk] with �k+1 = �k + �.

Proof. See Appendix C2.

Thus, as s increases, the set of values of competition that maximize innovation essentially

moves to the right. On the other hand, the minimum possible pure strategy equilibrium waiting

time weakly increases. Conversely, when s decreases, that is, when the average technological gap

decreases or the degree of neck-and-neckness increases, the peak of the inverted-U curve will move

up and to the left. This is precisely what ABBGH(2005) uncovered empirically. Intuitively, when

the average technological gap decreases, each �rm i expects that the moments when the rest of

the �rms learned of the same invention are closer to the moment when �rm i learned. In other

words, it increases the density of �rms in the awareness window. This increases the MC of waiting

for more information at any moment, and therefore induces �rms to invest earlier for any value of

competition. Moreover, since at the peak of the inverted-U curve �rms make zero pro�ts, the lower

equilibrium belief about the ultimate success of the investment that results from investing earlier

must correspond to a value of competition which is also lower.

4.4 Welfare Analysis

A frequent critique of the standard models of welfare analysis is that they are rooted in static

economic analysis aiming at minimizing the deadweight loss from monopoly while ignoring the

dynamic e¤ects of improvements in productivity or of the introducing of new products. A social

planner that aims at designing the market structure that generates the welfare maximizing level

of innovative activity has to account for a number of e¤ects that a change in product market

competition induces. First, in line with the standard model of welfare analysis, an increase in
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competition lowers the deadweight loss in the post innovation market. Second, as shown in our

paper, the increase in competition changes the time �rms wait before innovating, thus potentially

generating the bene�ts from innovation earlier. Third, it induces an adjustment in the �rms�

risk taking behavior, thus determining the amount of resources spent on unsuccessful innovations.

Finally, it a¤ects the number of �rms that engage into a speci�c line of research, thus potentially

inducing a change in the amount of resources exhausted on parallel innovations. A fully �edged

model of the social planner�s problem would have to capture the welfare considerations in the post

innovation market. In particular, it should specify the type of innovation under consideration and

it should make a number of assumptions about the welfare bene�ts, in terms of consumer and

producer surpluses, that the innovation creates. This analysis is beyond the scope of our paper.

However, by employing a reduced form model of the post innovation market, one can de�ne the

social planer�s problem so that it captures all the other e¤ects that the market structure has on

innovation.

We denote by w(x) the ex post social welfare from a successful innovation as a function of

the ex post level of competition. According to the standard models of social welfare, it follows

that generically w0(x) � 0, for x � xc where xc corresponds to a perfectly competitive market.

For instance, if the innovation results in a new good, xc is the level of competition at which the

marginal bene�t for society of one more unit - the market price - equals average cost of producing

all units. Thus, at xc, �rms make zero pro�ts in the post innovation market. Note that since at

x, where x is the threshold given by Proposition 2, �rms make zero expected pro�ts taking into

account the risk and cost of innovation, it must be that x � xc. We assume that the social planner

has a discount factor . Finally, to capture the e¤ect of parallel innovations, we assume that the

number of �rms in the pre innovation market is �xed at N , that they all contemplate the idea

of innovating, and that one �rm is enough to develop the new product or process as long as the

invention is feasible. Then, given the equilibrium values of �(x) and �(x) derived in the previous

analysis, the social planner�s problem is to choose x to maximize:45

v(x) = e�(+�)�(x)
�
p�(x)w(x�(x))

�
1� (1� �(x))N

�
� cN�(x)

	
(8)

For x < x, we showed that �(x) = 1, so the social planner�s value function reduces to v(x) =

p0w(x)e
��(x) � cNe�(+�)�(x). Abstracting away from discreteness issues, we can write:

v0(x) = p0w
0(x)e��(x) � � 0(x)p0w(x)e

��(x) + ( + �)� 0(x)cNe�(+�)�(x) (9)

Thus, an increase in competition increases the social welfare by increasing the post innovation

welfare (p0w
0(x)e��(x)) and by generating the innovation bene�ts earlier (�� 0(x)p0w(x)e

��(x)),

45Note that the probability of innovation is e���(x), that is the probability that the �rst �(x) signals are positive.
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and it lowers it through expenses incurred on unsuccessful projects (( + �)� 0(x)cNe�(+�)�(x)).

Certain conditions would determine an optimal level of competition lower than x, the level that

maximizes the innovative activity in the industry. First, this may happen when the industry-wide

innovation costs are high relative to the expected bene�ts as measured by w(x). This may happen

when either the �rm level innovation cost c or the number of �rms in the industry N is high. Also

a lower level of competition is bene�cial when the innovation in the industry under consideration

is characterized by an inherent high degree of technological or commercial risk, that is when p0

is small. On the other hand, more competition is better when the social marginal bene�ts in the

post innovation market, as measured by w0(x) are su¢ciently high, or when the speed of learning

� is high - in this last case the society bene�ts from the additional time spent on acquiring new

information.

On the other hand, when x > x, we have �0(x) < 0 and � 0(x) � 0. On the other hand, as

argued in section 4.1, for x > x, we have �(x)x = x. Thus,

v0(x) = �� 0(x)p0w(x)e
��(x)

�
1� (1� �(x))N

�
+ ( + �)�(x)� 0(x)cNe�(+�)�(x) + (10)

+N�0(x)p0w(x)e
��(x)(1� �(x))N�1 � �0(x)cNe�(+�)�(x)

First, when x = �, as we showed, � 0(�) > 0 so the increase in competition induces a later

(�� 0(x)p0w(x)e
��(x)

�
1� (1� �(x))N

�
), but safer (( + �)�(x)� 0(x)cNe�(+�)�(x)) innovation.

Second, the increase in competition decreases the probability that each �rm would pursue that

particular line of research. On the one hand, this has the negative e¤ect that it lowers the chance

that the innovation would be completed in the industry (N�0(x)p0w(x)e
��(x)(1 � �(x))N�1); on

the other, it reduces the redundancies in innovation (��0(x)cNe�(+�)�(x)). For values of x close

enough to x, � 0(x) ' 0 because � achieves its minimum at x, while (1 � �(x))N�1 ' 0 because

�(x) ' 1. Therefore, just above x the only non-negligible e¤ect of an increase in ex ante competi-

tion is the decrease in the redundancy e¤ect. Therefore, when the optimal level of competition is

not lower than x, it will always be higher. However, note that even when x = a, so that the delay in

innovation does not occur, it is never socially optimal to induce a too high level of product market

competition. To see this, note that p�(a)w(a�(a)) � p�(a)�(a�(a)) = c, where the �rst inequality

comes from the fact that the �rms� pro�ts are included in the social welfare, while the second from

the zero pro�t condition. Since � 0(a) = 0, it follows that v0(ac) < 0 and thus the optimal value of

competition is lower than ac. Intuitively, if the post innovation rents were too small, �rms would

end up investing in few projects so many otherwise successful lines of innovation would not be

pursued.
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4.5 Multiplicity of Equilibria

As in many dynamic discrete time settings (see Ober�eld and Trachter (2010) for other examples)

alternative symmetric equilibria might emerge in our model. In particular, in our case �rms could

mix among investing at di¤erent moments. Lemma 19 in Appendix C3 presents necessary conditions

for such an equilibrium. In the set-up of our model, these conditions are very restrictive for

symmetric equilibria other than the one from Proposition 2, and as illustrated numerically in the

appendix, generically, these conditions are not satis�ed. This is because the single crossing property

between the MC and MB of waiting induces a concavity of the expected pro�t from innovation

in the waiting time which makes it impossible for �rms to be indi¤erent among more than two

waiting times. Moreover, the two moments need to be � time units apart; otherwise �rms would

deviate and invest in between the two moments. But these are precisely the conditions that de�ne

the equilibrium of Proposition 2.

4.6 The Case of Continuous Information Acquisition

To underscore the relevance of the discreteness of the information acquisition process speci�cation

from our model, we also present the main comparative statics with respect to the value of product

market competition under the assumption that the information acquisition is continuous. While

this is not always the case (see Ober�eld and Trachter (2010) for counterexamples), for this model it

is straightforward to show that assuming continuous information acquisition is equivalent to taking

the limit � ! 0, while the length of the awareness window �� stays constant.

Proposition 8 When information arrives continuously, in a symmetric equilibrium there exist two

thersholds a; � such that:

(i) �(a) is decreasing in a for a < a and a constant function of a for a > a; �(a) is 1 for a < a

and is decreasing in a for a > a.

(ii) �(�) is constant in � for � < � and increasing in � for � > �; �(�) is 1 for � < � and is

decreasing in � for � > �.

Proof. See Appendix C4.

Therefore, while the inverted-U shape curve emerges again when competition is measured by

a, it does not fully do so when the increase in competition is associated with an increase in the

technological spread in the industry. This is because the value of the MC around the equilibrium

waiting time does not increase when the length of the awareness window increases. To understand

why, recall from the discussion motivating the results in Corollary 5 that the MC curve is very

inelastic in the neighborhood around � . In particular, as � approaches 0 since according to the
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equilibrium strategies of the other �rms, innovation has almost surely started at ���, no measurably

meaningful information arrives between � � � and � . Thus, an increase in � does not change the

value of the MC at � � �. A similar argument explains why the MC at � does not change. Since

MC is increasing in time, these are the only two values of the MC relevant for pinning down the

equilibrium strategies. Therefore, �rms do not change their waiting time for the lower levels of

competition when � increases.46 For higher values of �, as � increases, � must decrease to satisfy

the zero pro�t condition. This decreases the MC and induces �rms to invest later.47 The results

in Proposition 8 underscore the importance of the discrete information acquisition process in this

setting.

5 Conclusion

The issue of innovation is complex and has many facets, some of which have been studied extensively

in the industrial organization literature over the past half a century. Our model uncovers two of

the main driving forces in�uencing the level of innovative activity in an industry. These two forces

have not only the merit that they are su¢cient to generate the empirically documented inverted-U

shape relationship between competition and innovation, but they also o¤er reason to believe that

they are indeed some of the major forces that in�uence a �rm�s innovation decisions. In order to

isolate the e¤ect of the trade-o¤ that we focus on, we abstract away from other factors that may

play a role in the �rms� decision making process. Clearly, enriching the model to include some of

these additional forces would improve the predictive power of the model.

The main policy implication of the results in our paper is that the way a policy maker should

stimulate the innovative activity in an industry is not by always decreasing the level of product

market competition, as Schumpeter suggested, or by always increasing it, as other economists who

looked for a linear relationship concluded. Instead, my paper argues that a more thorough empirical

analysis should be performed in order to �nd the right way to use the tool of the market structure

design in promoting innovation for each industry under consideration.

A reduced form version of the model in this paper would have the marginal cost of waiting

and the marginal bene�t of waiting curves satisfying two conditions. First, they would exhibit

the single crossing property. Second, the marginal cost curve would shift up in response to an

increase in competition, while the marginal bene�t curve would stay �xed. Then, an increase

in competition would decrease the time at which the two curves intersect and thus explain the

increase in innovation for the small values of competition. When this equilibrium waiting time

46Note that this result does not hinge on a constant marginal bene�t of waiting in time.
47Note that when the increase in competition is associated with an increase in a, the e¤ect on the MC is of the

�rst order and thus �rms do wait less for the lower levels of competition. For the higher values, the e¤ects of the
increase in a and decrease in � perfectly compensate each other and the equilibrium waiting time stays constant.
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is su¢ciently low, �rms would expect zero pro�ts from innovation and thus a further increase in

competition would require �rms to become less innovative. The need for the fully �edged model

in this paper stems mainly from three considerations. First, the reduced form model does not

explain the link between the level of competition, which is a parameter with immediate empirical

interpretation, and the marginal cost of waiting, whose interpretation is di¢cult in the absence of

a well de�ned model. This is even more problematic when the increase in competition is associated

with an increase in the technological spread rather than an increase in the technological density.

Second, the reduced model would not immediately suggest the way in which �rms can become

less innovative for higher values of competition. Simply stating that they would invest later is

unsatisfactory since the marginal cost of waiting would continue to increase and thus the trade-o¤

would be solved earlier rather than later. The model in this paper allows distinguishing between

decreases in innovation that lead to a delay in innovation and decreases in innovation that lead to

a decrease in the number of projects undertaken. Finally, the model predicts additional testable

regularities that a reduced form model would not uncover.

Appendix

Appendix A1. Proof of Remark 1

Since G is a cumulative distribution function, it is right continuous and therefore the set of points

of discontinuity is countable. Denote this set by Sd = fs1; s2; s3; :::; sjSdjg, where jSdj can be 1,

and let s0 � t0. Also, for any s 2 Sd denote by G(s�) � lim
t!s�

G(s), and for any t 2 [t0;1)nSd

denote by g(t) the probability distribution function associated with G. Then, the total amount of

pro�ts earned from the innovation in the industry is:

� =
X

s2Sd

�
1�G(s�)�

G(s)�G(s�)

2
� c

�
[G(s)�G(s�)] +

Z

t2[t0;1)nSd

[1�G(t)� c] g(t)dt =(11)

= a��(1� c)�
X

i=1;:::;jSdj

"Z si�

si�1

G(t)g(t)dt+
G2(s)�G2(s�)

2

#

(12)

where we used the fact that G(1) = a��. Integrating by parts

Z si�

si�1

G(t)g(t)dt, we obtain:
Z si�

si�1

G(t)g(t)dt = G2(si�)�G
2(si�1)

2 . Therefore, as claimed � = a��(1� c)� (a��)2

2 . �

Appendix A2.

The fact that the absolute pro�ts of all but the most advanced �rm in the industry decrease with

competition is immediate. On the other hand, by Remark 1, the total pro�ts in the industry are
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a��(1 � c) � (a��)2

2 , so the relative pro�t shares of the �rm with rank � is: r(�) = 1���c

a��(1�c)�
(a��)2

2

.

Taking derivatives with respect to x, where x is either a or � or a�, we obtain that:

@

@x
r(�) = �

(1� � � c) (1� a�� � c)
h
a��(1� c)� (a��)2

2

i2
@ (a��)

@x
(13)

By (2), 1� a�� � c < 0, so @
@x
r(�) > 0() � < 1� c. Therefore, as claimed, the relative pro�t

shares of the most advanced �rms increase with an increase in x. �

Appendix A3.

Since at ti, from the perspective of �rm i, t0 is distributed uniformly on [ti � ��; ti], the expected

pro�t of �rm i at ti + t from investing in the innovation is pt [1� �(tjti)]� c, where

�(tjti) �

Z ti

ti���

�
m(tjti; t0) +

n(tjti; t0)

2

�
1

��
dt0 (14)

the expected measure of �rms that invested before and simultaneously to �rm i. We dropped the

conditionals on ti, a and � which are self evident from the context.

The following results describe the expected measure �(tjti) for the various strategy pro�les of

interest.

Lemma 9 Consider a strategy pro�le under which �rms mix between investing at moments f� +

�1; :::; � + �ng with probabilities f�1; :::; �ng, where n � 1, �1 = 0, and the sequence f�kg � �Z+ is

strictly increasing. Denote by �0 � max(0; � + �1 � ��) � � . Then, the expected measure of �rms

who have already invested before �rm ti at moment ti + t is the following.

�(tjti) =

8
>>>>><

>>>>>:

0, for t 2 [0; � + �0]Xm

k=1
a�k

n
��
2 +min(t� � � �k; ��)�

1
2�� [min(t� � � �k; ��)]

2
o
+

+
Xn

k=m+1
a�k

h
(t����k+��)

2

2��

i
, for t 2 [� + �m; � + �m+1], m 2 f0; :::; ng

a��, for t � � + �n + ��

(15)

Proof. We may assume without loss of generality that the randomization over f� + �1; :::; � + �ng

is made at the beginning of the game so that at each instant t 2 [t0; t0 + ��], the mass a of �rms

who becomes aware at that moment can be distributed among a set of n groups, where group

k 2 f1; :::; ng will contain the �rms that will invest at moment � + �k. Thus, at each instant

t 2 [t0; t0 + ��] there is a mass a�k of �rms who become aware of the product and invest with

probability 1 after exactly � + �k time units. Denote by �k(tjti) the expected measure of �rms out
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of group k that invested before ti + t, from the perspective of �rm ti. Then, we will have:

�(tjti) =
Xn

k=1
�k(tjti) (16)

Firstly, note that due to the sequential awareness assumption and the fact that all �rms wait

the same number of time units, n(tjti; t0) = 0 for all t. Secondly, according to the strategy pro�le

that we are considering, for a �xed value of t0 and for any t � 0, the last �rm out of group k who

has invested is the one that became aware at ti+t����k, provided that ti+t����k 2 [t0; t0+��].

Denote by:

'(tjti; t0; �) � ti + t� � � t0: (17)

Consider now an arbitrary group k 2 f1; :::; ng. Note �rstly that for ti + t � � � �k < t0, no

�rm of the group has invested yet while for ti + t� � � �k � t0 + �� all �rms from the group have

already invested. Secondly, for the remaining case the measure of �rms out of the group who have

invested at ti + t is a�k'(tjti; t0; �). In conclusion, the measure of �rms who have already invested

at ti + t for a �xed value of t0 is:

mk(tjti; t0) = a�kmin(��;max('(ti; t; � ; t0); 0)) (18)

If � + �1 > �� , take some t 2 [0; � + �1� ��), and note that the earliest moment when any �rm

could have invested is ti � �� + � + �1. This corresponds to the case when the �rst �rm became

aware exactly at ti � ��. But for t 2 [0; � + �1 � ��) we have ti � �� + � + �1 > ti + t, so at

ti + t the expected measure of �rms who have invested before �rm i is 0. Therefore, �(tjti) = 0 for

t 2 [0;max(0; � + �1 � ��)].

Take some moment t 2 [� + �m; � + �m+1], for some m 2 f0; 1; :::; ng. Consider a group k, with

k � m+ 1, so that t � � + �k. Note that '(tjti; t0; � + �k) � �� , t0 � ti � �� + (t� � � �k). But

t0 � ti � �� and 0 � t� � � �k together imply t0 � ti � �� + (t� � � �k), so '(tjti; t0; � + �k) � ��

for any possible value of t0, as long as t � � + �k. On the other hand, '(tjti; t0; � + �k) � 0 ()

t0 < ti + t� � � �k. Therefore, for t 2 [� + �m; � + �m+1) and k � m+ 1 we have:

�k(tjti) =

Z ti+t����k

ti���
a�k[(ti + t� � � �k)� t0]

1

��
dt0 = a�k

�
(t� � � �k + ��)

2

2��

�
(19)

Consider now a group k with k � m so that t > � +�k. For any t0 we have '(tjti; t0; � +�k) � 0

because ti + t � � � �k � t0 � 0 , t0 � ti + t � � � �k, which is true because t � � + �k and

t0 � ti. On the other hand, '(tjti; t0; � + �k) > �� when ti + t � � � �k > t0 + �� () t0 <

ti+ t� � � �k��� so over this range of t0 we have that the measure out of group k is a�k��. Thus,
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for t 2 [� + �m;min(� + �m+1; � + �k + ��)) and k � m we have:

�k(tjti) =

Z ti���+t����k

ti���
(a�k��)

1

��
dt0 +

Z ti

ti���+t����k

a�k[(ti + t� � � �k)� t0]
1

��
dt0 =

= a�k

�
��

2
+ (t� � � �k)�

(t� � � �k)
2

2��

�
: (20)

For t � � + �k + ��, we have �k(tjti) = a�k��. It is easy to see that these can be written concisely

as we do in the text of the Lemma in (15).

Then, (16), (19) and (20) will give the measure as in the text of the Lemma for all t � �+�n+��.

After ti + � + �n + ��, the measure is a�� for sure. �

Corollary 10 �(tjti) is continuous, strictly increasing on [max(0; � + �1 � ��); � + ��] and di¤er-

entiable with a continuous derivative.

Proof. From (19) and (20), it is clear that �k(tjti) is continuous and di¤erentiable with a continuous

derivative on [0; � + ��]n
Sn
k=0f � + �k; � + �k + ��g. For k � 1, we have:

lim
t&�+�k

�k(tjti) = lim
t%�+�k

�k(tjti) = a�k
��

2
and lim

t&�+�k

@

@t
�k(tjti) = lim

t%�+�k

@

@t
�k(tjti) = a

lim
t&�+�k+��

�k(tjti) = lim
t%�+�k+��

�k(tjti) = a�k�� and lim
t&�+�k+��

@

@t
�k(tjti) = lim

t%�+�k+��

@

@t
�k(tjti) = 0

On the other hand,

lim
t&max(0;�+�1���)

�k(tjti) = lim
t%max(0;�+�1���)

�k(tjti) = 0 and (21)

lim
t&max(0;�+�1���)

@

@t
�k(tjti) = lim

t%max(0;�+�1���)

@

@t
�k(tjti) = 0 (22)

Therefore, �(tjti) is continuous with a continuous derivative on [0; � + ��] as a �nite sum of

functions with these properties. �(tjti) is strictly increasing on [max(0; � + �1���); � +��] because

�1(tjti) is strictly increasing on this interval, while �k(tjti) with k � 2 are weakly increasing. �

Corollary 11 Consider a strategy pro�le under which all �rms wait exactly � time units before

investing and then invest with probability 1. Then, the expected measure of �rms who have invested

before �rm i at moment ti + t is the following.

�(tjti) =

8
>>>>><

>>>>>:

0, for t 2 [0;max(0; � � ��)]

a
h
(t��+��)2

2��

i
, for t 2 [max(0; � � ��); � ]

a
h
��
2 + (t� �)�

(t��)2

2��

i
, for t 2 [� ; � + ��]

a��, for t � � + ��

(23)
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Proof. This follows immediately from Lemma 9 by taking n = 1 and �1 = 1.

Corollary 12 Consider a strategy pro�le under which each �rm ti mixes between investing and not

investing with probability � 2 (0; 1) at moment ti + � and invests with zero cumulative probability

in the rest of the time. Then, the expected measure of �rms who have already invested before �rm

ti at moment ti + t is ��(tjti), where �(tjti) is given by Corollary 11.

Proof. Because in the mixed strategy equilibrium each �rm invests after � time units with proba-

bility � as opposed to probability 1 in the Corollary 11, it is as if the distribution of �rms would

be uniform with density �a instead of a over a timespan of length �� and each �rm would invest

after � time units with probability 1. By replacing a with �a as the density in the Corollary 11,

we obtain the measure ��(tjti). �

Appendix A4.

We will show that if conditional on an unsuccessful project, the probability of receiving a �Pass�

signal at ti + t is:

rt = max

�
e��t � p0

e��(t��) � p0
; 0

�
(24)

then the resulting unconditional probabilty of receiving a �Pass� signal is precisely the one de�ned

in Section 3.1. Thus, denoting by Ft the event of receiving a �Fail� signal at ti + t and by S the

event that the project is successful, we have:

Pr
�
Ft
�
= Pr(FtjS) (1� pt��) + Pr(FtjS)pt�� = rt�� (1� pt��) + pt�� (25)

Given the signal structure introduced in Section 3.1, it is straightforward to see that the resulting

law of motion for the posterior belief that the project is successful is the following:

� If p0 � pt < 1, then

pt+� =

(
min(1; pte

��), with probability max(e���; pt)

0, with probability 1�max(e���; pt)
(26)

with � > 0 and t 2 �Z+.

� If pt 2 f0; 1g, for some t, then pt0 = pt for all t
0 � t. Clearly, for a �xed p0, pt can take values

only in the set P (p0; �; �) � f0; p0; p0e
��; p0e

2��; p0e
3��; :::; 1g.

Now, if t < tM , (25) becomes Pr
�
Ft
�
= e��t�p0

e��(t��)�p0

�
1� p0e

�(t��)
�
+ p0e

�(t��) = e���. On the

other hand, at t = tM + �, we have e��(tM+�) � p0 so Pr
�
FtM+�

�
= 0 � (1� ptM ) + 1 � ptM = ptM .

This completes the argument.
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Appendix B. Proof of Proposition 2.

We will prove Proposition 2 in three steps. Firstly, in Proposition 13, we will describe the pure

strategy equilibria for the low levels of competition. Then, in Proposition 16 we will argue that

there is a set of maximal values of competition above which the equilibria in Proposition 13 do not

exist. Finally, in Proposition 17 we will describe the equilibria for the higher values of competition.

We start the proof by arguing that we can always restrict attention to action spaces that consist

of investment decisions of �rm i at times ti+t, with t 2 [max(0; ����);min (� + ��; tM + �)]\�Z+.

Firstly, as we will show in Appendix A3, under any strategy pro�le of interest, �(tjti) is strictly

increasing in t on the interval [max(0; � � ��); � + ��], where � is the minimum amount of time

that any of the competing �rms waits before investing according to that strategy pro�le. Thus,

in this interval, whenever a �rm�s optimal strategy is not to invest as soon as it learns some new

information, then the strategy should prescribe the �rm to wait at least � more units of time,

until it receives the next piece of information. Also, we will show that if � > ��, then �(tjti) = 0

on [0; � � ��] so the �rm does not have any incentive to invest before ti + � � �� because, up to

that moment, the expected pro�t from investing is strictly increasing. This is because the �rm

can gather information without risking that other �rms invest it. Finally, the �rm does not have

any incentive to wait after tM + � because there is no additional information left to acquire. On

a separate note, we mention that given the sequential awareness assumption and the fact that,

apart from this assumption, all �rms are identical, in the symmetric strategy pro�les that we will

consider, no two �rms will invest at the same time. Therefore, n(tjti; t0) = 0 for all t.

Denote by

MC�;�(t) = pt [�(t+ �jti; � ; �)� �(tjti; � ; �)] (27)

to be the MC of waiting at t if all �rms invest at � with probability � and by

MC�;�� ;�+�;��+�(t) = pt [�(t+ �jti; � ; �� ; � + �; ��+�)� �(tjti; � ; �� ; � + �; ��+�)] (28)

the MC of waiting at t if all the other �rms mix among investing at one of the two moments

� ; � + � 2 �Z+ and not investing at all, with probabilities �� , ��+� and 1��� +��+� respectively.

The marginal bene�t of waiting is de�ned asMB = c(1�e���). We will show that the interpretation

of the functional forms in the right hand side of these equations is indeed the one suggested by the

name we associate them. We ignore for the time being the constraint that � � tM + � assuming

that it does not bind and then in Appendix B4 �nd conditions under which the constraint binds.

Also, in Appendix B4, we �nd conditions under which �rms invest as soon as they learn of the

invention.
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Appendix B1. Proposition 13.

Proposition 13 In a symmetric strategy equilibrium, a necessary and su¢cient set of conditions

for the �rms to wait for � 2 �Z+ before mixing between investing and not investing with probabilities

� and 1� �, respectively, with � 2 [0; 1] is that:

(1) MC�;�(� � �) � MB �MC�;�(�) (29)

(2) p�

�
1� �a

��

2

�
� c � 0, with equality when � < 1 (30)

(3) 1� �a�� � c, when � < 1. (31)

Proof. Assume all other �rms invest after � time periods and denote by

	(t) � p0(1� �(tjti))� ce
��t, for t � 0. (32)

Since the probability of not receiving a �Fail� signal in the �rst t periods, with t 2 �Z+ and t < tM

is e��t, it follows that 	(t) = e��t [pt(1� �(tjti))� c] is the expected pro�ts of �rm i as of moment

ti from waiting t < tM periods before investing. Thus, to prove the result it is enough to show

that 	(�) is maximized at t = � in the set [max(0; � � ��);min (� + ��; tM + �)] \ �Z+. From (23),

when t < � , we have 	00(t) = �p0�
00(tjti) � �

2ce��t = �p0
a�
��
� �2ce��t < 0. On the other hand,

for � < t < tM , we have 	
000(t) = �3ce��t > 0.

Now �rstly, the condition p�

�
1� �a��2

�
� 0, ensures that 	(�) � 0. Secondly, the condition

MC�;�(� � �) �MB is equivalent to 	(�) � 	(� � �). Therefore, since 	 is concave for t � � and

it is increasing at � � �, it must be that it is increasing for all t � � � � and thus 	(t) � 	(�) for

t � � . On the other hand, MB � MC�;�(�) is equivalent to 	(�) � 	(� + �). Since 	
000(t) > 0,

it follows that once 	 is convex, it will be convex for all higher values. Since 	(�) � 	(� + �),

	 is decreasing at � . But, 	 can start increasing only after it becomes convex so after it starts

increasing, it will increase forever. Since (31), for the case � < 1, and (2) for the case � = 1, ensure

that 	(� + ��) < 0, it means that 	(t) < 0 for t � � + �� when � + �� � tM . Therefore, as desired,

	(�) � 	(t) for all 0 � t � �+�� when �+�� � tM . Since there is no new information arrival after

moment tM , it is straightforward to see that 	(�) � 	(t) for all 0 � t � tM when � + �� � tM .

Finally, note that when � < 1, (30) is necessary to be satis�ed with equality to have the �rms

willing to mix, while (31) is necessary because otherwise the �rms could deviate and invest after

they remove all uncertainty. �

Corollary 14 In a symmetric pure strategy equilibrium, a necessary and su¢cient condition for
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�rms to wait for � 2 �Z+ before investing is that:

max

 
c

1� a��2
;
2�

2� � 1

c(1� e���)

a�

!

� p� � min

�
2�

2� � 1

c(e�� � 1)

a�
; 1

�
. (33)

Proof. This follows immediately from Proposition 13 and Corollary 11. �

Proposition 15 In a symmetric equilibrium in which all �rms mix among investing at one of the

two moments � ; � + � 2 �Z+ and not investing at all, with probabilities �� 2 (0; 1), ��+� 2 (0; 1)

and 1� �� + ��+� respectively, a set of necessary and su¢cient conditions is:

p�

"

1� a��
��

2
� a��+�

(� � 1)2 �

2�

#

= c (34)

p�+�

�
1� a��

�
��

2
+ � �

�

2�

�
� a��+�

��

2

�
= c (35)

1� a (�� + ��+�) �� � c (36)

Proof. Assume all other �rms mix among investing at one of the two moments � ; � + � 2 �Z+ and

not investing at all, with probabilities �� 2 (0; 1), ��+� 2 (0; 1) and 1 � �� + ��+� respectively.

Then, as in (32), denote by 	(t) � p0�(tjti)� ce
��t and we will show that 	00(t) < 0 for t < � and

	000(t) > 0 for t > � + � so that the argument from the proof of Proposition 13 will go through in

this case as well with a slight modi�cation.

Employing (15), we have for t < � that

	00(t) =

(
�p0a

1
��
� �2ce��t, for t < �

p0a��
1
��
� p0a��+�

1
��
� �2ce��t, for � < t < � + �

(37)

On the other hand, 	000(t) = �3ce��t for all t. Note that 	00(t) < 0 for t < � and 	000(t) > 0 for

t > � + �. Moreover, it can be shown that lim
t%�+�

	00(t) = p0a��
1
��
� p0a��+�

1
��
��2ce��(�+�) <

lim
t&�+�

	00(t) = p0a (�� + ��+�)
1
��
� �2ce��(�+�). Finally, the condition from (34) and (35) in the

text of the Proposition imposes that 	(�) = 	(� + �) = 0.

We will argue now that 	(�) � 	(t) for all t 2 �Z+. Consider two cases. Case 1: �� � ��+�.

In this case, from (37) it follows that 	00(t) < 0 for t 2 (� ; � + �). Therefore the function 	 is

concave for t < � + �. It is clear then that this and 	(�) = 	(� + �) imply that 	0(�) > 0 and

	0(� + �) < 0.48 Since 	000(t) > 0 for t > � + �, and (36) implies 	(min(� + �� + �; tM )) < 0, an

argument similar to the one from the proof of Proposition 13 shows the result. Case 2: �� > ��+�.

48Note that Corollary 10 ensures that the function 	 is di¤erentiable at both � and � + �.
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In this case, 	000(t) > 0 for t � � together with the facts that lim
t%�+�

	00(t) < lim
t&�+�

	00(t) implies

that once 	 is convex, it will be convex for all higher values. If 	 were increasing at � + �, then

it should already be convex there and thus it would be increasing for all values above � + �. But

this contradicts the fact that 	(�) > 0 > 	(min(� + �� + �; tM )). Therefore, 	
0(� + �) < 0. Also,

	0(�) > 0 because otherwise, in order for 	 to be decreasing at � + �, it should have increased

somewhere between � and � + �, which would imply that 	 was convex at that point and therefore

convex and increasing from that point to � + �. But this would contradict the fact that 	 should

be decreasing at � + �. The rest of the argument goes as in the previous case. �

Appendix B2. Proposition 16.

Proposition 16 For any P (p0; �; �), denote by x, a maximal value of competition for which there

exists a waiting time � 2 �Z+ such that

2�

2� � 1

c(1� e���)

a�
� p� =

c

1� a��2
� min

�
2�

2� � 1

c(e�� � 1)

a�
; 1

�
(38)

Then, for any x > x, there is no equilibrium with �rms expecting strictly positive pro�ts.

Proof. Let (�; x) be a pair with the properties from the text of the Claim. Then this pair must

satisfy:

p�e
�� >

2�

2� � 1

c(e�� � 1)

a�
(39)

because otherwise there would exist a higher value of competition x0 such that (� + �; x0) would

satisfy the properties from the text of the Claim. Now, when x increases above x, �rms would

make strictly negative pro�ts if they were all to continue to invest at �. Therefore, they would

need to start investing at � + � or later. But, (39) is in that case inconsistent with the necessary

conditions for a pure strategy equilibrium as de�ned by (33). �

Appendix B3. Proposition 17.

Proposition 17 Let x be any value of competition satisfying (39). Then, for all values of x � x

there exists a symmetric mixed strategy equilibrium. In this equilibrium, for any value of p0; one

and only one of the following two cases is true:

1. there exists � 2 �Z+ and � 2 (0; 1) such that all �rms wait for a period � 2 �Z+ and then in

period � mix between investing and not investing with probability �. � satis�es the condition:

p�

�
1� �a

��

2

�
� c = 0 (40)
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2. there exists � 2 �Z+ such that the equilibrium prescribes that all �rms mix among investing at

one of the two moments � ; � + � 2 �Z+ and not investing at all, with probabilities �� 2 (0; 1),

��+� 2 (0; 1) and 1� �� + ��+� respectively, satisfying:

p�

"

1� a��
��

2
� a��+�

(� � 1)2 �

2�

#

� c = 0 (41)

p�+�

�
1� a��

�
��

2
+ � �

�

2�

�
� a��+�

��

2

�
� c = 0 (42)

The resulting equilibrium pro�le of p� and thus of � is weakly increasing in the degree of

competition when x = � and constant when x = a.

Proof. Denote by �, the equilibrium waiting time at x and assuming for the time being that �� �

is not sustainable any type of equilibrium, denote by �1 be a minimal value of competition for which

� is an equilibrium waiting time in pure strategies. Note that at �1, the �rms just switched from

investing after �+� time units to investing after � time units, so they were just indi¤erent between

investing at � and investing at �+ �. Alternatively put, MC�+�;1(�) =MC�;1(�) =MB. Now,

in between �1 and x, MC�+�;1(�) increases exceeding MB thus making �rms deviate and invest

at � if all other �rms were to invest at � + �. MC�;1(�) also increases above MB thus making

the �rms want to invest at � in an equilibrium in which all �rms invest at �. At x though, the

nonnegative pro�t constraint binds. Above x, if the all �rms were to continue to invest at �, they

would make negative pro�ts. To avoid this, �rms can either switch immediately to investing at

� + � or can invest in fewer projects. But switching to investing at � + � immediately is not a

feasible equilibrium strategy because MC�+�;1(�) would still be higher than MB so provided that

the rest of the �rms invest at � + �, any �rm would be better o¤ deviating and investing at �.

Therefore, the �rms need to start investing in fewer projects which would have the e¤ect of reducing

the total measure of �rms in the market and thus allow for the non negative pro�ts condition to

continue to be satis�ed.

Now, by Corollary 12, we have that in an equilibrium in which all �rms mix with probability

�, the expected measure of �rms who already invested at t + ti is ��(tjti), with �(tjti) as in

Corollary 11. Note that since the �rm mixes in period � between investing at that moment and

never investing, its expected pro�ts from investing in period � , p� [1���(� jti)]�c = p� [1�a�
��
2 ]�c

should be zero, which is the condition in (40).

Claim 18 Let �(x) be de�ned implicitly by the equation p� [1�a�
��
2 ]�c = 0. Then: (i)MC�;�(a)(�)

and MC�;�(a)(� � �) are constant in a; (ii) MC�;�(�)(�) and MC�;�(�)(� � �) are decreasing in �.

Proof. MC�;�(�) = p�a��
�
1� 1

2�

�
, so since � = 2

a��

�
1� c

p�

�
, from the zero pro�t condition, we
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will have MC
�; 2
a��

�

1� c
p�

�(�) = p�
2
�

�
1� c

p�

��
1� 1

2�

�
, which is constant in a and decreasing in �.

Clearly, MC�;�(� � �) = p���a��
�
1� 1

2�

�
satis�es the same properties. �

Thus, when x = a, the conditions of Proposition 13 are satis�ed for � = � and �(a) =
2
a��

�
1� c

p�

�
.

On the other hand, MC�;�(�)(�� �) and MC�;�(�)(�� �) decrease when � increases above �.

SinceMC�;�(�)(���) < MB < MC�;�(�)(�), these inequalities will be also satis�ed for a range of

values of � above �. Moreover, from the zero pro�t conditions at � and �, we have that a�� = a�, so

since 1� a��jx=x < c, we will also have 1�a��� < c. Therefore, by Proposition 13, in equilibrium

�rms will invest at � with probability � such that p�[1 � a�
��
2 ] � c = 0. Now, denote by �1, the

value of � for which MC�;�(�)(�) =MB and note that as � increases above �1, the equilibrium in

which all �rms invest at � is no longer sustainable. This is because MC�;�(�)(�) < MB so the

�rms would deviate and invest at �+ �.

However, note that immediately above �1, a pro�le of strategies in which all �rms would mix at

�+ � does not constitute an equilibrium. To see this, denote by �0 the mixing probability at � (�1)

such that p�[1�a�
0 �1�
2 ]� c = 0. Note that MC�;�(�1)(�) = p�a� (�1) �

�
1� 1

2�1

�
=MB. Now, if

immediately above �1, �rms were to mix at�+�, in order for the zero pro�t condition to be satis�ed,

since the �rms invest in safer projects, � should have an immediate upward jump to �00 > � (�1),

where �00 satis�es p�+�[1 � a�
00 �1�
2 ] � c = 0. But then, MC�+�;�00(�) = p�a�

00�
�
1� 1

2�1

�
>

MC�;�(�1)(�) = MB. So if all the other �rms invest at �+ �, any �rms would have an incentive

to deviate and invest at �.

Therefore, for a range of values of � above �1, �rms would mix among investing at �, investing

at � + � and not investing at all. The corresponding mixing probabilities �� and ��+� will be

given by the zero pro�t conditions as in (41) and (42). Note that

��(�) =
1

a�

2�

2� � 1

�
1�

c

p�+�

�
�
1

a�

2�3

(2� � 1)2
c(1� e���)

p�
(43)

��+�(�) =
1

a�

2�3

(2� � 1)2
c(e�� � 1)

p�+�
�
1

a�

2�

2� � 1

�
1�

c

p�

�
(44)

so a [��(�) + ��+�(�)] �� =
2�2

2��1
c(1�e���)

p�
is increasing in �. Therefore, since ��+� (�1) = 0, we

will have 1� a [��(�) + ��+�(�)] �� < 1� a� (�1) �1� < c so by Proposition 15, this will constitute

an equilibrium strategy.

As � increases above �1, ��(�) decreases and ��+�(�) increases. Denote by �2 the value of �

that satis�es ��(�) = 0. Then, as competition increases above �1 the equilibrium prescribes that

the �rms gradually shift the weight of the mixing probabilities from moment � towards moment

� + �, until at �
2
, �rms no longer invest at �, and mix only between investing and not investing
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at �+ � with probability ��+�(�2). Note that above �2, the equilibrium in which �rms mix at �

and � + � no longer exists. However, it can be shown that at �
2
, we have MC�+�;��+�(�2)

(�) =

MC�;��+�(�2)
(�) =MB. Using the same arguments as before, it can be shown that above �

2
, it is

an equilibrium for all �rms to mix at �+ �, with a decreasing probability. As shown in Claim 18,

MC�+�;�(�)(�+�) andMC�+�;�(�)(�) will be decreasing until �2 whereMC�+�;�(�)(�+�) =MB

and the �rms will start mixing among investing at �+ �, investing at �+ 2� and not investing at

all and then the process will repeat.

Finally, the fact that �� (�) is decreasing in �, while ��+�(�) is increasing also shows that there

can be no equilibrium in which �rms mix at two moments for those values of competition for which

there exists an equilibrium that prescribes �rms to mix only at one moment. To see this, note that

whenever �rms mix at two moments, the mixing probability on the later moment should increase

in � in order for the �rms to make zero pro�ts at both of those moments. However, we know that

at �1 �rms are making zero pro�t at both � and � + �, while the mixing probability at � + � is

zero. Therefore,that probability could have not increased below �1.

The argument for the case in which � � � is sustainable in a mixed strategy equilibrium is

similar to the one above. If x := a �rms start mixing immediately above x between investing at

�� � and not investing at all, with probabilities strictly lower than 1. If x := �, then immediately

above x, �rms mix among investing at ���, investing at � and not investing at all. As competition

continues to increase, the weight on �� � decreases, while the weight on � increases until a point

at which �rms mix only between investing after � time units and not investing at all. Then the

rest of the argument is as above. This completes the proof of Proposition 17. �

Appendix B4.

Assume �rst that �� � ln p0 2 �Z+, so that tM = �� � ln p0 and ptM = e��ptM�� = 1. Then,

condition (29) from the text of Proposition 13 becomes MCtM ;�(tM � �) � MB, because the

marginal bene�t of waiting at tM is zero. In the text of the Corollary 14 this condition becomes
2�
2��1

c(e���1)
a�

� 1. Therefore, when 2�
2��1

c(e���1)
a�

� 1 and 1 � a��2 � c � 0 are satis�ed, �rms wait

precisely tM periods in equilibrium. Since these two conditions are satis�ed precisely when the level

of competition is small, we conclude as expected that when for low enough values of competition,

�rms wait until they remove all uncertainty.

On the other hand, if x that satis�es 1� a��2 � c
���
x=x

= 0, also satis�es 2�
2��1

c(e���1)
a�

���
x=x

� 1,

then no pure strategy equilibrium exists for x > x; this is the counterpart of Proposition 16. Thus,

for x > x, as in Proposition 17, �rms start mixing. WhileMCtM ;�(x)(tM ) is weakly decreasing in x,

where �(x) is de�ned as in the text of Claim 18, the fact that the marginal bene�t of waiting at tM

is zero induces �rms to invest no later than tM . Since MCtM ;�(x)(tM � �) is also weakly decreasing

in x, �rms will never invest earlier than tM . Thus, in this case, the equilibrium will specify that
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all �rms wait precisely tM periods and invest with probability �(x). When ��� ln p0 =2 �Z+, the

main di¤erence is that if MCtM ;�(tM ) is smaller than the marginal bene�t of waiting at tM , which

is c(1� ptM ) �rms will invest at tM + �, but the rest of the analysis is similar.

Finally, note when p0 � max

�
c

1�a ��
2

; 2�
2��1

c(1�e���)
a�

�
, that is when MB � MC0;1(0) and the

non-negative pro�t condition is satis�ed at belief p0, then �rms invest in development of the new

product as soon as they learn of it. Since 2�
2��1

c(1�e���)
a�

decreases in x, this condition will continue

to be satis�ed as long as p0 �
c

1�a ��
2

. For high enough levels of competition, the non negative pro�t

condition is no longer satis�ed and thus �rms will start mixing. As in Proposition 17, if x = a they

will mix immediately, while if x = � then they will start mixing later as x increases. This concludes

the proof of Proposition 2. �

Appendix C1. Proof of Proposition 6.

De�ne xM as the value of competition that satis�es:

1

1� a��2
=

2�

2� � 1

(1� e���)

a�
(45)

and for k � 0, let

ck � pk�

�
1� a

��

2

�����
x=xM

Note then that by Proposition 13, Corollary 14 and (45), �(xM ) = k� when the cost of innovation

is precisely ck. From (45) it also follows that at xM we haveMCk�;1(k�) =MB, and that when the

cost of innovation is ck, the only value of competition for which a pure strategy exists is xM . Now,

as c increases above ck, there is no value of competition for which pk� can be sustained in a pure

strategy equilibrium. To see this, note that if that was possible, it must be that the corresponding

level of competition, call it x, is lower than xM to ensure non-negative pro�ts. But in that case,

MCk�;1(k�) = pk�a�
�
1� 1

2�

����
x=x

> MB so �rms would wait at k�. Therefore, when c increases

above ck, the minimium possible equilibrium value of the belief in the success of the project is

p(k+1)�.

For a �xed value of c, the values of competition for which p(k+1)� is a pure strategy equilibrium

belief are given by Corollary 14. Since

p(k+1)� = e
��pk� =

e��ck

1� aM
�M �
2

�����
x=xM

(46)
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the condition from Corollary 14 becomes:

max

 
c

1� a��2
;
2�

2� � 1

c(1� e���)

a�

!

�
e��ck

1� a��2

�����
x=xM

� min

�
2�

2� � 1

c(e�� � 1)

a�
; 1

�
(47)

As c increases above ck, (47) reduces to
2�
2��1

c(1�e���)
a�

� e��ck
1�a ��

2

����
x=xM

� 2�
2��1

c(e���1)
a�

. De�ne

therefore x0(c) and x(c) by the following equations:

cke
��

1� a��2

�����
x=xM

=
2�

2� � 1

c(1� e���)

a�

����
x=x0(c)

(48)

cke
��

1� a��2

�����
x=xM

=
2�

2� � 1

c(e�� � 1)

a�

����
x=x(c)

(49)

and note then that for a �xed value of c, the set of values of competition for which p(k+1)� is

sustainable in a pure strategy equilibrium is given by x0(c) � x � x(c). De�ne xL � x0(ck) and

note when the cost of innovation is just above ck, the values of competition for which this equation

is satis�ed are precisely the ones that satisfy xL � x � xM . It is straightforward to see that both

x0(c) and x(c) is increasing. However, as c increases, since x(c) increases, at some point c
0
k we

will have 2�
2��1

(e���1)
a�

���
x=x(c0

k
)
= 1

1�a ��
2

����
x=x(c0

k
)

. De�ne xH � x(c0k) and note that in fact it does

not depend on k. When c increases above c0k, the non negative pro�t condition will bind for some

values of competition and the upper bound x(c) will be de�ned by the equation:

cke
��

1� a��2

�����
x=xM

=
1

1� a��2

�����
x=x(c)

(50)

Clearly, x(c) is decreasing in c. It is straightforward to see that the two bounds, x0(c) and x(c),

will be equal precisely when (45) is satis�ed. De�ne ck+1 to be the smallest value higher than ck

for which x0(ck+1) = x(ck+1). This completes the proof of the Proposition. �

Appendix C2. Proof of Proposition 7.

The proof of this result is similar to the one of Proposition 6 and thus it will be presented in

less detail. Let �0 be the minimum waiting time sustainable in an equilibrium for all possible

values of � and s. It follows then that that for a �xed value of s, �0 is sustainable for � 2
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�
�0(s);minf�1(s); �2(s)g

�
, where �0(s), �1(s) and �2(s) are the implicit solutions to the equations:

p�0 =
2s2

2s� �

c(1� e���)

�0
(51)

p�0 =
2s2

2s� �

c(e�� � 1)

�1
(52)

p�0 =
c

1� �2
2

(53)

It is straightforward to see that as s increases, �0(s) and �1(s) increase, while �2(s) is constant so

�(s) � minf�1(s); �2(s)g is weakly increasing. Denote by s0 the minimum value of s for which �0 is

sustainable and by s1 the value of s such that �0(s1) = �(s1). When s increases above s1, �0 is no

longer sustainable in a pure strategy equilibrium and the new minimum pure strategy equilibrium

waiting time is �0+ �. Clearly, �0(s) as given by (51) will have a downward jump to the value that

satis�es the equation:

p�0+� =
2s2

2s� �

c(1� e���)

�
e�� (54)

The rest of the values of sk can be computed iteratively in a similar manner. Finally, to see that

�0(sk�1) < �0(sk), note that they are de�ned by equations of the type (51) and (54), which are

essentially identical. However, �0(sk�1) satis�es that equation for a lower value of s and thus is

smaller than �0(sk). Since �0(sk) = �(sk) we also have �(sk�1) < �(sk).
49
�

Appendix C3.

Lemma 19 If the �rms mix with strictly positive probabilities between investing at arbitrary mo-

ments f� + �1; :::; � + �ng, with �1 = 0, and � + �k 2 �Z+, for all k, then this set of moments

needs to satisfy one of the following two sets of conditions: (i) �2 � �1 � ��, �3 � �2 = �,

�4 � �3 � (� � 1) �, �5 � �4 = �, �6 � �5 � (� � 2) �, etc., (ii) �2 � �1 = �, �3 � �2 � (� � 1) �,

�4 � �3 = �, �5 � �4 � (� � 2) �, �6 � �5 = �, etc.

Proof. Assume that there is an equilibrium in which �rms mix between investing at moments

f� +�1; :::; � +�ng with probabilities f�1; :::; �ng, where n � 2, �1 = 0, the sequence f�kg is strictly

increasing, �k > 0 for all k and
Pn
k=1 �k = 1. Then, as argued before, since �(tjti) is strictly

increasing, we may restrict attention to equilibria corresponding to f�kg � �Z+.

49Note however that lim
s!s

+

k

�0(s) < �0(sk) and thus the lower bound does have a downward jump at sk. On the

other hand, lim
s!s

+

k

�(s) = �(sk). However, the set
�

�0(s); �(s)
�

essentially moves to the right as s increases.
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Take some k 2 f1; :::; n� 1g arbitrarily, and denote by:

h(t) � e��(t����k) fpt [1� �(tjti)]� cg � fp�+�k [1� �(� + �kjti)]� cg , for t 2 [0; � + ��] (55)

which can be rewritten, using the fact that e��(t����k)pt = p�+�k , as:

h(t) = p�+�k [�(� + �kjti)� �(tjti)] + c
h
1� e��(t����k)

i
(56)

Note that given its de�nition in (55), h(t) represents the deviation pro�t from investing at �+�k

to investing at some other point t. Thus, in order for this to be an equilibrium, we would �rstly

need to have h(t) � 0 for all t 2 �Z+.
50 Secondly, the fact that the �rm is willing to mix between

investing at moments � + �k and � + �l implies that h(� + �l) = 0, for all l 2 f1; :::; ng. Now, using

Lemma 9, we have that for each m 2 f1; :::; n� 1g and for all t 2 [� + �m; � + �m+1]:

h(t) = p�+�k

8
<

:

�
Xm

j=1

�
a�j

h
��
2 +min(t� � � �j ; ��)�

[min(t����j ;��)]
2

2��

i�
�

�
Xn

j=m+1

�
a�j

h
(t����j+��)

2

2��

i�
+ �(� + �kjti)

9
=

;
+c
h
1� e��(t����k)

i

(57)

Firstly, since by Corollary 10, �0(tjti) is continuous, it follows immediately that h
0(t) is also contin-

uous. By considering for each term in the sum that gives h(t), the cases when t � � + �j + �� and

then t > � + �j + ��, it is straightforward to see that we can write concisely:

h0(t) = p�+�k

8
<

:

�
Xm

j=1
a�j

h
max

�
1�

(t����j)
��

; 0
�i
+

�
Xn

j=m+1
a�j

h
(t����j+��)

��

i

9
=

;
+ �ce��(t����k) (58)

For t 2 (� + �m; � + �m+1) n
Sn
j=0f � + �j + ��g, we also have:

h00(t) = p�+�k

�
�
Xm

j=1
a�j

�
�
1

��
1ft��+�j+��g

�
�
Xn

j=m+1
a�j

�
1

��

��
� �2ce��(t����k)(59)

h000(t) = �3ce��(t����k) (60)

Take k = 1, and assume �k+1��k < ��, in which case 1ft��+�j+��g = 1, for all t 2 (� + �k; � + �k+1)

and j 2 f1; :::; ng. Note that lim
t%�+�m

h00(t) < lim
t&�+�m

h00(t) for m 2 fk; k + 1g and h000(t) > 0 imply

that h00(t) is strictly increasing on [0; � + �k+1]. Therefore, there exists t 2 [0; � + �k+1], such that

h00(t) < 0 for t 2 [0; t), and h00(t) > 0 for t 2 (t; �+�k+1]. On the other hand, since h is continuous on

[�+�k; �+�k+1], and since h(�+�k) = h(�+�k+1) = 0, we have either h
0(�+�k) < 0 < h

0(�+�k+1)

50Note that even if h(t) > 0 on for some t =2 �Z+ a pro�table deviation to that t is not possible. This is because
h(t) represents the deviation surplus only for t 2 �Z+. In between elements of �Z+, the deviation surplus is no higher
than the than the deviation surplus to the highest element of �Z+ that is smaller than t. This is due to the discrete
updating of the belief.
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or h0(� + �k) > 0 > h
0(� + �k+1).

Case 1: h0(� + �k) < 0 < h0(� + �k+1). This means that h
0(�) must be already increasing at

� +�k+1, so t < � +�k+1. Thus, h
00(t) > 0 for all t > � +�k+1 and since h

0(� +�k+1) > 0 and h
0(�) is

continuous, it must be that h0(t) > 0 for all t 2 [� + �k+1; � + ��]. In particular, h(�+�k+1+�) > 0,

so this case cannot be part of an equilibrium. Therefore, it must be that �k+1 � �k � ��.

Case 2: h0(� + �k) > 0 > h0(� + �k+1). We will show that in this case, it must be that

�k+1��k = �. To see this, assume by contradiction that �k+1��k � 2�, and note that in that case,

we must have h(� + �k + �) < 0, because otherwise the �rm would deviate and invest at � + �k + �.

Since h is continuous and h0(� + �k+1) < 0, there must exist some t
0 2 (� + �k + �; � + �k+1) such

that h0(t0) > 0, because h must be strictly positive just below � + �k+1. Similarly, there must exist

some t00 2 (� + �k; � + �k + �) such that h
0(t00) < 0. But since h0(t00) < 0 < h0(t0), it means that

h0 is already increasing at t0, so h0(� + �k+1) > h(t
0) > 0. This contradicts the initial assumption.

Therefore, if �k+1 � �k < ��, it must be that �k+1 � �k = �.

Therefore, the analysis of the two cases reveals that in order to have an equilibrium, we must

either have h0(� + �1) < 0 and �2 � �1 � ��, or h
0(� + �1) > 0 and �2 � �1 = �.

If h0(�+�1) < 0, then note that since �2��1 � ��, then it must be that 1ft��+�1+��g = 0, for all

t 2 (� + �2; � + �3) and 1ft��+�j+��g = 1, for all t 2 (� + �2; � + �3) and j 2 f2; :::; ng. Therefore,

h00 is again increasing on (� + �2; � + �3). So repeating the argument in Case 2 above, we conclude

that it must be that �3��2 = �, and that h
0(� +�3) < 0. Assume now that �4��3 < (� � 1) �, and

note that in this case, we have 1ft��+�1+��g = 0 for all t 2 (� + �3; � + �4) and 1ft��+�j+��g = 1,

for all t 2 (� + �3; � + �4) and j 2 f2; :::; ng. Therefore, repeating the argument that we used for

the Case 1 above, we conclude that this cannot be part an equilibrium. Thus, it must be that

�4 � �3 � (� � 1) � and h0(� + �3) > 0. Then, using the same type of arguments, it follows that

�5 � �4 = �, �6 � �5 � (� � 2) � and so on.

If h0(� + �1) > 0, then h0(� + �2) < 0 and it can be showed as we did above for Case 1, that

unless �3 � �2 > (� � 1) �, this cannot be part of an equilibrium. It follows then iteratively that it

must be that �4 � �3 = �, �5 � �4 � (� � 2) �, �6 � �5 = � and so on. �

Therefore, in order to have an equilibrium in which �rms mix between investing at various

moments in time, the function h should have an extremely speci�c shape, in which it takes values

of 0 at points in between which the distances alternate between very large and very small values.

Generically, such a shape is impossible to be attained. For instance, consider the following virtually

randomly chosen values of the parameters: � = 0:4, � = 0:2, � = 5 and assume that there is an

equilibrium in which �rms mix between innovating after three di¤erent waiting times. By Lemma

19, the three waiting times can either be (i) � , � + � � � + �� and � + � + � or (ii) � , � + � and

44



� + � � � + ��, for some � > 0. To simplify the illustration, assume that � = ��. 51

For case (ii), consider �rst the case when the three mixing probabilities add up to 1. Then,

we have a system of 3 equations in 3 unknowns (�1; �2; �3) given by h(� + �) = 0, h(� + ��) = 0

and �1 + �2 + �3 = 1 which gives us �1; �2; �3 as a function of x �
ap�
c
. In order for this to be

an equilibrium, it is also necessary that h(� � �) < 0, which can be calculated that holds only if

x < 0:7805. But when this condition is satis�ed, it can be shown that �2 < 0, which is impossible.

Second, consider the case when �1 + �2 + �3 < 1. In this case �rms should expect zero pro�ts so

�1; �2; �3 are given by h(� + �) = 0, h(� + ��) = 0, p� [1 � �(� jti)] � c = 0. Solving this system

for �i � a�i, i = 1; 2; 3 as a function of y � p�
c
, we obtain that x > 1:08 from �3 > 0, which

then can be shown that implies �1 < 0. For case (i), if �1 + �2 + �3 = 1, the other two equations

are h(� + ��) = 0, h(� + �� + �) = 0. Solving the system for �1; �2; �3 as a function of x �
ap�
c
,

we obtain that x > 2:80 from �1 > 0, which then can be shown that implies �2 < 0. Finally, if

�1+�2+�3 < 1, the three equations are: h(� + ��) = 0, h(� + ��+ �) = 0, p� [1� �(� jti)]� c = 0.

Solving this system for �i � a�i, i = 1; 2; 3 as a function of y � p�
c
, we obtain immediately that

�2 < 0, which is impossible.

Appendix C4. Proof of Proposition 8.

As mentioned in the main text, we will �nd the equilibrium under the continuous information

acquisition process by taking the limit � ! 0 and keeping the length of the awareness window

�� constant. This can be accomplished by denoting M � ��, substituting M
�
for � and taking

the limit � ! 0 in the results obtained from the analysis of the discrete case. It can be shown

that the necessary condition (29) becomes now 2M
2M��

c(1�e���)
a��

� p� �
2M
2M��

c(e���1)
a��

so taking the

limit � ! 0 we obtain p� =
c�
a�
. On the other hand, (30) becomes p� �

c

1��aM
2

. Therefore, a

pure strategy equilibrium in which � = 1 exists when �
a

�
1� �aM2

�
� 1. Clearly, this condition

is satis�ed for values of x that are small enough. Finally, note that the equilibrium value of p� is

decreasing in a but does not depend on M .

Now, using an argument similar to the one from Appendix B2, it can be shown that for values

of x higher than x where �
a

�
1� �aM2

���
x=x

= 1 a pure strategy equilibrium does not exist. Instead,

employing again Proposition 13, we obtain that a necessary and su¢cient set of conditions for

the �rms to mix at moment � between investing and not investing with probability � < 1 is that

p� =
c�
a�
, p� =

c

1��aM
2

and 1 � �aM � c. As in Appendix B3 it can be shown that the last

condition is satis�ed whenever the �rst two conditions are. The mixing probability � satis�es thus:
c�
a�
= c

1��aM
2

, which can be rewritten as: a�
�
1 + �M

2

�
= �. Therefore, if a increases, � must

decrease at the same rate to keep a� constant; since p� =
c�
a�
, the equilibrium value of p� also

51 It is actually intuitive that when � is higher, the set of necessary conditions that h needs to satisfy is stricter.
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remains constant. On the other hand, if M increases, � decreases and p� =
c�
a�
increases. This

completes the proof. �
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