

Stochastic simulation of econometric models: installation procedures and user's instructions

Bianchi, Carlo and Calzolari, Giorgio and Corsi, Paolo IBM Scientific Center, Pisa, Italy

1978

Online at https://mpra.ub.uni-muenchen.de/24173/MPRA Paper No. 24173, posted 31 Jul 2010 22:37 UTC

IBM Italy PISA SCIENTIFIC CENTER G513 - 3568 March 1978

STOCHASTIC SIMULATION OF ECONOMETRIC MODELS: INSTALLATION PROCEDURES AND USER'S INSTRUCTIONS

Carlo Bianchi, Giorgio Calzolari and Paolo Corsi

IBM Scientific Center Via S. Maria 67 56100 Pisa Italy

This manual describes the input requirements and the installation procedures of the program for stochastic simulation of econometric models, announced in Econometrica, volume 46, number 1, (January 1978). This program is available on magnetic tape, including samples (Klein-I and Klein-Goldberger models) and installation procedures under the operating system VM-370/CMS [5]; format and contents of the tape are briefly described. The input data sets and the final printed output of the stochastic simulation of the Klein-I model are displayed. References to the algorithms mentioned throughout this manual can be found in [2] and [3].

.

CONTENTS

1. INPUT REQUIREMENTS
1.1. The FORTRAN subroutine for the model
1.2. The input data setp.10
2. MAIN PROGRAM AND SIZE OF THE MODEL
3. THE PRINTED OUTPUTp.18
4. THE TAPE FORMATp.21
4.1. Contents of the first file (EXEC procedure)p.22
4.2. Contents of the second file (EXEC procedure)p.23
4.3. Contents of the 14-th file (EXEC procedure)p.24
5. INSTALLATION AND EXECUTION PROCEDURESp.25
REFERENCESp.31
PRINTED OUTPUT FOR ONE OF THE EXAMPLE MODELS

1. INPUT REQUIREMENTS

Two files must be created to run stochastic simulation of each new econometric model: one is a PORTRAN subroutine, formalizing the model's equations and the second is a data set containing time series values and estimated structural coefficients.

When operating under VM-370/CMS these two files must be on the minidisk of the user's virtual machine; they must have the same arbitrary FILENAME; FILETYPE must be FORTRAN for the first (and TEXT for its corresponding object module after compilation) and DATA for the second. For example, for Klein-I model, the two files (10-th and 11-th on the tape) have been called KLEIN1 FORTRAN and KLEIN1 DATA.

An additional input file (15-th file on the tape) is required to contain the starting point for the pseudo-random numbers generator. Its CMS identifier must be INITIAL RANDOM; it is a one-card data set, containing an integer number with format (I10). Such a file, however, can be used for any model and does not need to be modified or duplicated unless experiments with different starting points for the pseudo-random disturbances are to be performed. The number in the file can be any integer between 1 and 2147483647 (=2**31-1).

1.1. The FORTRAN subroutine for the model

The following three statements are mandatory as heading lines of this subroutine for any model:

```
SUBROUTINE MODEL (Y,X,NEXO,IREAD,I,YL,NEND,U,A)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION Y(1),X(NEXO,IREAD),YL(NEND,IREAD),U(1),A(1)
```

It is recommended to use them "exactly" as they are listed above. The meaning of the involved variables is listed in the example below.

After these heading statements the model's equations must follow; normalization and ordering of the equations must be such as to guarantee convergence of the Gauss-Seidel solution algorithm (no automatic reordering is performed by this program); obviously in each equation a different endogenous variable must be made explicit on the left hand side.

The usual RETURN and END statements close the subroutine.

For example, for the Klein-I model this FORTRAN subroutine (10-th file on the tape; KLEIN1 FORTRAN is its CMS identifier when copied on disk) is as follows:

- C X(2,1) IS THE SECOND EXOGENOUS AT CURRENT TIME I;
- $C \times (2, 1-1)$ is the same variable lagged one period, etc.
- C Y VECTOR OF CURRENT ENDOGENOUS VARIABLES.
- C YL MATRIX OF LAGGED ENDOGENOUS VARIABLES; YL(5, I-1) IS THE 5-TH
- C ENDOGENOUS VARIABLE LAGGED ONE PERIOD, ETC.
- C A IS THE VECTOR OF THE STRUCTURAL STOCHASTIC COEFFICIENTS.
- C U IS THE VECTOR OF THE RANDOM DISTURBANCES.

```
C...FOR THE OTHER SYMBOLS, SEE THE MAIN PROGRAM...
   LIST OF ENDOGENOUS VARIABLES
C
         – C
                    CONSUMPTION.
C
   Y(1)
          = I
C
   Y(2)
                    INVESTMENT.
          = W1
                    PRIVATE WAGES.
   Y(3)
C
                    NATIONAL PRODUCT.
   Y(4)
          = Y
C
   Y(5)
          = P
                    PROFITS.
                    END-OF-YEAR CAPITAL STOCK.
C
          = K
   Y(6)
   LIST OF EXOGENOUS VARIABLES
C
   X(1,I) = W2
                    GOVERNMENT WAGES.
   X(2,I) = T
                    INDIRECT TAXES.
   X(3,I) = TIME
C
                    1931=0.
   X(4,I) = G
                    GOVERNMENT EXPENDITURES.
C
                    CONSTANT TERM (INTERCEPT).
C
   X(5,I) = 1.
C
    LIST OF EQUATIONS
C
      CONSUMPTION
      Y(1) = A(1)*X(5,I) + A(4) *(Y(3)+X(1,I)) + A(2) *Y(5) +
             A(3) *YL(5,I-1) +U(1)
C
      INVESTMENT
      Y(2) = A(5)*X(5,I) + A(6) *Y(5) + A(7) *YL(5,I-1) +
             A(8) *YL(6,I-1) +U(2)
      PRIVATE WAGES
C
      Y(3) = A(9) *X(5,I) +A(10) *(Y(4) +X(2,I) -X(1,I)) +A(12) *X(3,I) +
             A(11)*(YL(4,I-1)+X(2,I-1)-X(1,I-1))+U(3)
      NATIONAL PRODUCT
C
      Y(4) = Y(1) + Y(2) + X(4,I) - X(2,I)
C
      PROFITS
      Y(5) = Y(4) - Y(3) - X(1,1)
C
      CAPITAL
      Y(6) = YL(6, I-1) + Y(2)
C*****
                              *****************
      RETURN
      END
```

Please note that each behavioural equation includes its stochastic error term U, while identities do not have stochastic terms. The numerical subscript of the stochastic term refers to the ordering in which residuals are read from the input data set (section 1.2.); thus U(1) corresponds to the first series of residuals in the input data set (and must not be necessarily related to the equation of Y(1)), U(2) to the second series of residuals, etc.

1.2. The input data set

It is a card-image file

- 1-st and 2-nd card: Comments (title) in free format.
- 3-rd card: The following list of integer numbers, each of which with format (I5).
 - col. 1- 5: NREP = number of replicated solutions to be
 performed for each year of the simulation
 period. If 0 is specified, only deterministic
 simulation is to be performed.
 - col. 6-10: NPRINT = number of replications to be summarized
 in a single printout (it can be equal to NREP if
 a single printout is desired, or it can be a
 submultiple of NREP).
 - col.11-15: NEND = number of endogenous variables.
 - col.16-20: NSTOCH = number of stochastic behavioural equations.
 - col.21-25: NEXO = number of exogenous variables.

 - col.31-35: INYEAR = the starting date (year) for the time series; if all series do not start in the same year, the earliest starting date must be used.
 - col.36-40: NFINYR = the end date (year) of the time series; if all series do not end in the same year, the latest end date must be used here.
 - col.41-45: IFROM = initial year for the simulation

experiment to be performed.

- col.46-50: ITO = final year for the simulation experiment to be performed.
- col.51-55: IVERIF = flag 0 or 1; if 1 residual check

 (verify) must be preliminarily performed: on the

 terminal (unit 6 for FORTRAN) and on the printer

 (unit 8) are printed for each year the absolute

 and the relative differences (in percentage form)

 between each endogenous variable and the right

 hand side of its equation, including residuals;

 these values are expected to be close to zeroes.
- col.56-60: IDYNAM = flag 0 or 1; if 0 one-step simulation (total method) must be performed; if 1 dynamic simulation (final method) is performed.

The remaining cards will contain time series values.

4-th card: with format (2I5,1X,A8,1X,I1) must contain the following:

starting date (year) of the first endogenous variable (corresponding to Y(1) in the FORTRAN subroutine);

end date (year);

name (up to 8 characters) of the first endogenous variable; flag: if 0 (or blank) all the results related to such a variable must be printed, if 1 they must be ignored in the printed output.

5-th card and following: time series values of the first endogenous variable, 4 per card, with format (4F15.6).

The same group of cards (4-th and following) are repeated for the second endogenous variable and so on (NEND times); the order of the variables must be the same in which they appear in the FORTRAN subroutine (as Y(1), Y(2), etc.).

The same group of cards, with the same format, must then be repeated NEXO times for the exogenous variables (X(1,I), X(2,I), etc.).

The time series of the structural residuals must now be introduced. Each series of the residuals of the single structural equations (NSTOCH in all) must be preceded by a heading card with initial and final year, with format (215); the residuals must be 5 per card, with format (5F15.6).

To finish, the structural coefficients must be introduced. They must be in the same order in which they appear in the FORTRAN subroutine, as elements of the vector A (NCOEFF is its length). They can be listed consecutively, 5 per card with format (5F15.6), preceded by a card indicating, in format (I5), the total number of structural coefficients of the model; otherwise they can be introduced equation by equation, with format (5F15.6), each time preceded by a card indicating, with format (I5), the number of coefficients of the equation itself.

In each heading line, for a group of data, everything exceeding the format is a comment.

It is important that the number of endogenous time series matches NEND, the number of exogenous time series matches NEXO and the number of residual vectors matches NSTOCH; finally the number of coefficients must be NCOEFF.

For example, for the Klein-I model this input data set (11-th file on the tape; KLEIN1 DATA is its CMS identifier when copied on disk) is as follows.

KLEIN-I MODEL.				
GOLDBERGER-NAGA				_
100 100 6	3 5 12	1919 1941 1921		0
1920 1941 C	11.0000	ENDOGENOUS VA		
39.8000	41.9000	45.0000	49.2000	
50.6000	52.6000	55.1000	56.2000	
57.3000	57.8000	55.0000	50.9000	
45.6000	46.5000	48.7000	51.3000	
57.7000	58.7000	57.5000	61.6000	
65.0000	69.7000			
1920 1941 I	22422	4		
2.70000	200000	1.90000	5.20000	
3.00000	5.10000	5.60000	4.20000	
3.00000	5.10000	1.00000	-3.40000	
-6.20000	-5.10000	-3.00000	-1.30000	
2.10000	2.00000	-1.90000	1.30000	
3.30000	4.90000			
1920 1941 W1		,		
28.8000	25.5000	29.3000	34.1000	
33.9000	35.4000	37.4000	37.9000	
39.2000	41.3000	37.9000	34.5000	
29.0000	28.5000	30.6000	33.2000	
36.8000	41.0000	38.2000	41.6000	
45.0000	53.3000			
1920 1941 Y				
43.7000	40.6000	49.1000	55.4000	
56.4000	58.7000	60.3000	61.3000	
64.0000	67.0000	57.7000	50 .7 0 00	
41.3000	45.3000	48.9000	53.3000	
61.8000	65.0000	61.2000	68.4000	
74.1000	85.3000			
1920 1941 P				
12.7000	12.4000	16.9000	18.4000	
19.4000	20.1000	19.6000	19.8000	
21.1000	21.7000	15.6000	11.4000	
7.00000	11,2000	12.3000	14.0000	

17.6000	17.3000	15.3000	19.0000	
21.1000	23.5000			
1919 1941 K		4.5.5	4-1	
180.100	182.800	182.600	184.500	
189.700	192.700	197.800	203.400	
207.600	210.600	215.700	216.700	
213.300	207.100	202.000	199.000	
197.700 201.200	199.800 204.500	201.800 209.400	199.900	
1920 1941 W2	_	EXOGENOUS VARIAB	TEC	
2,20000	2.70000	2.90000	2.90000	
3.10000	3.20000	3.30000	3.60000	
3,70000	4.00000	4.20000	4.80000	
5.30000	5.60000	6.00000	6.10000	
7.40000	6.70000	7,70000	7.80000	
8.00000	8.50000		·	
1920 1941 T				
3.40000	7.70000	3.90000	4.70000	
3.80000	5.50000	7.00000	6.70000	
4.20000	4.00000	7.70000	7.50000	
8.30000	5.40000	6.80000	7.20000	
8.30000	6.70000	7.40000	8.90000	
9.60000	11.6000	i		
1921 1941 TIME	0.0000	0.0000	7	
-10.0000	-9.00000	-8.00000	-7.00000	
-6.00000	-5.00000 -1.00000	-4.00000 .0	-3.00000	
-2.00000 2.00000	3.00000	4.00000	1.00000 5.0000	
6.00000	7.00000	8.00000	9.00000	
10.0000	7.0000	0.0000	9.00000	
1920 1941 G				
4.60000	6.60000	6.10000	5.70000	
6.60000	6.50000	6.60000	7.60000	
7.90000	8,10000	9.40000	10.7000	
10.2000	9.30000	. 10.0000	10.5000	
10.3000	11.0000	13.0000	14.4000	
15.4000	22.3000			
1921 1941 CONST		,		
1.00000	1.00000	1.00000	1.00000	
1.00000	1.00000	1.00000	1.00000	
1.00000	1.00000	1.00000	1.00000	
1.00000	1.00000	1.00000	1.00000	
1.00000	1.00000	1.00000	1.00000	
1.00000 1921 1941	กตะ	SIDUALS		
-0.462706	-0.616492	-1.304310	A 285000	0 220 1102
0.885369	1.441840	1.341830	-0.245888 -0.394091	0.229482
-1.065610	-1.330430	0.610220	-0.142358	-0.625634 0.002885
2.003070	-0.605754	-0.247928	1.384760	1.031770
-1.893540	0,000,54	0.247520	1.304700	1.031770
1921 1941				
-1.316770	0.260542	0.863514	-1.589980	0.262383
1.211130	0.972715	0.117038	1.799650	-0.948889
-0.803260	-0.892119	1.308640	-0.148140	0.145630
1.752740	-0.188064	-3.287290	0.288949	-0.100161
0.366706				

1921	1941			•	•
	-1.296970	0.294890	1.188160	-0.139933	-0.467373
	-0.486607	-0.732667	0.334367	1.192050	-0.159485
	0.584402	0.092249	0.445699	0.279009	0.010945
	-0.851808	0.990709	-0.477612	-0.381070	-1.094280
	0.591751				
4	COEFFI	CIENTS OF EQUAT	. C		
	16.5548	0.0173024	0.216235	0.810182	
4	COEFF	CIENTS OF EQUAT	. I		
	20.2782	0.150222	0.615944	-0.157788	
4	COEFFI	CIENTS OF EQUAT	. W1		•
	1.5003	0.438859	0.146673	0.130396	

Please note that the string ENDOGENOUS VARIABLES in the fourth card is only a comment, such as the strings EXOGENOUS VARIABLES, RESIDUALS and COEFFICIENTS OF EQUAT. C (I or W1); all of them, in fact, exceed the read format.

Note also that, for quarterly (monthly) models, quarters (months) must be numbered consecutively and not in terms of year and quarter (month).

2. MAIN PROGRAM AND SIZE OF THE MODEL

The main program (third file on the tape; STOCSIM FORTRAN is its CMS identifier when copied on disk) contains a list of the main variable names and the dimensions of the vectors and matrices used all over the program. It also contains the following comment lines, indicating the dimensions of the vectors and matrices:

- C MAXIMUM NUMBER OF DATA PER SERIES (IREAD) IS 0034
- C MAXIMUM NUMBER OF ENDOGENOUS (NEND) IS 0099
- C MAXIMUM NUMBER OF EXOGENOUS (NEXO) IS 0076
- C MAXIMUM NUMBER OF STRUCTURAL EQUATIONS (NSTOCH) IS 0051
- C MAXIMUM NUMBER OF STRUCTURAL COEFFICIENTS (NCOEFF) IS 0269

If these specified dimensions are insufficient for a given model, dimension statements must be modified all over the main program, not in the subroutines, where symbolic dimensions are always specified.

For example, before performing stochastic simulation experiments on a model with 135 endogenous variables, the following commands should be issued under VM-370/CMS environment:

```
edit stocsim fortran
EDIT:
change /0099/0135/ * *
  MAXIMUM NUMBER OF ENDOGENOUS (NEND) IS 0135
      DIMENSION YOBS (0135,0034), YSTOC (0135,0034), YDET (0135,0034),
     ,YMEAN (0135,0034),
     ,SIGMA(0051,0051),AMAX(0135,0034),AMIN(0135,0034),
     , VAR (0135,0034),
     , INEND (0135),
     ,NFEND(0135),INEXO(0076),NFEXO(0076),INRES(0051),NFRES(0051),
     ,YSUM(0135,0034),
     , VARSUM(0135,0034), TITLE1(10), TITLE2(10), ZLRES(0051),
     ,UMC0(0051),YY(0135),
     ,YMEANP(0034), ENDNAM(0135), EXONAM(0076), NVOUT(0135)
2
     IF (NEND.LE.0135) GO TO 3
```

102 FORMAT (' MAXIMUM NUMBER OF ENDOGENOUS EXCEEDED (0135)') EOF: file

R; T=0.06/0.28 09:45:14

fortgi stocsim (print) G1 COMPILER ENTERED SOURCE ANALYZED PROGRAM NAME = MAIN * NO DIAGNOSTICS GENERATED

R; T=0.41/0.64 09:46:33

3. THE PRINTED OUTPUT

For every year of the simulation period a table referred to all the endogenous variables is displayed. It includes:

- 1) The serial number of the variable and its name.
- 2) The observed (historical) value.
- 3) The deterministic solution value.
- 4) The sample mean computed across the replications of the stochastic solutions.
- 5) The minimum computed across the replications of the stochastic solutions.
- 6) The maximum computed across the replications of the stochastic solutions.
- 7) Range of the stochastic solutions (maximum minimum).
- 8) The sample standard deviation computed across the replications of the stochastic solutions.
- 9) Standard deviation of the sample mean (the same as above, but divided by the square root of the number of replications).
- 10) Coefficient of variation (standard deviation divided by the mean, if non-zero, in percentage form).

In the second part of the printed output the same information are displayed for each variable, together with the first relative differences of the observed values, of the deterministic solutions and of the mean stochastic solutions.

On the right hand side of each output per variable two columns are indicated as DET and OBS.

In the first a - (+) appears if the deterministic solution is smaller (greater) than the mean stochastic solution minus (plus) its standard deviation; a -- (++) appears if the distance is greater than twice the standard deviation of the mean stochastic solution. This information can be useful when checking the existence of a bias in the deterministic simulation of non-linear models, as in [1].

In the second column the sign - (+) indicates that the observed value is smaller (greater) than the mean stochastic solution minus (plus) the standard deviation of the stochastic solutions (not of the mean, this time); -- (++) indicates that the distance is greater than the double of the standard deviation computed across the replications.

The following other statistics and goodness of fit indicators are finally displayed:

- 1) The means over the simulation period of the observed values, deterministic and mean stochastic solutions; on the right hand side the differences between the means of the deterministic (mean stochastic) solutions and the means of the observed values.
- 2) The coefficients and standard errors of the regression (with intercept) of the observed values of each endogenous variable on the deterministic or mean stochastic solutions; the t test is performed on the hypothesis of constant term equal to zero and slope equal to one [8].
- 3) The coefficient and standard error of the regression, without

intercept, of the first relative differences of the observed values of each endogenous variable on the first relative differences of the deterministic and mean stochastic solutions; the t test is performed on the hypothesis of coefficient equal to one (rejected for a large t value) [8].

- 4) The Root Mean Square Errors (RMSE), dimensionless [8] and dimensional [7], of the deterministic and mean stochastic solutions.
- 5) The Mean Absolute Percentage Errors (MAPE) of the deterministic and mean stochastic solutions [7].
- 6) Theil's inequality coefficients (U) of the deterministic and mean stochastic solutions, computed according to two different formulas as in [8].

If only deterministic simulation is performed (NREP must have been specified equal to zero on the third card of the input data set) the printed output, per year and per variable, contains observed values, deterministic simulation results, percentage error (year by year) and RMSE; in the output per variable, observed values and simulation results are also plotted over time.

The printed output of the stochastic simulation experiment on the Klein-I model, as it is on the tape, is displayed at the end of this manual.

4. THE TAPE FORMAT

The tape is 9 tracks; density is 1600 b.p.i. The tape is no-label and contains 15 files separated by tape marks.

The first file is in CMS DUMP format and should be used only for installation under the operating system VM-370/CMS; for installation under other operating systems some equivalent procedure must be used instead of it; this file is displayed in section (4.1.).

All the other files are card-image, record format is fixed blocked, logical record length is 80 8-bit characters and block-size is 800 characters; there is no difficulty in reading these files also under other operating systems.

File 2 is an EXEC procedure to run stochastic simulations; under operating systems different from VM-370/CMS it can be read and some equivalent procedure should be used instead of it; this file is displayed in section (4.2.).

Files 3, 4, 5, 6, 7 and 8 are FORTRAN-G programs.

File 9 is an ASSEMBLER-370 program.

Files 10 and 11 are respectively the FORTRAN code and the input data set for the Klein-I model.

Files 12 and 13 are respectively the FORTRAN code and the input data set for the Klein-Goldberger model.

File 14 is an EXEC procedure to be used under VM-370/CMS to compile the programs; under other operating systems this file can be read and some equivalent procedure should be used instead of it; it is displayed in section (4.3.).

File 15 is a one card data set.

4.1. Contents of the first file (EXEC procedure)

This file was dumped on tape directly by VM-370/CMS system; it is, therefore, in CMS DUMP format; it must be recalled that lines starting with * are comment lines and lines starting with &TYPE are messages which will be typed at the terminal. The CMS identifier of this file on disk is COPYTAPE EXEC.

```
*PROPRIETA' DELLA IBM ITALIA
*CENTRO SCIENTIFICO DI PISA.
*A PROGRAM FOR STOCHASTIC SIMULATION OF ECONOMETRIC MODELS
*REL. 1. JANUARY 1978.
TAPE REW (TAP1)
TAPE FSF 1 (TAP1)
FILEDEF IBMPISA TAP1 (DEN 1600 RECFM FB LRECL 80 BLOCK 800 PERM)
FILEDEF TWO DISK STOCSIM EXEC A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF THREE DISK STOCSIM FORTRAN A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF FOUR DISK STOCS1 FORTRAN A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF FIVE DISK RANDOM FORTRAN A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF SIX DISK INVERSE FORTRAN A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF SEVEN DISK MCALG FORTRAN A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF EIGHT DISK NAGAR FORTRAN A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF NINE DISK UNIFOR ASSEMBLE A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF TEN DISK KLEIN1 FORTRAN A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF ELEVEN DISK KLEIN1 DATA A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF TWELVE DISK KLEINGOL FORTRAN A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF THIRTEEN DISK KLEINGOL DATA A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF FOURTEEN DISK COMPILE EXEC A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF FIFTEEN DISK INITIAL RANDOM A1 (RECFM F LRECL 80 BLOCK 80)
MOVE IBMPISA TWO
MOVE IBMPISA THREE
MOVE IBMPISA FOUR
MOVE IBMPISA FIVE
MOVE IBMPISA SIX
MOVE IBMPISA SEVEN
MOVE IBMPISA EIGHT
MOVE IBMPISA NINE
MOVE IBMPISA TEN
MOVE IBMPISA ELEVEN
MOVÈ IBMPISA TWELVE
MOVE IBMPISA THIRTEEN
MOVE IBMPISA FOURTEEN
MOVE IBMPISA FIFTEEN
STYPE THE TAPE HAS BEEN READ AND COPIED ON THE USER'S MINIDISK
ETYPE THE FORTRAN - ASSEMBL. PROGRAMS MUST NOW BE COMPILED
STYPE USING THE COMMAND:
STYPE COMPILE
STYPE (I.E. ONE OF THE EXEC PROCED. JUST COPIED FROM TAPE)
```

4.2. Contents of the second file (EXEC procedure)

On tape this file is in card-image format; on disk, its CMS identifier is STOCSIM EXEC.

*PROPRIETA' DELLA IBM ITALIA
*CENTRO SCIENTIFICO DI PISA.
*A PROGRAM FOR STOCHASTIC SIMULATION OF ECONOMETRIC MODELS
*REL. 1. JANUARY 1978.
FILEDEF 01 DISK &1 DATA A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF 10 DISK INITIAL RANDOM A1 (RECFM F LRECL 80 BLOCK 80)
FILEDEF 08 PRINTER (LRECL 145 BLOCK 149 RECFM VA)
FILEDEF 06 TERM (LRECL 145 BLOCK 149 RECFM VA)
GLOBAL TXTLIB FORTMOD2
CP SPOOL PRINTER CONT
PRINT &1 FORTRAN
PRINT &1 FORTRAN
PRINT &1 DATA
LOAD STOCSIM &1 &2 &3
START
CP SPOOL PRINTER CLOSE

Please note that FORTMOD2 is the name of the FORTRAN-G library on the computer IBM/370 model 168 installed at CNUCE (Pisa). Note also that the dummy argument £1 refers to the model's name (same FILENAME for the subroutine and the input data set); £2 and £3 refer to non-default options (see end of section 5.).

4.3. Contents of the 14-th file (EXEC procedure)

On tape this file is in card-image format; on disk, its CMS identifier is COMPILE EXEC.

*PROPRIETA' DELLA IBM ITALIA

*CENTRO SCIENTIFICO DI PISA.

*A PROGRAM FOR STOCHASTIC SIMULATION OF ECONOMETRIC MODELS

*REL. 1. JANUARY 1978.

CP SPOOL PRINTER CONT

FORTGI STOCSIM (PRINT)

FORTGI STOCSIM (PRINT)

FORTGI RANDOM (PRINT)

FORTGI INVERSE (PRINT)

FORTGI MCALG (PRINT)

FORTGI NAGAR (PRINT)

ASSEMBLE UNIFOR (PRINT)

FORTGI KLEIN1 (PRINT)

FORTGI KLEINGOL (PRINT)

CP SPOOL PRINTER CLOSE

Please note that FORTGI and ASSEMBLE are the names of the compilers on the computer IBM/370 model 168 installed at CNUCE (Pisa).

5. INSTALLATION AND EXECUTION PROCEDURES

Under VM-370/CMS the installation procedure could be as follows.

- 1) Log-on a virtual machine with at least 400 CMS records available on disk and at least 768K of virtual main storage.
- 2) Mount the tape on a 9 tracks, 1600 b.p.i. tape unit and attach it with virtual address 181 to the virtual machine.
- 3) Issue now the following commands (recall that command lines are typed in small letters, while capital letters are answers from the system; the following is an on-line installation session).

```
query disk a
A(200):0 FILES;5 REC IN USE,527 LEFT(of 532),1%FULL(2 CYL),3330,R/W
R; T=0.01/0.01 09:57:15
tape rew (tap1)
R; T=0.01/0.02 09:57:26
tape load
 LOADING....
 COPYTAPE EXEC
                   A1
 END-OF-FILE OR END-OF-TAPE
R; T=0.01/0.03 09:57:31
copytape
TAPE REW ( TAP1 )
TAPE FSF 1 ( TAP1 )
FILEDEF IBMPISA TAP1 ( DEN 1600 RECFM FB LRECL 80 BLOCK 800 PERM )
FILEDEF TWO DISK STOCSIM EXEC A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF THREE DISK STOCSIM FORTRAN A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF FOUR DISK STOCS1 FORTRAN A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF FIVE DISK RANDOM FORTRAN A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF SIX DISK INVERSE FORTRAN A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF SEVEN DISK MCALG FORTRAN A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF EIGHT DISK NAGAR FORTRAN A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF NINE DISK UNIFOR ASSEMBLE A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF TEN DISK KLEIN1 FORTRAN A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF ELEVEN DISK KLEIN1 DATA A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF TWELVE DISK KLEINGOL FORTRAN A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF THIRTEEN DISK KLEINGOL DATA A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF FOURTEEN DISK COMPILE EXEC A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF FIFTEEN DISK INITIAL RANDOM A1 ( RECFM F LRECL 80 BLOCK 80 )
MOVE IBMPISA TWO
MOVE IBMPISA THREE
MOVE IBMPISA FOUR
```

```
MOVE IBMPISA FIVE
MOVE IBMPISA SIX
MOVE IBMPISA SEVEN
MOVE IBMPISA EIGHT
MOVE IBMPISA NINE
MOVE IBMPISA TEN
MOVE IBMPISA ELEVEN
MOVE IBMPISA TWELVE
MOVE IBMPISA THIRTEEN
MOVE IBMPISA FOURTEEN
MOVE IBMPISA FIFTEEN
THE TAPE HAS BEEN READ AND COPIED ON THE USER'S MINIDISK
THE FORTRAN - ASSEMBL. PROGRAMS MUST NOW BE COMPILED
USING THE COMMAND:
COMPILE
( I.E. ONE OF THE EXEC PROCED. JUST COPIED FROM TAPE )
R; T=0.74/1.42 09:57:56
query disk a
A(200):15 FILES;232 REC IN USE,300 LEFT(of 532),44%FULL(2 CYL),3330,R/W
R; T=0.01/0.02 09:58:04
detach 181
TAPE 181 DETACHED
R: T=0.01/0.01 09:58:09
```

4) To compile the programs issue now the following command.

compile CP SPOOL PRINTER CONT FORTGI STOCSIM (PRINT) G1 COMPILER ENTERED SOURCE ANALYZED PROGRAM NAME = MAIN NO DIAGNOSTICS GENERATED FORTGI STOCS1 (PRINT) G1 COMPILER ENTERED SOURCE ANALYZED PROGRAM NAME = STOCS1 NO DIAGNOSTICS GENERATED SOURCE ANALYZED PROGRAM NAME = GAUSSD NO DIAGNOSTICS GENERATED SOURCE ANALYZED PROGRAM NAME = OUTDET NO DIAGNOSTICS GENERATED SOURCE ANALYZED PROGRAM NAME = OUTPRD NO DIAGNOSTICS GENERATED SOURCE ANALYZED PROGRAM NAME = OUTVAR NO DIAGNOSTICS GENERATED SOURCE ANALYZED PROGRAM NAME = REGRSS NO DIAGNOSTICS GENERATED SOURCE ANALYZED

```
PROGRAM NAME = MEANSS
   NO DIAGNOSTICS GENERATED
SOURCE ANALYZED
PROGRAM NAME = MAPESS
   NO DIAGNOSTICS GENERATED
SOURCE ANALYZED
PROGRAM NAME = RMSESS
  NO DIAGNOSTICS GENERATED
SOURCE ANALYZED
PROGRAM NAME = THEIL
   NO DIAGNOSTICS GENERATED
SOURCE ANALYZED
PROGRAM NAME = VERIFY
   NO DIAGNOSTICS GENERATED
    *STATISTICS* NO DIAGNOSTICS THIS STEP
FORTGI RANDOM ( PRINT )
G1 COMPILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = RANDOM
   NO DIAGNOSTICS GENERATED
FORTGI INVERSE ( PRINT )
G1 COMPILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = RANDOM
   NO DIAGNOSTICS GENERATED
SOURCE ANALYZED
PROGRAM NAME = NDTRID
   NO DIAGNOSTICS GENERATED
    *STATISTICS* NO DIAGNOSTICS THIS STEP
FORTGI MCALG ( PRINT )
G1 COMPILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = MCALG
   NO DIAGNOSTICS GENERATED
FORTGI NAGAR ( PRINT )
G1 COMPILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = MCALG
   NO DIAGNOSTICS GENERATED
ASSEMBLE UNIFOR ( PRINT )
ASSEMBLER DONE
NO STATEMENTS FLAGGED IN THIS ASSEMBLY
FORTGI KLEIN1 ( PRINT )
G1 COMPILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = MODEL
   NO DIAGNOSTICS GENERATED
FORTGI KLEINGOL ( PRINT )
G1 COMPILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = MODEL
  NO DIAGNOSTICS GENERATED
CP SPOOL PRINTER CLOSE
COMPIL. HAS BEEN COMPLET.
R; T=8.51/11.40 10:01:05
```

5) To run stochastic simulation of the first sample (Klein-I model, estimated with Two Stage Least Squares as in [4]), with default options for the generation of the pseudo-random structural disturbances (Box-Muller and McCarthy's algorithms), issue the following command:

```
stocsim klein1
FILEDEF 01 DISK KLEIN1 DATA A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF 10 DISK INITIAL RANDOM A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF 08 PRINTER ( LRECL 145 BLOCK 149 RECFM VA )
PILEDEF 06 TERM ( LRECL 145 BLOCK 149 RECFM VA )
GLOBAL TXTLIB FORTMOD2
CP SPOOL PRINTER CONT
PRINT KLEIN1 FORTRAN
PRINT KLEIN1 DATA
LOAD STOCSIM KLEIN1
START
EXECUTION BEGINS...
    10
R
    20
    30
R
R
    40
    50
R
    60
R
R
    70
R
    80
R
    90
   100
R
CP SPOOL PRINTER CLOSE
R; T=10.17/11.41 10:05:07
```

100 replicated one-step solutions (total method) have been performed on the whole sample period (1921-1941). The number of replications performed is typed at the terminal at multiples of 10.

To use alternative pseudo-random disturbances generators (inverse method, Nagar algorithm) one of the following commands should be issued:

```
stocsim klein1 inverse stocsim klein1 inverse nagar stocsim klein1 nagar
```

or, alternatively:

stocsim kleingol inverse

stocsim kleingol nagar

stocsim kleingol inverse nagar

Please note that the argument "klein1" refers to \$1, while "inverse" and "nagar" refer to \$2 and \$3 (see section 4.2.).

6) To run stochastic simulation of the second sample (Klein-Goldberger revised model [6], estimated by 2SLS with 4 principal components; the corresponding CMS identifiers on disk are KLEINGOL FORTRAN -TEXT after compilation- and KLEINGOL DATA), with 100 replicated dynamic solutions (final method), issue the following command:

```
stocsim kleingol
FILEDEF 01 DISK KLEINGOL DATA A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF 10 DISK INITIAL RANDOM A1 ( RECFM F LRECL 80 BLOCK 80 )
FILEDEF 08 PRINTER ( LRECL 145 BLOCK 149 RECFM VA )
FILEDEF 06 TERM ( LRECL 145 BLOCK 149 RECFM VA )
GLOBAL TXTLIB FORTMOD2
CP SPOOL PRINTER CONT
PRINT KLEINGOL FORTRAN
PRINT KLEINGOL DATA
LOAD STOCSIM KLEINGOL
START
EXECUTION BEGINS...
    10
R
R
    20
R
    30
R
    40
   50
R
R
   60
   70
R
R
   80
   90
R
R
   100
CP. SPOOL PRINTER CLOSE
R; T=12.24/13.80 10:15:56
```

Please note that Nagar's algorithm for the generation of multivariate normal pseudo-random deviates cannot be used when the sample period length is smaller than the number of stochastic equations (NSTOCH).

REFERENCES

- [1] Bianchi, C., G. Calzolari and P. Corsi, "Divergences in the Results of Stochastic and Deterministic Simulation of an Italian Non Linear Econometric Model", in L. Dekker, ed., "Simulation of Systems", North Holland, Amsterdam, (1976).
- [2] Bianchi, C., G. Calzolari and P. Corsi, "A Program for Stochastic Simulation of Econometric Models", Econometrica, v.46, n.1 (1978).
- [3] Calzolari, G., T.A.Ciriani and P.Corsi, "Generation and Testing of Pseudo-Random Numbers with Assigned Statistical Properties to be Used in the Stochastic Simulation of Econometric Models", IBM Technical Report CSP034/513-3544, Pisa, (1976).
- [4] Goldberger, A.S., A.L. Nagar and H.S. Odeh, "The Covariance Matrices of Reduced-Form Coefficients and of Forecasts for a Structural Econometric Model", Econometrica, v.29, n.4, (1961).
- [5] IBM, "Virtual Machine Facility/370: CMS Command and Macro Reference", GC20-1818, IBM, New York, (1976).
- [6] Klein, L.R., "Estimation of Interdependent Systems in Macroeconometrics", Econometrica, v.37, n.2, (1969).
- (7) Klein, L.R., "A Textbook of Econometrics", Prentice Hall, Englewood Cliffs, (1974).
- [8] Sowey, E.R., "Stochastic Simulation of Macroeconometric Models: Methodology and Interpretation", in A.A.Powell and R.A.Williams, eds., "Econometric Studies of Macro and Monetary Relations", North Holland, Amsterdam, (1973).

PROPRIETA' DELLA IBM ITALIA CENTRO SCIENTIFICO DI PISA. REL. 1. JANUARY 1978. KLEIN-I MODEL. STOCHASTIC SIMULATION. 25LS ESTIMATE AS IN GOLDBERGER-NAGAR-ODEH'S PAPER (ECONOMETRICA 1961).

OPTIONS ARE: 100 100 6 3 5 12 1919 1941 1921 1941 0

0

A PROGRAM FOR STOCHASTIC SIMULATION OF ECONOMETRIC MODELS BY CARLO BIANCHI, GIORGIO CALZOLARI AND PAOLO CORSI IBM PISA SCIENTIFIC CENTER

MCCARTHY ALGORITHM

A PROGRAM FOR STOCHASTIC SIMULATION OF ECONOMETRIC MODELS

BY CARLO BIANCHI, GIORGIO CALZOLARI AND PAOLO CORSI
IBM PISA SCIENTIFIC CENTER

ONE-STEP SIMULATION

INITIAL VALUE OF PSEUDO-RANDOM NUMBERS 54829179

YEAR 1921

NUMBER OF REPLICATIONS = 100

COEF. VAR.	4.390 106.6 5.136 7.006 14.40
STD.DEV.MEAN	.198100 .127715 .148495 .316841 .195947
STD.DEV.	1.98100 1.27715 1.48495 3.16841 1.95947
RANGE	10.1229 5.66091 6.57124 15.4254 10.2668 5.66091
MAXIMUM	49.4538 3.68146 31.8599 51.9408 18.6411
MINIMUM	39,3309 -1,97945 25,2887 36,5154 8,37435 180,821
MEAN STOC.	45.1241 1.19755 28.9140 45.2216 13.6076
DETERMINIS.	45,1232 1,32574 28,8781 45,3490 13,7709
OBSERVED	41.9000 200000 25.5000 40.6000 12.4000
VARIABLE	Y(1) HC Y(2) KI Y(3) HW1 Y(4) HY Y(5) MP Y(6) MK

ONE-STEP SIMULATION

6
7
•
9
C
œ
4
Ω
ဟွ
α
ω
8
4
Ξ
z
RANDOM
Q
Ω
Z
S
æ
1
Õ
Ω
\supset
PSE
ຜ
Д
_
Q.
O
ш
VALUE
н
4
>
Э
TIAL
H
Н
INI
Z
н

40
4
9
_
- 4
ĸ
_
⋖
ы
×

#BER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. MINIMUM MAXIMUM RANGE STD.DEV. STD. 65.0000 64.6803 65.2527 60.2497 71.8382 11.5885 2.07955 3.30000 3.20531 3.49047506880 7.66625 8.11293 1.756700 45.9074 46.2640 42.1376 50.5898 8.4523 1.756700 45.9074 46.2640 42.1376 50.5898 8.4523 1.756700 73.6856 74.5432 65.5430 85.2444 19.7014 3.54679 21.1000 19.7782 20.2792 15.4055 26.6547 11.2492 2.08525 204.500 204.405 204.690 200.693 208.806 8.11293 1.56000 E-STEP SIMULATION VALUE OF PSEUDO-RANDOM NUMBERS 54829179 Y E A R 1941 WHER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. MINIMUM MAXIMUM RANGE STD.DEV. STD 69.7000 71.8803 72.3384 67.6945 78.5737 10.8793 2.03267 4.90000 4.80251 5.17354 2.19033 8255755 6.06722 1.52822 53.3000 65.36166 53.9557 50.2489 58.8172 8.56830 1.77190 85.3000 76.5260 36.2169 89.7750 37.1678 16.7720		COEF. VAR.	3,187 44,69 3,797 4,758 10,28		COEF. VAR.	2.810 29.54 3.173 3.896 7.679
MBER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. MINIMUM MAXIMUM RANGE 65.0000 64.6803 65.2527 60.2497 71.8382 11.5885 3.30000 3.20531 3.49047506680 7.60625 8.11293 45.0000 45.9074 46.2640 42.1376 50.5898 8.45223 74.1000 73.6856 74.5432 65.544 19.7014 21.1000 19.7782 20.2792 15.4055 26.6547 11.2492 204.500 204.405 20.2792 15.4055 26.6547 11.2492 204.500 204.405 204.690 200.693 208.806 8.11293 E-STEP SIMULATION VALUE OF PSEUDO-RANDOM NUMBERS 54829179 Y E A R 1941 MBER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. MINIMUM MAXIMUM RANGE 69.7000 71.8803 72.3384 67.6945 58.8172 8.56830 85.3000 67.82755 50.2489 58.8172 8.56830 85.3000 76.2663 76.275 76.757 76		STD.DEV.MEAN	.207955 .156000 .175672 .354679 .208525		STD.DEV.MEAN	.203267 .152822 .171190 .343699 .197780
MBER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. MINIMUM MAXIMUM 65.0000 64.6803 65.2527 60.2497 71.8382 3.30000 3.20531 3.49047506680 7.60625 45.0000 45.9074 46.2640 42.1376 50.5898 74.1000 73.6856 74.5432 65.5430 85.2444 21.1000 19.7782 20.2792 15.4055 26.6547 204.500 204.405 20.2792 15.4055 26.6547 204.500 204.405 204.690 200.693 208.806 E-STEP SIMULATION VALUE OF PSEUDO-RANDOM NUMBERS 54829179 Y E A R 1941 MBER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. MINIMUM MAXIMUM 69.7000 71.8803 72.3384 67.6945 78.5737 4.90000 4.80251 5.17354 2.19033 8.25755 53.3000 87.3828 88.25755 85.3000 87.3828 88.2575		STD. DEV.	2.07955 1.56000 1.75672 3.54679 2.08525 1.56000		STD. DEV.	2.03267 1.52822 1.71190 3.43699 1.97780
MBER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. MINIMUM 65.0000 64.6803 65.2527 60.2497 3.30000 3.20531 3.49047506680 45.0000 45.9074 46.2640 42.1376 73.6856 74.590 19.7782 20.2792 15.4055 204.500 19.7782 20.2792 15.4055 204.500 204.405 204.690 200.693 E-STEP SIMULATION VALUE OF PSEUDO-RANDOM NUMBERS 54829179 Y E A R 1941 MBER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. MINIMUM 69.7000 71.8803 72.3384 67.6945 4.90000 4.80251 5.17354 2.19033 53.3000 55.36166 53.9557 50.2489 85.3000 687.3828 88.2119 80.9776		RANGE	11.5885 8.11293 8.45223 19.7014 11.2492 8.11293		RANGE	10.8793 6.06722 8.56830 16.1902 10.0764 6.06722
MBER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. 65.0000 64.6803 65.2527 45.0000 45.9074 46.2640 73.6856 74.5432 21.1000 73.6856 74.5432 204.500 204.405 20.2792 204.500 204.405 20.2792 XALUE OF PSEUDO-RANDOM NUMBERS 54829179 Y E A R 1941 WBER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN STOC. 69.7000 71.8803 72.3384 4.90000 4.80251 5.17354 53.3000 55.750		MAXIMUM	71.8382 7.60625 50.5898 85.2444 26.6547		MAXIMUM	78.5737 8.25755 58.8172 97.1678 31.3029 212.758
MBER OF REPLICATIONS = 100 OBSERVED DETERMINIS. MEAN 65.0000 64.6803 65.25 3.30000 45.9074 46.26 74.1000 77.6856 74.54 21.1000 19.7782 20.27 204.500 204.405 204.6 E-STEP SIMULATION VEAR 1941 YEAR 1941 YEAR 1941 OBSERVED DETERMINIS. MEAN 69.7000 71.8803 72.33 4.90000 4.80251 5.173 53.3000 53.6166 53.95 85.3000 87.3828 88.21		MINIMUM	60.2497 506680 42.1376 65.5430 15.4055 200.693	79	MINIMOW	67.6945 2.19033 50.2489 80.9776 21.2265 206.690
NUMBER OF REPLICATIONS = 1	00		65.2527 3.49047 46.2640 74.5432 20.2792			72.3384 5.17354 53.9557 88.2119 25.7563
NUMBER OF REPLICATION	n	DETERMINIS.	64.6803 3.20531 45.9074 73.6856 19.7782	LON DO-RANDOM NUMB 1941 ATIONS = 1	DETERMINIS.	71.8803 4.80251 53.6166 87.3828 25.2662 209.303
NUMB "IABLE "" "" "IABLE "TIAL V "TIAL V "TIAL V "TIAL C "" "" "" "" "" "" "" "" ""	ER OF REPLICA	OBSERVED	65.0000 3.30000 45.0000 74.1000 21,1000	STEP SIMULATI ALUE OF PSEUI YEAR ER OF REPLIC?	OBSERVED	69.7000 4.90000 53.3000 85.3000 23.5000 209.400
>	NUMB	VARIABLE	X(1) = C Y(2) = C Y(3) = M Y(4) = Y Y(5) = P Y(6) = K	ONE- INITIAL V	VARIABLE	X (1) = C $X (2) = I$ $X (3) = W1$ $Y (4) = Y$ $X (5) = P$ $X (6) = X$

ONE-STEP SIMULATION

	OBS	1					+	+				1	+			+		ı	+		ı
	DET		‡		1	1		+		+			1					ł		ŀ	ļ
	CF.VAR.	4.39	3.28	3,83	3.61	3.52	3.57	3,66	40.4	3.54	3.77	3.90	4.18	3.99	3.57	3,48	3.14	3.20	3.34	3.19	2.81
	ST.DEV. MEAN	. 198	.161	.200	.191	.189	. 192	. 199	.226	.200	.197	189	. 185	194	.182	.189	.185	.195	.198	.208	.203
100 REPLICATIONS	MEAN STOC.	0.	7.83	6.57	1.37	1,32	. 542	.828	2.67	1.39	-7.42	-7,61	-8,36	69.6	5.21	5,85	8.47	3,61	-2.50	9.91	10.9
100 REPL	DETERM. #CHANGE	0. 7.	8.47	5.85	.726	1,53	1.18	986.	2.25	1.89	-7,69	-8.00	-8.74	10.5	5.11	5.97	8.08	3.50	-1.83	8.59	1.1
WITH	ACTUAL	0.	9.33	2.85	3.95	4.75	2.00	1.96	.873	78.4	-7.45	-10.4	1.97	4.73	5,34	12.5	1.73	-2.04	7,13	5.52	7,23
TO YEAR 1941	MAXIMUM	49.4538	52.6031	57,9138	58,1609	58,4636	58,1746	58,6233	60,7865	63,7999	56.3672	53.3822	49.9874	53,2041	55,6235	58,9421	64.0491	65,3053	63.8454	71.8382	78.5737
YEAR 1921	MINIMUM	39.3309	45.0859	47.0400	48.4233	49.2902	48.4863	48.6102	50.7248	51.8749	47.0908	43.6816	38.9543	44.1013	45.5059	49.1663	53.0747	56.0948	55.2825	60.2497	67.6945
FROM	STANDARD DEVIAT.	1.98100	1.60667	1.99744	1,90871	1.88728	1.92476	1.98732	2.25649	2,00285	1.97465	1.88910	1.85398	1.94018	1.82479	1.88768	1.84584	1.94557	1.98487	2.07955	2.03267
OUTPUT FOR VARIABLE Y(1)=C	MEAN STOC.	45.1241	48.9884	52.2075	52.9242	53,6210	53.9117	54.3579	55.8074	56.5838	52,3875	48.4022	44.3533	48.6497	51,1859	54,1821	58,7707	60.8918	59.3692	65,2527	72.3384
UT FOR VARIA	DETERM. VALUE	45.1232	49.3458	52,2325	52.6116	53.4141	24.0464	54,5795	55.8050	56.8623	52.4906	48.2906	44.0707	48.6927	51,1826	54.2401	58.6212	60.6730	59,5655	64.6803	71.8803
OUT	YEAR ACTUAL VALUE	1921 41.9000	1923 49.2000	1924 50,6000	S	1926 55.1000	S	1928 57.3000	Ŋ				1933 46.5000	#	1935 51.3000	1936 57,7000		1938 57.5000	9	1940 65.0000	1941 69.7000

ONE-STEP SIMULATION

100 REPLICATIONS FROM YEAR 1921 TO YEAR 1941 WITH OUTPUT FOR VARIABLE Y(2)=I

																	,		_			
	OBS	ı			1		+			+				+			+		;			
	DET	+		+		1			+		+							1	1		1	ţ
	CF.VAR.	107.	72.4	32.9	31.3	27.1	31.3	52,3	58.8	9.05	84.3	4.65	-27.1	-21.8	-52.7	-92.1	-356.	53.0	63.2	236.	44.7	29.5
	ST.DEV. MEAN	.128	.123	,139	,153	.135	.130	.146	. 1 4 ¢	.161	.161	.137	.132	.143	.147	.128	.137	.134	.140	.150	,156	.153
on verticalions	MEAN STOC.	0.	41.5	150.	15.8	1.72	-17.1	-32.5	-12.4	29.8	-39.8	-221.	111.	34.5	-57.5	-50.3	-72.3	-757.	-12.3	-71.2	449.	48.2
1	DETERM. SCHANGE	0.		161.	8.92	-2.58	-14.7	-30.2	-5.05	17.5	-30.6	-204.	118.	34.6	-58.2	-47.5	-81.7	-983.	-19.3	-61.3	334.	8.64
אדדע	ACTUAL XCHANGE	0.	105D+04	174.	-42.3	70.0	9.80	-25.0	-28.6	70.0	-80.4	-440.	82.4	-17.7	-41.2	-56.7	-262.	-4.76	-195.	-168.	154.	48.5
FROM IEAK 1921 TO IEAK 1941 MIIA	MAXIMUM	3,68146	5.47729	6.94366	8.12663	9.25059	7.79380	6.10886	6.43774	7.42749	7,60631	1.16275	-1,10919	-2.45076	.698825	2.42417	3.05796	6.23540	5.02615	4.17112	7.60625	8,25755
IEAK 1921	MINIMUM	-1.97945	772324	.705681	.442030	2,18122	.891482	683879	-,959866	-,417903	-2,08059	-5.07263	-8.36123	-10.5280	-6.84058	-4.54734	-3.76171	568934	~1.36981	-2.67147	506680	2,19033
r ror	STANDARD DEVIAT.	1.27715	1,22698	1.39254	1.53389	1,35147	1.29624	1.46124	1.43925	1.60822	1.61248	1,37413	1.32170	1.43101	1.46781	1.27597	1.36545	1.33639	1,39675	1.50187	1.56000	1.52822
OUIFUI FOR VARIABLE I(Z)=1	MEAN STOC. VALUE	1,19755	1.69506	4.23809	4.90662	4.99105	4.13709	2,79365	2.44753	3.17753	1.91229	-2.31377	-4.87974	-6.56103	-2.78633	-1,38601	384034	2,52275	2,21134	1636044	3.49047	5.17354
UI FUR VARI	DETERM. VALUE	1.32574	1,71298	4.46961	4.86814	4.74246	4.04708	2.82409	2.68150	3.15162	2.18647	-2,27601	-4.95889	-6.67580	-2,78911	-1,46392	267980	2.36524	1.90819	.739204	3.20531	4.80251
1100	YEAR ACTUAL VALUE	1921-,200000	1922 1.90000	1923 5.20000	1924 3.00000	1925 5.10000	1926 5.60000	1927 4.20000	1928 3.00000	1929 5.10000	1930 1.00000	1931-3,40000	1932-6.20000	1933-5,10000	1934-3.00000	1935-1,30000	1936 2,10000	1937 2,00000	1938-1,90000	1939 1.30000		1941 4,90000

ONE-STEP SIMULATION

•	100 REPLICATIONS
	FROM YEAR 1921 TO YEAR 1941 WITH
	OUTPUT FOR VARIABLE Y (3)=W1

	OBS	ł		+	ı				+	+			I	+			+		1			
	DET			+		1			+		+			I					1		i	!
	CF.VAR.	5.14	90.5	4.79	4.82	4.57	4.29	4.45	4.54	68.4	96.4	4.71	5,03	6.23	5.54	99.4	4.62	4.23	3.69	4.19	3.80	3.17
	ST.DEV. MEAN	. 148	. 148	.155	.172	.165	.157	.165	.170	.188	.194	.165	.155	.165	.168	.154	.161	.170	.155	.170	.176	.171
	MEAN STOC.	0.	.903	11.2	9,82	1.08	1,38	1.43	.788	2.79	1.85	-10.2	-12.3	-13,7	17.	8.70	5.80	15,1	4.35	-3.03	13.7	16.6
	DETERM.	0.	.891	12.1	8.95	.391	2.10	1.70	1.21	2.25	2.66	-10.9	-12.7	-14.2	15.6	8.73	6.13	14.4	4.00	-2,16	12.4	16.8
11774	ACTUAL KCHANGE	0.	14.9	16.4	587	4.42	5.65	1.34	3.43	5.36	-8.23	-8.97	-15.9	-1.72	7.37	8.50	10.8	11.4	-6.83	8.90	8.17	18.4
TWO TERM 125 TO TERM 124: WITH	MAXIMUM	31,8599	33,7733	35,7748	39.9218	40.7463	39.8827	40.6782	41,5242	43.2215	44.7685	38,8239	34,5913	31.8406	34.2957	37,5389	38.8616	44.9405	46.1444	44.3608	50,5898	58.8172
1761 1361	MINIMUM	25.2887	26.2209	28.7716	31.4665	32.5743	32.2943	32.9679	32.4510	34.6479	32,3654	31.4731	26.9437	22,5701	25.9782	29.7053	31,2347	35,8353	38.2189	37.4216	42.1376	50.2489
	STANDARD DEVIAT.	1,48495	1,47547	1.55448	1.71734	1,64683	1.56634	1.64930	1.69577	1.87551	1,93981	1,65131	1.54780	1.65405	1,68290	1,53993	1,61286	1.69965	1.55038	1,70397	1,75672	1.71190
u-/s); mratura vot totto	MEAN STOC.	28.9140	29.1752	32.4414	35.6281	36.0130	36,5097	37.0310	37.3229	38.3646	39.0755	35,0830	30,7559	26.5552	30.3822	33.0258	34.9399	40.2206	41.9717	40.7013	46.2640	53.9557
TOTAL NOT TO	DETERM. VALUE	28.8781	29,1353	32,6516	35,5723	35,7115	36.4609	37.0794	37.5276	38,3729	39,3932	35,1031	30.6300	26.2936	30,4071	33.0620	35,0901	40.1306	41.7371	40.8376	42.9074	53.6166
	ACTUAL VALUE	25.5000	29,3000	34,1000	33.9000	35.4000	37,4000	37.9000	39.2000	41.3000	37.9000	34.5000	29.0000	28.5000	30.6000	33.2000	36.8000	41.0000	38,2000	41,6000	45.0000	53.3000
	YEAR	1921	1922	1923	1924	1925		1927		1929				. 1933			1936				1940	

ONE-STEP SIMULATION

	OBS	1	1	4	+ +	+	ı	+	+	ł		
	DET	1	. 1		+	+		ı		١	1	;
	CF.VAR.	7.01	5.63	5.31	5.4.5	5.95	6.06	7.50	5.61	4.73	5.18	3.90
	ST.DEV.	.317	337	305	.330	.348	.323	.313	.298	.320	339	344
100 REPLICATIONS	MEAN STOC.	0. 80.6 40.6	10.5	-2,64	5.03	4.26	-11.5	-8.21	8.23	17.6	13.8	18.3
100 REPL	DETERM.	8,94	9.28	-2.22	5.52	3.44	-12.1	18.9	7.97	16.6	12.0	18.6
WITH	ACTUAL XCHANGE	20.9	1.81	2.73	007.7	4.69 -13.9	-12,1	9.69	9.00	5.18	11.8	15.1
TO YEAR 1941	MAXIMUM	51.9408	68.4098	65.8574	68.7611	72,2491	59,6563	51.4366	61,0909	74.5845	73,5165	97,1678
YEAR 1921	MINIMUM	36,5154	50.2820	50,3718	51,3503	54.4069	45.2182	33.1066	45.1260	56.8057 60.3250	59.3384	80.9776
FROM	STANDARD DEVIAT.	3.16841	3.37095			3.75480	3.22798	3.12829	2.98146 3.13608	3.10120	3,39073	3,43699
OUTPUT FOR VARIABLE Y(4)=Y	MEAN STOC.	45.2216 49.3256	59,9141	57.3581	60.5055	63.0850 60.1961	53.2737	41.6923	53.0999	65.5934	65.5053	88.2119
PUT FOR VARI	DETERM. VALUE	0401.34	59.9006	57.0611	60.9610	63.0566	53.4146	41.2949	53.0187	65.2864 68.1812	65.8047	87,3828
เขา	YEAR ACTUAL VALUE	1921 40.6000 1922 49.1000						य य	1935 53,3000 1936 61,8000		1939 68.4000	85.

ONE-STEP SIMULATION

	35						+	+				ł	1				‡		1	+		1
	DET OBS			‡		ı	ı		+		+						+	ı	1		† †	ŀ
	CF.VAR.	14.4	10.6	8.78	8.89	9.35	9.88	11.1	9.75	10.3	11.3	14.0	19.2	17.9	14.5	12.4	13.4	8.92	10.3	11.6	10.3	7.68
٠	ST.DEV.	.196	. 182	. 166	. 188	. 184	.173	. 188	.190	.214	. 191	.187	.180	.170	.184	.174	.181	.167	. 195	.197	.209	. 198
100 REPLICATIONS	MEAN STOC.	0.	26.8	84.6	12.2	-7.00	-10.9	-3.27	14.8	6.35	-18,3	-20.9	-30.1	1.82	33.0	10.2	-3.69	38.7	1.92	-10.7	19.3	27.0
100 REPL	DETERM. *CHANGE	0.	26.1	10.9	10.2	-8.41	-11.0	-1.21	15.5	4.82	-17.1	-21.2	-31.2	1.07	35.0	9.14	-2.70	36.9	1.56	-8.41	15.2	27.7
WITH	ACTUAL XCHANGE	٥.	36.3	8.88	5,43	3.61	-2.49	1.02	6.57	2.84	-28.1	-26.9	-38.6	0.09	9.82	13.8	25.7	-1.70	-11.6	24.2	11.1	11.4
TO YEAR 1941	MAXIMUM	18.6411	22,6702	22.5374	26.3994	24.2807	22.6748	21,3625	23,9115	26.0783	24.1377	17.2398	14.2817	13.9960	17,5901	17.4542	17.7385	22.9440	22.6292	21,3561	26.6547	31,3029
YEAR 1921	MINIMUM	8.37435	13.6693	14.9746	15,7155	15,2307	13.6958	10.9851	15,1753	15.7590	12.8096	7.39900	5.07901	4.93652	8.48259	9.32074	9.23781	14.2704	14.4061	12,8713	15,4055	21,2265
FROM	STANDARD DEVIAT.	1.95947	1,82193	1.65722	1.88250	1.84304	1,73370	1.87667	1.89937	2.14131	1.90764	1.87477	1.79839	1.70459	1.84265	1.73786	1.80885	1,66590	1.95362	1.96564	2.08525	1.97780
ABLE Y (5)=P	MEAN STOC.	13.6076	17.2504	18.8851	21.1859	19.7023	17.5484	16.9743	19.4826	20.7203	16.9206	13.3907	9.36657	9.53712	12.6811	13.9741	13.4581	18.6728	19.0314	17.0040	20.2792	25.7563
OUTPUT FOR VARIABLE Y(DETERM. VALUE	13.7709	17.3687	19,2638	21,2283	19.4425	17.3002	17.0911	19,7335	20,6837	17,1556	13.5115	9.30178	9.40134	12,6965	13.8567	13.4820	18,4558	18,7441	17.1671	19.7782	25.2662
OUTP	YEAR ACTUAL VALUE	_	1922 16.9000	1923 18.4000	1924 19.4000	7	1926 19.6000	1927 19.8000	7	1929 21.7000	1930 15.6000	-	_	_	1934 12,3000	•	1936 17.6000	•	•	19.	21.	1941 23,5000

ONE-STEP SIMULATION

	OBS	ı	1	+	-		+				+			+		l				
	DET	+	+	1		+		+							ı	1		í	ŀ	
	CF.VAR.	469.	.738	489.	709	.685	.752	.741	,641	.634	.714	.737	949.	.692	.661	.685	749	.762	. 729	•
	ST.DEV.	.128	139	135	. 146	1144	.161	. 161	.137	. 132	.143	.147	.128	.137	.134	. 140	.150	.156	.153	
100 REPLICATIONS	MEAN STOC.	.0	3.11	1.58	2.13	1.87	1.78	1.79	1.48	-2.78	-3.78	-,661	803	01151	2.54	.835	-1.70	2.07	2.43	
100 REPL	DETERM. XCHANGE	.0.	2.53	1. 24.0	2.17	1.97	1.65	1,93	-1,59	-2.84	-3.80	-,605	-,841	527D-01~.	2.40	.763	-1.51	1.88	2.40	
WITH	ACTUAL	1.04	2.82	2.65	2.06	1.45	2.42	797	-1.57	-2.91	-2.46	-1.49	653	1.06	1.00	942	.650	1.64	2.40	
TO YEAR 1941	MAXIMUM	186.481	191.444	201,951	209,509	214.038	218.027	223,306	217.863	212,191	204.649	202,699	201.424	200,758	206.035	206.826	204.071	208,806	212.758	
YEAR 1921	MINIMUM	180.821	195,206	194,881	202.716	206.640	210,182	213.619	211.627	204.939	196.572	195,159	194,453	193.438	199.231	200,430	197.229	200,693	206.690	
FROM	STANDARD DEVIAT.	1,27715	1.39254	1,35147	1.46124	1.43925	1.60822	1.61248	1.37413	1.32170	1.43101	1,46781	1.27597	1,36545	1,33639	1,39675	1,50187	1,56000	1,52822	
ABLE Y (6)=K	MEAN STOC.	183.998	188,738	197.691	206.194	210.048	213.778	217.612	214,386	208,420	200,539	199,214	197.614	197,316	202,323	204,011	200,536	204.690	209.674	
OUTPUT FOR VARIABLE Y(DETERM. VALUE	184,126	188.970	197.442	206.224	210.282	213.752	217,886	214.424	208,341	200.424	199,211	197.536	197.432	202,165	203.708	200.639	204.405	209.303	
OUT	YEAR ACTUAL VALUE	1921 182,600 1922 184,500	1923 189.700 1924 192.700	1925 197.800			1929 215,700				1933 202.000						1939 201.200	1940 204.500	1941 209,400	

ONE-STEP SIMULATION

VALUES

MEAN

DIFFERENCES

STOCH.	.39997904D-01 .29509105D-01 .34799724D-01 .69507009D-01 .34707285D-01
DET.	-,49913256D-04 -,75184287D-04 -,10333906D-03 -,12509754D-03 -,21758479D-04
STOCHASTIC	54.035236 1.2961758 36.396704 58.440936 16.925183 201.79141
DETERMINISTIC	53.995188 1.2665915 36.361801 58.371303 16.890454
ACTUAL	53.995238 1.2666667 36.361905 58.371429 16.890476 201.76190
	Y(1) = C Y(2) = I Y(3) = W Y(4) = Y Y(5) = P Y(6) = K

ONE-STEP SIMULATION

REGRESSION OF ACTUAL ON SIMULATED VALUES

	T.VALUE	.47237580 48647550	35738709D-01 12245664	.50940570	.55001453 57474736	.57099976	,10129298 -,10529582
STIC	STD.ERROR	3.8091622 .69972483D-01	.36042201	2.3448459 .63532485D-01	4.3762836 .73730784D-01	1.9414179	7.5659629 .37457449D-01
STOCHASTIC	EST. COEFF.	1,7993561	-,12881017D-01	1.1944779	2,4070196 .95762343	1,1085492	.76637896 .99605589
	T.VALUE	,25010429 -,25190291	.54595599D-02 14130582D-01	.37139884 37649348	.32062044 ~.32545210	.43760691 -,44883251	.44564594D-01 44597715D-01
STIC	STD. ERROR	3.7888479 .69665410D-01	,34963988 .10245440	2,2911596 ,62149880D-01	4.3532177 .73464275D-01	1,9539421	7.3670170 .36477961D-01
DETERMINISTIC	EST. COEFF.	1)=C ,94760713 ,98245108	2)=I .19088799D-02 .99855226	3)=W1 .85093402 .97660098	4)=Y 1.3957306 .97609090	5)=P .85505855 .94937751	6)=K .32830813 .99837317
		VARIABLE Y(B0 B1	VARIABLE Y(B0 B1	VARIABLE Y(B0 B1	VARIABLE Y(B0 B1	VARIABLE Y(B0 B1	VARIABLE Y(B0 B1

PAGE 43

ONE-STEP SIMULATION

REGRESSION OF ACTUAL ON SIMULATED VALUES (FIRST RELATIVE DIFFERENCES)

	T.VALUE	-2.0861937	-2.5862947	-1.4650083	-1.6080881	-1.7161138	-1.9081250
STOCHASTIC	STD.ERROR	.16924604	.29588722	.16770306	.18324767	.23897845	.10951699
ST	EST.COEFF.	64691997	.23474844	.75431362	.70532160	.58988579	.79102789
	T.VALUE	-2.0701260	-3,2333861	-1,4811496	-1.5592399	-1,6417640	-1.8221310
ISTIC	STD.ERROR	.16607602	.25718712	.16385796	.18130533	.24081597	.10770210
DETERMINISTIC	EST. COEFF.	1)=C .65620172	2)=I .16841473	3)=W1 .75730186	4)=Y ,71730150	5)≃P .60463702	6)=K .80375267
		VARIABLE Y(1)=C B1 .6	VARIABLE Y(2)=I B1	VARIABLE Y(3)=W1 B1 .75	VARIABLE Y(4)=Y B1	VARIABLE Y(5)≃P B1	VARIABLE Y(6)=K B1

ONE-STEP SIMULATION

_	
r/	
U	J
U	2
ū	2
[i	i
_	3
ć	
C)
\vdash	٠
u	ว
H	í
•	1
٤	4
125	Ξ
Ŀ	-
-	ì
5	1
9	
5	2
5	1
<u>.</u>	1
<u>ر</u>	1
5	1
C C	7
<u>ر</u>	7
C 4	2
C 4	2
C C	2
C 4	2

RMSE

STOCHASTIC	2,0289190 1,4561566 1,7080342 3,3642786 1,9255740
DETERMINISTIC	1.9805146 1.4151960 1.6506906 3.2762284 1.9038659
STOCHASTIC	.37290285D-01 .39456588 .46314882D-01 .56728484D-01 .11075850
DETERMINISTIC	.36400641D-01 .38346704 .44759960D-01 .55243781D-01 .10950986
	Y(1) $\pm C$ Y(2) $\mp I$ Y(3) $\pm W1$ Y(4) $\pm Y$ X(5) $\pm P$ Y(6) $\pm K$

ONE-STEP SIMULATION

MAPE

DETERMINISTIC	

STOCHASTIC

3.0958798 4.0005606 4.8549657 10.489180	
3.0414699 3.8317069 4.7593991 10.737764 .53516554	
Y(1)=C Y(3)=W1 Y(4)=Y Y(5)=P	

ONE-STEP SIMULATION

THEIL INEQUALITY COEFFICIENTS

STOC2	.97189404 .79368788 .67410257 .72741353 .69502510
DET2	.95635784 .85425125 .66535526 .71598868 .68817005
STOC1	.83354043 1.1439815 .73417706 .79897241 .93517634
DET1	.82021588 1.2312745 .72465021 .78642365 .92595269 .54665112
	$X(1) \Leftarrow C$ X(2) = I X(3) = W1 X(4) = Y X(5) = P X(6) = K