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Abstract

We discuss the Heston [Heston-1993] model with stochastic interest rates driven
by Hull-White [Hull,White-1996] (HW) or Cox-Ingersoll-Ross [Cox, et al.-1985] (CIR)
processes. Two projection techniques to derive affine approximations of the original hybrid
models are presented. In these approximations we can prescibe a non-zero correlation
structure between all underlying processes. The affine approximate models admit pricing
basic derivative products by Fourier techniques [Carr,Madan-1999; Fang,Oosterlee-2008],
and can therefore be used for fast calibration of the hybrid model.

Key words: Heston-Hull-White; Heston-Cox-Ingersoll-Ross; equity-interest rate hybrid
products; stochastic volatility; affine jump diffusion processes.

1 Introduction

Modelling derivative products in Finance usually starts with the specification of a system of
Stochastic Differential Equations (SDEs), that correspond to state variables like stock, interest
rate and volatility. By correlating the SDEs from the different asset classes one can define
so-called hybrid models, and use them for pricing multi-asset derivatives. Even if each of these
SDEs yields a closed form solution, a non-zero correlation structure between the processes may
cause difficulties for modelling and product pricing. Typically, a closed form solution of the
hybrid models is not known, and numerical approximation by means of Monte Carlo (MC)
simulation or discretization of the corresponding Partial Differential Equations (PDEs) has
to be employed for model evaluation and derivative pricing. The speed of pricing European
products is however crucial, especially for the calibration. Several theoretically attractive SDE
models, that cannot fulfil the speed requirements, are not used in practice.

The aim of this paper is to define hybrid SDE models that fit in the class of affine diffusion
processes (AD), as in Duffie, Pan and Singleton [Duffie, et al.-2000]. For processes within this
class a closed form solution of the characteristic function exists. Suppose we have given a
system of SDEs, i.e.,

dX(t) = µ(X(t))dt+ σ(X(t))dW(t). (1.1)

This system (1.1) is said to be of the affine form if:

µ(X(t)) = a0 + a1X(t), for any (a0, a1) ∈ Rn × Rn×n, (1.2)

σ(X(t))σ(X(t))T = (c0)ij + (c1)
T
ijX(t), for arbitrary (c0, c1) ∈ Rn×n × Rn×n×n, (1.3)

r(X(t)) = r0 + rT1 X(t), for (r0, r1) ∈ R × Rn, (1.4)

∗Corresponding author. E-mail address: L.A.Grzelak@tudelft.nl.
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for i, j = 1, . . . , n, with r(X(t)) being an interest rate component. Then, the discounted
characteristic function (ChF) is of the following form [Duffie, et al.-2000]:

φ(u,X(t), t, T ) = EQ

(
exp

(
−
∫ T

t

r(s)ds+ iuTX(T )

)
∣∣Ft

)
= eA(u,τ)+B

T(u,τ)X(t),

where the expectation is taken under the risk-neutral measure, Q. For a time lag, τ := T − t,
the coefficients A(u, τ) and BT(u, τ) have to satisfy the following complex-valued ordinary
differential equations (ODEs):





d

dτ
B(u, τ) = −r1 + aT

1 B+
1

2
BTc1B,

d

dτ
A(u, τ) = −r0 + BTa0+

1

2
BTc0B,

(1.5)

with ai, ci, ri, i = 0, 1, as in (1.2), (1.3) and (1.4).
In this article we focus our attention specifically on a hybrid model which combines

the equity and interest rate asset classes. Brigo and Mercurio [Brigo,Mercurio-2007]
have shown that the assumption of constant interest rates in the classical Black-Scholes
model [Black,Scholes-1973] can be generalized, and by including the stochastic interest rate
process of Hull and White [Hull,White-1996], one is still able to obtain a closed form
solution for European-style option prices. Originally, the Black-Scholes-Hull-White model
in [Brigo,Mercurio-2007] was not dedicated to pricing hybrid products, but to increasing the
accuracy for long-maturity options. The model is, however, not able to describe any smile and
skew shapes present in the equity markets.

In [Zhu-2000] a hybrid model was presented which could provide a skew pattern for the
equity and included a stochastic (but uncorrelated) interest rate process. Generalizations were
presented in [Giese-2006] and [Andreasen-2006], where the Heston [Heston-1993] stochastic
volatility model was used, and an indirectly correlated interest rate process. Some form of
correlation was indirectly modeled by including additional terms in the SDEs (this approach
is discussed in some detail in Section 3.1.1).

In [Grzelak, et al.-2009; vanHaastrecht, et al.-2009] the Heston stochastic volatility model
was replaced by the Schöbel-Zhu [Schöbel,Zhu-1999] model, while the interest rate was still
driven by a Hull-White process (SZHW model). In this model a full matrix of correlations can
be directly imposed on the driving Brownian motions. The model is well-defined under the class
of AD processes, but since the SZHW model is based on a Vašiček-type process [Vašiček-1977]
for the stochastic volatility, the volatilities can become negative.

A different approach to modelling equity-interest rate hybrids was presented by Benhamou
et al. [Benhamou, et al.-2008], extending the local volatility framework of Dupire [Dupire-1994]
and Derman, Kani [Derman,Kani-1998] and incorporating stochastic interest rates.

Here, we investigate the Heston-Hull-White, and the Heston-Cox-Ingersoll-Ross hybrid
models and propose approximations so that we can obtain their characteristic functions. The
framework presented is relatively easy to understand and implement. It is inspired by the
techniques in [Giese-2006; Andersen-2008].

Our approximations do not require several preliminary calculations of expectations like in
the case of Markovian projection methods [Antonov-2007; Antonov, et al.-2008]. The resulting
option pricing method benefits greatly from the speed of characteristic function evaluations.

The interest rate models studied here cannot generate implied volatility interest rate smiles
or skews. They can therefore mainly be used for long-term equity options, and for ‘not too
complicated’ equity-interest rates hybrid products. As described in [Hunter-2005], for accurate
modelling of hybrid derivatives it is necessary to be able to describe a non-zero correlation
between equity and interest rate. This is possible in the approximations presented here.

The paper is organized as follows. In Section 2 we discuss the full-scale Heston hybrid
models with stochastic interest rate processes. Section 3 presents a deterministic approximation
of the Heston-Hull-White hybrid model, together with the corresponding characteristic
function, and Section 4 gives the characteristic function based on another, stochastic,
approximation of that hybrid model. In Section 5 we deal with the Heston-Cox-Ingersoll-
Ross model. In Section 6 the calibration based on the approximations of the full-scale hybrid
models is applied. Section 7 concludes. Details of proofs and tests are in appendices, where, in
particular, in Appendix C we compare the performance of the approximations developed with
the Markovian projection method studied in [Antonov-2007; Antonov, et al.-2008].
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2 Heston Hybrid Models with Stochastic Interest Rate

With state vector X(t) = [S(t), v(t)]T, under the risk-neutral pricing measure, the Heston
stochastic volatility model [Heston-1993], which is our point-of-departure, is specified by the
following system of SDEs:

{
dS(t)/S(t) = rdt+

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

(2.1)

with r > 0 a constant interest rate, correlation dWx(t)dWv(t) = ρx,vdt, and |ρx,v| < 1. The
variance process, v(t), of the stock S(t) is a mean reverting square root process, in which κ > 0
determines the speed of adjustment of the volatility towards its theoretical mean, v̄ > 0, and
γ > 0 is the second-order volatility, i.e., the volatility of the volatility.

As already indicated in [Heston-1993], the model given in (2.1) is not in the class of affine
processes, whereas under the log transform for the stock, x(t) = logS(t), it is. Then, the
discounted ChF is given by:

φH(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)v(t)) , (2.2)

where the functions A(u, τ), B(u, τ) and C(u, τ) are known in closed form (see [Heston-1993]).
The ChF is explicit, but also its inverse has to be found for pricing purposes. Because

of the form of the ChF, we cannot get its inverse analytically and a numerical method for
integration has to be used, see, for example, [Carr,Madan-1999; Fang,Oosterlee-2008; Lee-2004;
Lewis-2001] for Fourier methods.

2.1 Full-Scale Hybrid Models

A constant interest rate, r, may be insufficient for pricing interest rate sensitive products.
Therefore, we extend our state vector with an additional stochastic quantity, i.e.: X(t) =
[S(t), v(t), r(t)]T. This model corresponds to a hybrid stochastic volatility equity model with a
stochastic interest rate process, r(t). In particular, we add to the Heston model the Hull-White
(HW) interest rate [Hull,White-1996], or the square root Cox-Ingersoll-Ross [Cox, et al.-1985]
(CIR) process. The extended model can be presented in the following way:





dS(t)/S(t) = r(t)dt+
√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ ηrp(t)dWr(t), r(0) > 0,

(2.3)

where exponent p = 0 in (2.3) represents the Heston-Hull-White (HHW) model and for p = 1
2

it becomes the Heston-Cox-Ingersoll-Ross (HCIR) model. For both models the correlations are
given by dWxdWv = ρx,vdt, dWxdWr = ρx,rdt, dWv(t)dWr(t) = ρv,rdt, and κ, γ and v̄ are as
in (2.1), λ > 0 determines the speed of mean reversion for the interest rate process; θ(t) is the
interest rate term-structure and η controls the volatility of the interest rate. We note that the
interest rate process in (2.3) for p = 1

2 is of the same form as the variance process v(t).
System (2.3) is not in the affine form, not even with x(t) = logS(t). In particular, the

symmetric instantaneous covariance matrix is given by:

σ(X(t))σ(X(t))T =



v(t) ρx,vγv(t) ρx,rηr

p(t)
√
v(t)

∗ γ2v(t) ρr,vγηr
p(t)

√
v(t)

∗ ∗ η2r2p(t)




(3×3)

. (2.4)

Setting the correlation ρr,v to zero would still not make the system affine. Matrix (2.4) is of the
linear form w.r.t. state vector [x(t) = logS(t), v(t), r(t)]T, if two correlations, ρr,v and ρx,r, are
set to zero1. Models with two correlations equal to zero are covered in [Muskulus, et al.-2007].

Since for pricing equity-interest rate products a non-zero correlation between stock and
interest rate is crucial (see, for example, [Hunter-2005] ), alternative approximations to the
Heston hybrid models need to be formulated, so that correlations can be imposed. Variants

1where we assume positive parameters

3



are discussed in the sections to follow. These approximate models are evaluated with the help
of the Cholesky decomposition of a correlation matrix.

We can decompose a given general symmetric correlation matrix, C, denoted by

C =




1 ρ1 ρ2

∗ 1 ρ3

∗ ∗ 1


 , (2.5)

as C = LLT, where L is a lower triangular matrix with strictly positive entries:

L =




1 0 0

ρ1

√
1 − ρ2

1 0

ρ2
ρ3−ρ2ρ1√

1−ρ2

1

√
1 − ρ2

2 −
(

ρ3−ρ2ρ1√
1−ρ2

1

)2


 . (2.6)

We can rewrite a system of SDEs in terms of the independent Brownian motions, dW̃(t),
with the help of the lower triangular matrix L.

Since our main objective is to derive a closed form ChF while assuming a non-zero
correlation between the equity process, S(t), and the interest rate, r(t), we first assume that
the Brownian motions for the interest rate r(t) and the variance v(t) are not correlated (the
case of a full correlation structure is discussed in detail in Appendix B).

By exchanging the order of the state variables X(t) = [S(t), v(t), r(t)]T to X∗(t) =
[r(t), v(t), S(t)]T, the HHW and HCIR models in (2.3) then have ρ1 ≡ ρr,v = 0, ρ2 ≡ ρx,r 6= 0
and ρ3 ≡ ρx,v 6= 0 in (2.5) and read:



dr(t)

dv(t)

dS(t)

S(t)


 =



λ(θ(t) − r(t))
κ(v̄ − v(t))

r(t)


dt+




ηrp(t) 0 0

0 γ
√
v(t) 0

L1

√
v(t) L2

√
v(t) L3

√
v(t)







dW̃r(t)

dW̃v(t)

dW̃x(t)


 , (2.7)

with L1 = ρx,r, L2 = ρx,v and L3 =
√

1 − ρ2
x,v − ρ2

x,r.

2.2 Reformulated Heston Hybrid Models

In the previous section we have seen that for the HHW and HCIR models with a full matrix
of correlations given in (2.3), the affinity relations [Duffie, et al.-2000] are not satisfied, so that
the ChF cannot be obtained by standard techniques.

In order to obtain a well-defined Heston hybrid model with an indirectly imposed correlation,
ρx,r, we propose the following system of SDEs:

dS(t)/S(t) = r(t)dt+
√
v(t)dWx(t) + Ω(t)rp(t)dWr(t) + ∆

√
v(t)dWv(t), S(0) > 0, (2.8)

with
dv(t) = κ(v̄ − v(t))dt+ γ

√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ ηrp(t)dWr(t), r(0) > 0,
(2.9)

where
dWx(t)dWv(t) = ρ̂x,vdt, dWx(t)dWr(t) = 0, dWv(t)dWr(t) = 0, (2.10)

where p = 0 for HHW and p = 1
2 for HCIR. We have included a function2, Ω(t), and a constant

parameter, ∆. Note that we still assume independence between the instantaneous short rate,
r(t), and the variance process v(t), i.e., ρ̂r,v = 0.

By exchanging the order of the state variables, to X∗(t) = [r(t), v(t), S(t)]T, system (2.8)
is given, in terms of the independent Brownian motions, by:




dr(t)

dv(t)

dS(t)

S(t)


 =



λ(θ(t) − r(t))
κ(v̄ − v(t))

r(t)


dt+




ηrp(t) 0 0

0 γ
√
v(t) 0

Ω(t)rp(t)
√
v(t) (ρ̂x,v + ∆)

√
v(t)

√
1 − ρ̂2

x,v







dW̃r(t)

dW̃v(t)

dW̃x(t)


 ,

(2.11)

2which under certain conditions can also be stochastic
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In the lemma below we show that the model (2.8) is equivalent to the full-scale HHW model
in (2.3), with a non-zero correlation ρx,r.

Lemma 2.1. Model (2.8) satisfies the system in (2.3) with non-zero correlation, ρx,r, for:

Ω(t) = ρx,r

√
v(t)

rp(t)
, ρ̂2

x,v = ρ2
x,v + ρ2

x,r, ∆ = ρx,v − ρ̂x,v, (2.12)

where correlation ρ̂x,v is as in model (2.8) and ρx,v as in model (2.3).

Proof. We presented the two models (2.3) and (2.8) in terms of the independent Brownian
motions, (2.7) and (2.11), respectively. By matching the appropriate coefficients in (2.7)
and (2.11), we find that the following relations should hold:





Ω(t)rp(t)S(t) = ρx,r

√
v(t)S(t),

√
1 − ρ̂2

x,v

√
v(t)S(t) =

√
1 − ρ2

x,v − ρ2
x,r

√
v(t)S(t),

(ρ̂x,v + ∆)
√
v(t)S(t) = ρx,v

√
v(t)S(t).

(2.13)

By simplifying (2.13) the proof is finished.

When including the results (2.12) directly in the main system (2.8) the affinity property
of the system would be lost. So, in order to satisfy the affinity constraints, appropriate
approximations need to be introduced.

2.3 Log-Transform

Before going into the details of the approximations of the HHW and HCIR models let
us first find the dynamics for the log-transform for the reformulated Heston hybrid models.
By applying Itô’s lemma, model (2.8) in log-equity space, x(t) = logS(t), with a constant
parameter, ∆, and a function Ω(t), is given by:

dx(t) =

[
r(t) − 1

2

(
Ω2(t)r2p(t) + v(t)

(
1 + ∆2 + 2ρ̂x,v∆

))]
dt+

√
v(t)dWx(t)

+Ω(t)rp(t)dWr(t) + ∆
√
v(t)dWv(t)

=

(
r(t) − 1

2
v(t)

)
dt+

√
v(t)dWx(t) + Ω(t)rp(t)dWr(t) + ∆

√
v(t)dWv(t),

because of (2.12).
For a given state vector X∗(t) = [r(t), v(t), x(t)]T, the symmetric instantaneous covariance

matrix (1.3) is given by:

Σ :=



η2r2p(t) 0 ηΩ(t)r2p(t)

∗ γ2v(t) γv(t) (ρ̂x,v + ∆)
∗ ∗ Ω2(t)r2p(t) + v(t)

(
1 + ∆2 + 2ρ̂x,v∆

)


 . (2.14)

As we consider two cases for parameter p = {0, 1/2}, the affinity issue appears in only one
term of matrix (2.14), namely, in element (1, 3) :

Σ(1,3) = ηΩ(t)r2p(t) = ηρx,r

√
v(t)rp(t) =

{
ηρx,r

√
v(t), for HHW,

ηρx,r

√
v(t)

√
r(t), for HCIR.

(2.15)

Although term Σ(3,3) does not seems to be of the affine form, by (2.12), it equals Σ(3,3) = v(t),
and therefore it is linear in the state variables.

Remark. We see that, in order to make either the HHW or the HCIR model affine, one
does not necessary need to approximate function Ω(t), but only the non-affine terms in the
corresponding instantaneous covariance matrix3. By approximation of the non-affine covariance

3The drifts and the interest rate are already in the affine form, presented in (1.2) and (1.4).
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term, Σ(1,3), the corresponding pricing PDE also changes. The Kolmogorov backward equation
for the log-stock price (see, for example, [Øksendal-2000]) is now given by:

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2r2p ∂

2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ Σ(1,3)

∂2φ

∂x∂r
− rφ, (2.16)

subject to terminal condition φ(u,X(T ), T, T ) = exp (iux(T )).
The derivations in Section 2.3 show that System (2.8) is nothing but a reformulation of the

original HHW system under the conditions in (2.12). It is therefore sufficient to linearize the
non-affine terms in the covariance matrix to determine an affine approximation of the full-scale
model. In the sections to follow we discuss two possible approximations for Σ(1,3).

3 Deterministic Approximation for Hybrid Models

In order to make the Heston hybrid model affine we provide a first approximation for the
expressions in (2.15) in Section 3.1. The corresponding ChF is derived in Subsection 3.2.

3.1 Deterministic Approach, the H1-HW Model

The first approach to finding an approximation for the term Σ(1,3) = ηρx,r

√
v(t)rp(t) in

matrix (2.14) is to replace it by its expectation, i.e.:

Σ(1,3) ≈ ηρx,rE

(
rp(t)

√
v(t)

)
⊥⊥
= ηρx,rE(rp(t))E(

√
v(t)), (3.1)

assuming independence between r(t) and v(t).
The approximation for Σ(1,3) in (3.1) consists of two expectations: one with respect to√
v(t) and another with respect to rp(t). E(rp(t)) = 1 for p = 0, and it is E(

√
r(t)) for

p = 1/2. Since the processes for v(t) and r(t) are then of the same type, the approximations
are analogous. By taking the expectations of the stochastic variables the model becomes of
the affine form, so that we can obtain the corresponding characteristic function.

In Lemma 3.1 the closed form expressions for the expectation and the variance of
√
v(t) (a

CIR-type process) are presented.

Lemma 3.1 (Expectation and variance for CIR-type process). For a given time t > 0 the
expectation and variance of

√
v(t), where v(t) is a CIR-type process (2.1), are given by:

E(
√
v(t)) =

√
2c(t)e−λ(t)/2

∞∑

k=0

1

k!
(λ(t)/2)

k Γ
(

1+d
2 + k

)

Γ(d
2 + k)

, (3.2)

and

Var
(√

v(t)
)

= c(t)(d+ λ(t)) − 2c(t)e−λ(t)

(
∞∑

k=0

1

k!
(λ(t)/2)

k Γ
(

1+d
2 + k

)

Γ
(

d
2 + k

)
)2

, (3.3)

where

c(t) =
1

4κ
γ2(1 − e−κt), d =

4κv̄

γ2
, λ(t) =

4κv(0)e−κt

γ2(1 − e−κt)
, (3.4)

with Γ(k) being the gamma function defined by:

Γ(k) =

∫ ∞

0

tk−1e−tdt.

Proof. By [Dufresne-2001] one can find the closed form expression for the expectation
E(
√
v(t)), which by the principle of Kummer [Kummer-1936] can be simplified.

The analytic expression for the expectation, either of
√
v(t) or

√
r(t) in (3.1) is involved

and requires rather expensive numerical operations.
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In order to find a first order approximation we can apply the so-called delta method, see
for example [Amstrup, et al.-2006; Oehlert-1992], which states that a function ϕ(X) can be
approximated by a first order Taylor expansion at E(X), for a given random variable, X, with
expectation, E(X), and variance, Var(X), assuming that for ϕ(X) its first derivative with
respect to X exists and is sufficiently smooth.

The lemma below provides details of the approximation.

Lemma 3.2. The expectation, E(
√
v(t)), with stochastic process v(t) given by Equation (2.3),

can be approximated by:

E(
√
v(t)) ≈

√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d+ λ(t))
=: Λ(t), (3.5)

with c(t), d and λ(t) given in Lemma 3.1, and κ, v̄, γ and v(0) are the parameters given
in (2.3).

We will discuss under which conditions the expression under the square-root in (3.5)
remains non-negative in Appendix A.1.

Proof. Assuming the function ϕ to be sufficiently smooth, and the first two moments of X to
exist, we obtain by first order Taylor expansion:

ϕ(X) ≈ ϕ(EX) + (X − EX)
∂ϕ

∂X
(EX). (3.6)

Since the variance of ϕ(X) can be approximated by the variance of the right-hand side of (3.6)
we have:

Var(ϕ(X)) ≈ Var

(
ϕ(EX) + (X − EX)

∂ϕ

∂X
(EX)

)

=

(
∂ϕ

∂X
(EX)

)2

VarX. (3.7)

Now, by using this result for function ϕ(v(t)) =
√
v(t), we find

Var(
√
v(t)) ≈

(
1

2

1√
E(v(t))

)2

Var(v(t)) =
1

4

Var(v(t))

E(v(t))
. (3.8)

However, from the definition of the variance we also have:

Var(
√
v(t)) = E(v(t)) −

(
E(
√
v(t))

)2

. (3.9)

and by combining Equations (3.8) and (3.9) we obtain the following approximation:

E(
√
v(t)) ≈

√
E(v(t)) − 1

4

Var(v(t))

E(v(t))
. (3.10)

Since v(t) is a square root process, as in (2.8), we have

v(t) = v(0)e−κt + v̄(1 − e−κt) + γ

∫ t

0

eκ(s−t)
√
v(s)dWv(s). (3.11)

The expectation of E(v(t)) equals E(v(t)) = c(t)(d + λ(t)), and for the variance we get,
Var(v(t)) = c2(t)(2d+ 4λ(t)), with c(t), d and λ(t) given in (3.4).

Now, by substituting these expressions in (3.10), the lemma is proved.

Since Lemma 3.2 provides an explicit approximation for Σ(1,3) in (3.1) in terms of a

deterministic function for E(
√
v(t)), we are, in principle, able to derive the corresponding

ChF.

Remark. We assume that the first-order linear terms around the parameter values in the
Taylor expansion give an accurate representation. However, this may not work satisfactory for
’flat’ density functions, like those from a uniform distribution. In order to increase the accuracy,
higher order terms can be included in the expansion [Amstrup, et al.-2006]. More discussion
on the conditions for the delta method to perform well can be found in [Oehlert-1992].
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The approximation for E(
√
v(t)) in (3.5) is still non-trivial, and may cause difficulties when

deriving the corresponding characteristic functions. In order to find the coefficients of the ChF,
a routine for numerically solving the corresponding ODEs has to be incorporated. Numerical
integration, however, slows down the option pricing engine, and would make the SDE model
less attractive. As we aim to find a closed form expression for the ChF, we simplify Λ(t)
in (3.5). Expectation E(

√
v(t)) can be further approximated by a function of the following

form:
E(
√
v(t)) ≈ a+ be−ct =: Λ̃(t), (3.12)

with a, b and c constant. Appropriate values for a, b and c in (3.12) can be obtained via an

optimization problem of the form, mina,b,c ||Λ(t) − Λ̃(t)||n, where || · ||n is any nth norm.
We propose here, instead of a numerical approximation for these coefficients, a simple

analytic expression in Result 3.3:

Result 3.3. By matching functions Λ(t) and Λ̃(t) for t→ +∞, t→ 0 and t = 1, we find:

lim
t→+∞

Λ(t) =

√
v̄ − γ2

8κ
= a = lim

t→+∞
Λ̃(t),

lim
t→0

Λ(t) =
√
v(0) = a+ b = lim

t→0
Λ̃(t),

lim
t→1

Λ(t) = Λ(1) = a+ be−c = lim
t→1

Λ̃(t).

(3.13)

The values a, b and c can now be estimated by:

a =

√
v̄ − γ2

8κ
, b =

√
v(0) − a, c = − log

(
b−1(Λ(1) − a)

)
, (3.14)

where Λ(t) is given by (3.5).

The approximation given in Result 3.3 may give difficulties for v̄ < γ2/8κ in Equation (3.14)
(the expression under the square root then becomes negative). The variance process v(t) is
always positive and cannot reach zero if 2κv̄ > γ2 (the Feller condition), which, rewritten,
equals v̄ > γ2/2κ. With all the parameters assumed to be positive, this means that, if the
Feller condition is satisfied, the approximation in (3.14) is also well-defined. However, if the
Feller condition does not hold our experience shows that one can safely use the exact formula
for the expectation given in Lemma 3.1.

In order to measure the quality of approximation (3.14) to E(
√
v(t)) in (3.2), we perform a

numerical experiment (see the results in Figure 3.1). For randomly chosen sets of parameters
the approximation (3.14) resembles E(

√
v(t)) in (3.2) very well.
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proxy: κ =1.2,γ =0.1,v̄ =0.03,v(0) =0.04

exact

proxy: κ =1.2,γ =0.1,v̄ =0.02,v(0) =0.035

exact

proxy: κ =1.2,γ =0.1,v̄ =0.04,v(0) =0.01

exact

proxy: κ =0.8,γ =0.1,v̄ =0.04,v(0) =0.015

exact

proxy: κ =1,γ =0.2,v̄ =0.04,v(0) =0.02

exact

Figure 3.1: The quality of the approximation E(
√
v(t)) ≈ a + be−ct (continuous line) versus

exact solution given in Equation (3.2) (squares) for 5 random κ, γ, v̄ and v(0).

We call the resulting model the H1-HW model (Heston-Hull-White model-1).

3.1.1 The Case ∆ = 0 and Ω(t) ≡ const.

With ∆ = 0 in the Systems (2.8) and (2.11), the model resembles the one in [Giese-2006;
Andreasen-2006]. There, a constant parameter Ω̄ = Ω(t) was prescribed, and an instantaneous
correlation was indirectly imposed.
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The following lemma, however, shows that this model with ∆ = 0 resembles the full-scale
HHW and HCIR models only for correlation ρx,r = 0.

Lemma 3.4. The hybrid models (2.8) with ∆ = 0 are full-scale HHW and HCIR models,
in the sense of System (2.3), only if the instantaneous correlation between the stock and the
interest rate processes in System (2.3) equals zero, i.e., ρx,r = 0.

Proof. The proof is analogous to the proof of Lemma 2.1. We see from the equalities in (2.12)
that System (2.7) resembles System (2.11) with ∆ = 0, only if:

Ω̄ = ρx,r

√
v(t)

rp(t)
, ρ̂x,v = ρx,v, ρ̂2

x,v = ρ2
x,v + ρ2

x,r. (3.15)

The equations (3.15) only hold for ρx,r = 0. So, the models with ∆ = 0 are not full-scale HHW
and HCIR models with a non-zero correlation ρx,r.

Although the model with ∆ = 0 is not a properly defined Heston hybrid model, one can
still proceed with the analysis. Parameter Ω̄ was derived based on the following equality,
see [Giese-2006], using the definition of the instantaneous correlation,

ρ̂x,r =
E (dS(t)dr(t)) − E(dS(t))E(dr(t))√

v(t)S2(t) dt+ Ω̄2r2p(t)S2(t) dt
√
η2r2p(t) dt

=
Ω̄rp(t)√

v(t) + Ω̄2r2p(t)
. (3.16)

To deal with the affinity issue a constant approximation for Ω̄ was proposed, given by:

Ω̄ ≈ ρ̂x,r√
1 − ρ̂2

x,r

E

(
1

T

∫ T

0

v(t)dt

) 1

2 /
E

(
1

T

∫ T

0

r(t)dt

)p

. (3.17)

By choosing Ω̄ = 0 the model collapses to the well-known Heston-Hull-White model (p = 0)
or Heston-CIR model (p = 1

2 ) with zero correlation ρx,r.
In Figure 3.2 we present the behavior of the instantaneous correlation between the equity

and the interest rates. We see that for time-dependent Ω(t), as defined in Lemma 2.1, the
instantaneous correlations are stable and oscillate around the exact value, chosen to be ρx,r =
60%, whereas for the model with Ω(t) = Ω̄ a different correlation pattern is observed. For the
latter model, initially the correlation is significantly higher than 60%, and it decreases in time.
These results show that a constant Ω̄ in the model with ∆ = 0 may give an average correlation
close to the exact value, although the instantaneous correlation is not stable in time.
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Figure 3.2: The instantaneous correlations for different models. The blue line represents the
model with ∆ = 0 with constant Ω̄, the dotted-red line corresponds to the full-scale HHW
model, and the green line to the model with time-dependent Ω(t). Maturity is chosen to τ = 2
years.
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The assumptions of constant Ω̄ and ∆ = 0 also have an impact on the corresponding pricing
PDE. With the Feynman-Kac theorem the corresponding PDE is given by:

0 =
∂φ

∂t
+

[
r − 1

2

(
v + r2pΩ̄2

)] ∂φ
∂x

+ κ(v̄ − v)
∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2

(
v + r2pΩ̄2

) ∂2φ

∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2r2p ∂

2φ

∂r2
+ ρ̂x,vγv

∂2φ

∂x∂v
+ ηΩ̄r2p ∂2φ

∂x∂r
− rφ, (3.18)

with the same terminal condition as for (2.16). The assumption of constant Ω̄ and ∆ = 0 gives
rise to additional terms in the convection and diffusion parts of PDE (3.18).

By means of a numerical experiment, we check the accuracy of the model with ∆ = 0 and
determine whether the model approximates the full-scale HHW hybrid model sufficiently well.
We consider here the following set of parameters: S(0) = 1, κ = 2, v(0) = v̄ = 0.05, γ = 0.1,
λ = 1.2, r(0) = θ = 0.05, η = 0.01 and correlation ρx,v = −40%. In the simulation we choose
two different values for correlation ρx,r = {30%, 50%}.

We compare the following three models: The full-scale HHW model (with Monte Carlo
simulation), the model with ∆ = 0 and our approximation for Σ(1,3) in PDE (2.16) with the
projection according to Equation (3.1).
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Figure 3.3: The implied Black-Scholes volatilities for the full-scale Heston model and two
approximations: deterministic approach (model (2.16) with (3.1)), and model with ∆ = 0
(model (3.18)).

In Figure 3.3 the implied volatilities obtained are compared. The model with ∆ = 0 in (3.18)
does not provide a satisfactory fit to the full-scale HHW model, whereas the implied volatilities
obtained with the deterministic hybrid approximation compare very well (they essentially
overlap) with the full-scale reference results, see Figure 3.3. The volatility compensator ∆,
as defined in Lemma 2.1, cannot be neglected when approximating the full-scale HHW model,
as was stated in Lemma 3.4.

3.2 Characteristic Function for the H1-HW Model

We derive a ChF for the Heston-Hull-White hybrid model given in (2.16). For p = 0, the
non-affine term, Σ(1,3), in matrix (2.16) equals Σ(1,3) = ηρx,r

√
v(t) and will be approximated

by Σ(1,3) ≈ ηρx,rE(
√
v(t)).

We assume here that the term-structure for the interest rate θ(t) is constant, θ(t) = θ. A
generalization can be found in [Brigo,Mercurio-2007].

According to [Duffie, et al.-2000], the discounted ChF for the H1-HW model is of the
following form:

φH1-HW(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)) , (3.19)

with boundary conditions A(u, 0) = 0, B(u, 0) = iu, C(u, 0) = 0, and D(u, 0) = 0, and
τ := T − t.

The ChF for the H1-HW model can be derived in closed form, with the help of the following
lemmas:
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Lemma 3.5 (The ODEs related to the H1-HW model). The functions B(u, τ) =: B(τ),
C(u, τ) =: C(τ), D(u, τ) =: D(τ) and A(u, τ) =: A(τ) for u ∈ R and τ ≥ 0 in (3.19) for the
H1-HW model satisfy the following system of ODEs:

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) = −1 − λC(τ) +B(τ), C(u, 0) = 0,

D′(τ) = B(τ)(B(τ) − 1)/2 + (γρx,vB(τ) − κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

A′(τ) = λθC(τ) + κv̄D(τ) + η2C2(τ)/2 + ηρx,rE(
√
v(t))B(τ)C(τ), A(u, 0) = 0,(3.20)

with τ = T − t, and κ, λ, θ and η, ρx,r and ρx,v correspond to the parameters in the HHW
model (2.3).

Proof. The proof can be found in Appendix A.2.

The following lemma gives the closed form solution for the functions B(u, τ), C(u, τ),
D(u, τ) and A(u, τ) in (3.19).

Lemma 3.6 (Characteristic function for the H1-HW model). The solution of the ODE system
in Lemma 3.5 is given by:

B(u, τ) = iu, (3.21)

C(u, τ) = (iu− 1)λ−1(1 − e−λτ ), (3.22)

D(u, τ) =
1 − e−D1τ

γ2 (1 − ge−D1τ )
(κ− γρx,viu−D1) , (3.23)

A(u, τ) = λθI1(τ) + κv̄I2(τ) +
1

2
η2I3(τ) + ηρx,rI4(τ), (3.24)

with D1 =
√

(γρx,viu− κ)2 − γ2iu(iu− 1), g =
κ− γρx,viu−D1

κ− γρx,viu+D1
, κ, θ, λ, γ are as in (2.9).

The integrals I1(τ), I2(τ), and I3(τ) admit an analytic solution, and I4(τ) a semi-analytic
solution:

I1(τ) =
1

λ
(iu− 1)

(
τ +

1

λ
(e−λτ − 1)

)
,

I2(τ) =
τ

γ2
(κ− γρx,viu−D1) −

2

γ2
log

(
1 − ge−D1τ

1 − g

)
,

I3(τ) =
1

2λ3
(i+ u)2

(
3 + e−2λτ − 4e−λτ − 2λτ

)
,

I4(τ) = iu

∫ τ

0

E(
√
v(T − s))C(u, s)ds

= − 1

λ
(iu+ u2)

∫ τ

0

E(
√
v(T − s))

(
1 − e−λs

)
ds.

Proof. The proof can be found in Appendix A.3.

Note that by taking E(
√
v(T − s)) ≈ a + be−c(T−s), with a, b and c as given in (3.12) we

obtain a closed form expression:

I4(τ) = − 1

λ
(iu+ u2)

[
b

c

(
e−ct − e−cT

)
+ aτ +

a

λ

(
e−λτ − 1

)
+

b

c− λ
e−cT

(
1 − e−τ(λ−c)

)]
.

In Appendix B we present the generalization to a full matrix of non-zero correlations
between the processes, and discuss the effect of the correlations on at-the-money implied
volatilities.

4 Stochastic Approximation for Hybrid Models

In the previous section a rather straightforward way to approximate the non-affine elements
in the instantaneous covariance matrix was presented. Here, we model those elements by
stochastic processes, and call the resulting approximate model H2-HW (Heston-Hull-White
model-2).
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4.1 Stochastic Approach, the H2-HW Model

In the lemma below an approximation for finite time t and a non-zero centrality parameter
is presented.

Lemma 4.1 (Normal approximation for
√
v(t), for 0 < t < ∞). For any time, t < ∞, the

square root of v(t) in (2.8) can be approximated by

√
v(t) ≈ N

(√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d+ λ(t))
, c(t) − c(t)d

2(d+ λ(t))

)
, (4.1)

with c(t), d and λ(t) from (3.4). Moreover, for a fixed value of x in the cumulative distribution
function F√

v(t)
(x), and a fixed value for parameter d, the error is of order O(λ2(t)) for λ(t) →

0 and O(λ(t)−
1

2 ) for λ(t) → ∞.

Proof. As given in [Patnaik-1949] an accurate approximation for the non-central chi-square
distribution, χ2

d(λ(t)), can be obtained by an approximation with a centralized chi-square
distribution, i.e.:

χ2(d, λ(t)) ≈ a(t)χ2(f(t)), (4.2)

with a(t) and f(t) in (4.2) chosen so that the first two moments match, i.e.:

a(t) =
d+ 2λ(t)

d+ λ(t)
, f(t) = d+

λ(t)2

d+ 2λ(t)
. (4.3)

It was shown in [Cox, et al.-1985; Broadie,Yamamoto-2003] that, for a given time t > 0,
v(t) is distributed as c(t) times a non-central chi-squared random variable, χ2(d, λ(t)),
with d the degrees of freedom parameter and non-centrality parameter λ(t), i.e.: v(t) =
c(t)χ2 (d, λ(t)) , t > 0. By combining this with (4.2) we have:

√
v(t) ≈

√
c(t)
√
a(t)χ2(f(t)). (4.4)

Now, we use a result by Fisher [Fisher-1922] that for a given central chi-square random variable,
χ2(d), the expression

√
2χ2(d) is approximately normally distributed with mean

√
2d− 1 and

unit variance, i.e.:

Fχ2(d)(x) ≈ Φ
(√

2x−
√

2d− 1
)
, (4.5)

which implies:

√
v(t) ≈ N

(√(
f(t) − 1

2

)
c(t)a(t),

1

2
c(t)a(t)

)
. (4.6)

The order of this approximation can be found in [Johnson, et al.-1994].

As already indicated in [Patnaik-1949], the normal approximation resembles the non-central
chi-square distribution very well for either a large number of degrees of freedom, d, or a large
non-centrality λ(t). For t→ 0, the non-centrality parameter, λ(t), tends to infinity. Therefore,
accurate approximations are expected.

In the case of long maturities, the non-centrality parameter converges to 0, which may give
an inaccurate approximation. In this case, satisfactory results depend on the size of the degrees
of freedom parameter d. It is clear that d in (3.4) is directly related to the Feller condition. In
practical applications, however, 2κv̄ is often smaller than γ2. In the numerical experiments to
follow we will study the impact of not satisfying the Feller condition.

In Lemma 4.1 we have shown that
√
v(t) can be well approximated by a normally

distributed random variable. As the application of Itô’s lemma to find the dynamics for
√
v(t)

is not allowed (the square root process is not twice differentiable at the origin [Jäckel-2004]),
we construct here a stochastic process, ξ(t), so that equality in distribution holds, i.e.:

ξ(t)
d≈
√
v(t). Since a normal random variable is completely described by the first two moments,

we need to ensure that E(ξ(t)) = E(
√
v(t)) and Var(ξ(t)) = Var(

√
v(t)). For this purpose we

propose the following dynamics:

dξ(t) = µξ(t)dt+ ψξ(t)dWv(t), ξ(0) =
√
v(0), (4.7)
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with some deterministic, time-dependent functions µξ(t), and ψξ(t), determined so that the
first two moments match. By moment matching the unknown functions µξ(t) and ψξ(t) in (4.7)
read:

µξ(t) =
d

dt
E(
√
v(t)), ψξ(t) =

√
d

dt
Var(

√
v(t)). (4.8)

Using the results from Lemma 3.1, the expectation, E(
√
v(t)), and the variance, Var(

√
v(t)),

can be derived:

µξ(t) =
1

2
√

2

Γ
(

1+d
2

)
√
c(t)

(
1F̃1

(
−1

2
,
d

2
,−λ(t)

2

)
1

2
γ2e−κt

+ 1F̃1

(
1

2
,
2 + d

2
,−λ(t)

2

)
v(0)κ

1 − eκt

)
,

ψξ(t) =
(
κ(v̄ − v(0))e−κt − 2E(

√
v(t)) µξ(t)

) 1

2

. (4.9)

Here, E(
√
v(t)) and d, c(t) and λ(t) are as in (3.2) and the regularized hyper-geometric function

1F̃1(a; b; z) =: 1F1(a; b; z)/Γ(b).
The expressions for µξ(t) and ψξ(t) in (4.9) are exact. However, since those expressions are

not cheap to compute one can find suitable approximations based on the results in Lemma 3.2,
which are however not guaranteed to be well defined for all sets of parameters.

Since the approximate hybrid models are to be used for the calibration to European-style
options (with one terminal payment) we do not need path-wise equality between processes ξ(t)
and

√
v(t), but only equality in terminal distribution.

Remark. In Section 4.1 we projected
√
v(t) onto a normal process, ξ(t). As it is common with

approximations by normal processes (a non-negative random variable is projected onto another
variable ∈ R), this approximation comes with an error (as we indicated in Lemma 4.1). During
stress-testing, examples of which are presented in Section 4.3 and in Appendix C, we did not
encounter any problems with this approximation. Typically, the stochastic approximation is
somewhat more accurate than the deterministic approach (which is not based on a normal
approximation) 4.

4.2 Characteristic Function for the H2-HW Model

We now use the (stochastic) approximation for the term Σ(1,3), with the process dξ(t) given

by (4.7), and the time-dependent functions µξ(t) and ψξ(t) as in (4.9).
This approximation gives rise to an extension of the 3D space variable X(t) =

[S(t), v(t), r(t)]T to a 4D space X̃(t) = [S(t), v(t), r(t), ξ(t)]T, with the following system of
SDEs: 




dS(t)/S(t) = r(t)dt+
√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ ηdWr(t), r(0) > 0,

dξ(t) = µξ(t)dt+ ψξ(t)dWv(t), ξ(0) =
√
v(0),

(4.10)

where 



dWx(t)dWv(t) = ρx,vdt,
dWx(t)dWr(t) = ρx,rdt,
dWv(t)dWr(t) = 0,

(4.11)

with
√
v(t) ≈ ξ(t) and µξ(t),ψξ(t) are defined in (4.9).

By taking the log-transform, x(t) = logS(t), in the model above all the drift terms are
linear, and the symmetric instantaneous covariance matrix, with ξ(t) ≈

√
v(t), is given by:

Σ̃ =




v(t) γρx,vv(t) ρx,rηξ(t) ρx,vψ
ξ(t)ξ(t)

∗ γ2v(t) 0 γψξ(t)ξ(t)
∗ ∗ η2 0

∗ ∗ ∗
(
ψξ(t)

)2


 , (4.12)

4The method by Antonov from [Antonov-2007; Antonov, et al.-2008] is also not based on normal
approximations.
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which, since ψξ(t) is a deterministic time-dependent function, is now affine.
Since the system of SDEs (4.10), is affine, we derive the corresponding ChF:

φH2-HW(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t) + E(u, τ)ξ(t)) ,
(4.13)

with boundary conditions φH2-HW(u,X(T ), 0) = exp(iux(T )) and ξ(t) ≈
√
v(t).

The functions A(u, τ), B(u, τ), C(u, τ), D(u, τ) and E(u, τ) satisfy the complex-valued
ODEs given by the lemma below.

Lemma 4.2 (The ODEs related to the H2-HW model). The functions B(u, τ) =: B(τ),
C(u, τ) := C(τ), D(u, τ) =: D(τ), E(u, τ) =: E(τ) and A(u, τ) =: A(τ) for u ∈ R and
τ = T − t > 0 in (4.13), satisfy:

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) = −1 +B(τ) − λC(τ), C(u, 0) = 0,

D′(τ) = (B(τ) − 1)B(τ)/2 + (γρx,vB(τ) − κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

E′(τ) = ρx,rηB(τ)C(τ) + ψξ(t)ρx,vB(τ)E(τ) + γψξ(t)D(τ)E(τ), E(u, 0) = 0,

A′(τ) = κv̄D(τ) + λθC(τ) + µξ(t)E(τ) + η2C2(τ)/2 +
(
ψξ(t)

)2
E2(τ)/2, A(u, 0) = 0,

with µξ(t), ψξ(t) as given in (4.9).

Proof. The proof is very similar to the proof of Lemma 3.5.

Solutions to the ODEs for B(u, τ), C(u, τ) and D(u, τ) can be found in Lemma 3.6 where
the deterministic linearization was applied.

Note that the remaining two functions, E(u, τ) and A(u, τ), involve the rather complicated
functions µξ(t) and ψξ(t). We leave these equations to be solved numerically by a basic ODE
routine.

4.3 Numerical Experiment

Here we check the performance of the deterministic (Section 3.2) and the stochastic
(Section 4.2) approximations to the full-scale HHW model, in terms of differences in implied
volatilities. The HHW benchmark prices were obtained by Monte Carlo simulation, as
in [Andersen-2008].

In Table 4.1 we present the errors for Black Scholes implied volatilities, ǫ(ρx,r), for different
correlations between the stock, S(t), and the short rate, r(t), and different strikes. We show
results for a maturity of ten years, τ = 10, and for parameters that do not satisfy the Feller
condition5.

Both approximations give very similar, highly accurate, results for low correlations, ρx,r.
This is different for high values of ρx,r. The deterministic approach generates somewhat
more bias for high strikes, whereas the stochastic approach is essentially bias-free. The errors
presented in Table 4.1 depend on the size of the volatility parameter of the interest rate process,
η. For very low volatility, the two approximations provide a similar level of accuracy. As the
volatility of the short rate process increases, a higher accuracy is expected for the stochastic
approximation.

Calibration results will be presented in Section 6. The performance of the methods
developed is also presented in Appendix C, where our schemes are compared to the Markovian
projection method [Antonov, et al.-2008].

5 Heston-Cox-Ingersoll-Ross Hybrid Model

We also present the ChF for a Heston-Cox-Ingersoll-Ross hybrid model, p = 1/2 in (2.3),
which is more involved than the Hull-White based hybrid models. In the Heston-CIR model
the non-affine term is given in (2.15). Again we use two approximations to obtain the ChF. In
the first model, H1-CIR, we use the deterministic setup and for the second model, H2-CIR, we
determine the stochastic approximation.

5For short maturities, τ < 10, and for model parameters for which the Feller condition is satisfied, we did
not find any significant differences between the two approximations and the full-scale model.
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ρx,r Strike Monte Carlo Imp.vol. [%] Approx 1 Approx 2 err.1 err.2

40 37.57 (0.22) 37.64 37.79 0.22 0.15
80 27.68 (0.22) 27.67 27.71 0.03 0.04

20% 100 24.85 (0.24) 24.68 24.74 -0.11 0.07
120 23.02 (0.20) 22.70 22.80 -0.22 0.09
180 21.16 (0.22) 20.96 21.01 -0.15 0.05
40 37.76 (0.14) 37.98 37.79 0.03 -0.19
80 28.46 (0.11) 28.39 28.13 -0.33 -0.26

60% 100 26.00 (0.10) 25.44 25.35 -0.65 -0.09
120 24.43 (0.10) 23.44 23.56 -0.87 0.12
180 22.59 (0.11) 21.99 21.89 -0.70 -0.10

Table 4.1: The implied volatilities and errors for the deterministic approximation (Approx 1)
from (2.16) with approximation (3.2) and stochastic approximation (Approx 2) from Section 4.1
of the HHW model compared to the Monte Carlo simulation performed with 20T steps and
100.000 paths. The error is defined as a difference between reference implied volatilities and
the approximations. The parameters were chosen as: κ = 0.3, γ = 0.6, v(0) = v̄ = 0.05,
λ = 0.01, r(0) = θ = 0.02, η = 0.01, S(0) = 100 and the correlations ρx,v = −30% and
ρx,r ∈ {20%, 60%}. Numbers in brackets indicate standard deviations.

5.1 Characteristic Function for the H1-CIR model

The dynamics for the stock, S(t), in the Heston-CIR model read:





dS(t)/S(t) = r(t)dt+
√
v(t)dWx(t), S(0) > 0

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ η
√
r(t)dWr(t), r(0) > 0,

(5.1)

with dWx(t)dWv(t) = ρx,vdt, dWx(t)dWr(t) = ρx,rdt and dWv(t)dWr(t) = 0.
Here, we assume that the non-affine term in the pricing PDE (2.16), Σ(1,3), in (2.15) can

be approximated, as:

Σ(1,3) ≈ ηρx,rE

(√
r(t)

√
v(t)

)
⊥⊥
= ηρx,rE(

√
r(t))E(

√
v(t)). (5.2)

Since the processes involved are of the same type, the expectations in (5.2) can be determined
as presented in Section 3.1. For the log-stock, x(t) = logS(t), the ChF and the corresponding
Riccati ODEs are defined as below:

φH1-CIR(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)) , (5.3)

Lemma 5.1 (The ODEs related to the H1-CIR model). The functions B(u, τ) =: B(τ),
C(u, τ) =: C(τ), D(u, τ) =: D(τ) and A(u, τ) =: A(τ) for u ∈ R and τ > 0 in (5.3) satisfy:

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) = −1 +B(τ) − λC(τ) + η2C2(τ)/2, C(u, 0) = 0,

D′(τ) = (B(τ) − 1)B(τ)/2 + (γρx,vB(τ) − κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

A′(τ) = κv̄D(τ) + λθC(τ) + ηρx,rE(
√
v(t))E(

√
r(t))B(τ)C(τ), A(u, 0) = 0. (5.4)

with τ = T − t, E(
√
v(t)) and E(

√
r(t)) from Lemma 3.1.

Proof. The proof is very similar to the proof in Appendix A.2.

Lemma 5.2 (Solutions for the ChF coefficients of the H1-CIR model). The solutions for the
ODEs for B(u, τ), C(u, τ), D(u, τ) and A(u, τ), defined in Lemma 5.1, are given by:

B(u, τ) = iu, (5.5)

C(u, τ) =
1 − e−D1τ

η2 (1 −G1e−D1τ )
(λ−D1) , (5.6)

D(u, τ) =
1 − e−D2τ

γ2 (1 −G2e−D2τ )
(κ− γρx,viu−D2) , (5.7)
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and

A(u, τ) =

∫ τ

0

(
κv̄D(u, s) + λθC(u, s) + ρx,rηiuE(

√
v(T − s))E(

√
r(T − s))C(u, s)

)
ds,

with D1 =
√
λ2 + 2η2(1 − iu), D2 =

√
(γρx,viu− κ)

2 − (iu− 1)iuγ2,

G1 =
λ−D1

λ+D1
and G2 =

κ− γρx,viu−D2

κ− γρx,viu+D2
.

Proof. The proof is very similar to the proof in Appendix A.3.

The integral for A(u, τ) in Lemma 5.2 can only be determined analytically for constant
approximations of the two expectations involved.

5.2 Characteristic Function for the H2-CIR model

As before, we aim to find an approximation of the instantaneous covariance matrix for which
the affinity of the approximation model is obtained, but now with the stochastic approximation.

Σ(1,3) now consists of two stochastic components,
√
v(t) and

√
r(t). We approximate both

and obtain:

Σ(1,3) ≈ Σ̃(1,3) = ρx,rηξ(t)R(t), R(t) ≈
√
r(t), ξ(t) ≈

√
v(t). (5.8)

This form, based on the product of two random variables, is not affine. To linearize (5.8)
we need to specify the joint dynamics, d(

√
v(t)

√
r(t)). If we assume that the dynamics for

d(
√
v(t)) and d(

√
r(t)) can be approximated by normally distributed processes, we find, by

Itô’s lemma, that the dynamics of z(t) = ξ(t)R(t) are given by:

dz(t) =
(
µR(t)ξ(t) + µξ(t)R(t)

)
dt+ ψξ(t)R(t)dWv(t) + ψR(t)ξ(t)dWr(t). (5.9)

With three additional variables, ξ(t), R(t) and z(t), the state vector X(t), with log-
stock process x(t) = logS(t) is expanded to X(t) = [x(t), v(t), r(t), ξ(t), R(t), z(t)]T, with
the following corresponding system of SDEs:





dx(t) =

(
r(t) − 1

2
v(t)

)
dt+

√
v(t)dWx(t), x(0) = log(S(0)),

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ η
√
r(t)dWr(t), r(0) > 0,

(5.10)

with the linearizing variables ξ(t), R(t) and z(t) given by:

dξ(t) = µξ(t)dt+ ψξ(t)dWv(t), ξ(0) =
√
v(0),

dR(t) = µR(t)dt+ ψR(t)dWr(t), R(0) =
√
r(0),

dz(t) =
(
µR(t)ξ(t) + µξ(t)R(t)

)
dt+ ψξ(t)

√
r(t)dWv(t)+ ψR(t)

√
v(t)dWr(t),

(5.11)

with z(0) =
√
r(0)

√
v(0), ξ(t) ≈

√
v(t), R(t) ≈

√
r(t), z(t) ≈

√
v(t)

√
r(t) and the other

parameters as in (2.3). The symmetric instantaneous covariance matrix reads:

Σ̃∗ =




v(t) ρx,vγv(t) ρx,rηz(t) ρx,vψ
ξ(t)ξ(t) ρx,rψ

R(t)ξ(t) ρx,vψ
ξ(t)z(t) + ρx,rψ

R(t)v(t)
∗ γ2v(t) 0 ψξ(t)γξ(t) 0 γψξ(t)z(t)
∗ ∗ η2r(t) 0 ψR(t)ηR(t) ηψR(t)z(t)
∗ ∗ ∗ (ψξ(t))2 0 (ψξ(t))2R(t)
∗ ∗ ∗ ∗ (ψR(t))2 (ψR(t))2ξ(t)
∗ ∗ ∗ ∗ ∗ (ψξ(t))2r(t) + (ψR(t))2v(t)



,

(5.12)
Since ψξ(t) and ψR(t) are deterministic time-dependent functions, the approximate H2-CIR
model is now affine and we can derive the corresponding ChF:

φH2-CIR(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)

+E(u, τ)ξ(t) + F (u, τ)R(t) +G(u, τ)z(t)) ,
(5.13)

with ξ(t) =
√
v(t), R(t) =

√
r(t), z(t) =

√
v(t)

√
r(t), and the functions A(u, τ), B(u, τ),

C(u, τ), D(u, τ), E(u, τ), F (u, τ) and G(u, τ) satisfy the ODEs given by the lemma below.
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Lemma 5.3 (The ODEs related to the H2-CIR model). The functions B(u, τ) =: B(τ),
C(u, τ) =: C(τ), D(u, τ) =: D(τ), E(u, τ) =: E(τ), F (u, τ) =: F (τ), G(u, τ) =: G(τ) and
A(u, τ) =: A(τ) for u ∈ R and τ > 0 in (5.13), satisfy:

B′(τ) = 0,

C ′(τ) = −1 +B(τ) − λC(τ) + η2C2(τ)/2 + (ψξ(t))2G2(τ)/2,

F ′(τ) = µξ(t)G(τ) + ψR(t)ηC(τ)G(τ) + (ψξ(t))2E(τ)G(τ),

G′(τ) = ηρx,rB(τ)C(τ) + ρx,vψ
ξ(t)B(τ)G(τ) + γψξ(t)D(τ)G(τ) + ηψR(t)C(τ)G(τ),

A′(τ) = κv̄D(τ) + λθC(τ) + µξ(t)E(τ) + µR(t)F (τ) + (ψξ(t))2E2(τ)/2 + (ψR(τ))2F 2(τ)/2,

and

D′(τ) = B(τ) (B(τ) − 1) /2 − κD(τ) + γρx,vB(τ)D(τ) + γ2D2(τ)/2

+ρx,rψ
R(t)B(τ)G(τ) + (ψR(t))2G2(t)/2,

E′(τ) = µR(t)G(τ) + ψξ(t)ρx,vB(τ)E(τ) + γψξ(t)D(τ)E(τ)

+ρx,rψ
R(t)B(τ)F (τ) + (ψR(t))2F (τ)G(τ),

with the boundary conditions: B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0, E(u, 0) = 0, F (u, 0) = 0,
G(u, 0) = 0 and A(u, 0) = 0. Parameters µξ(t), µR(t), ψξ(t), ψR(t) are specified in (4.9), and
the remaining parameters are in (5.10).

Proof. The proof is very similar to the proof in Appendix A.2.

The system of the ODEs given in Lemma 5.3 is difficult to solve analytically. To find the
solution we have used an explicit Runge-Kutta method [Forsythe, et al.; Kahaner-1989], ode45
from the Matlab package. Numerical results are presented in the next subsection.

The extension of the H2-CIR model to the case of a full matrix of correlations is a trivial
exercise.

5.3 Numerical Experiment

We compare the performance of the approximations H1-CIR and H2-CIR with the full-scale
HCIR model. As in the case of the HHW models, we have chosen here T = 10, and the model
parameters are chosen so that the Feller condition does not hold. The results, presented in
Table 5.1, are very satisfactory. Both approximation models, H1-CIR and H2-CIR, provide an
error, ǫ(ρx,r), for a call option within the confidence bounds. For higher correlation ρx,r the
error grows, but it is still small.

ρx,r Strike Monte Carlo Imp.vol. [%] Approx 1 Approx 2 err.1 err.2

40 38.29 (0.17) 38.30 38.33 -0.01 -0.04
80 27.65 (0.15) 27.68 27.71 -0.03 -0.06

20% 100 24.12 (0.18) 24.19 24.11 -0.07 0.01
120 21.59 (0.17) 21.72 21.67 -0.13 -0.08
180 19.68 (0.18) 19.75 19.71 -0.06 -0.03
40 37.95 (0.14) 38.32 38.35 -0.37 -0.40
80 27.47 (0.12) 27.76 27.76 -0.29 -0.29

60% 100 23.97 (0.13) 24.35 24.09 -0.38 -0.13
120 21.44 (0.13) 21.98 21.74 -0.54 -0.31
180 19.40 (0.14) 19.97 19.83 -0.56 -0.43

Table 5.1: The implied volatilities and errors for a deterministic (Approx 1) from (2.16)
with approximation (3.2) and stochastic (Approx 2) approximation from Section 4.1 of the
HCIR model compared to the Monte Carlo simulation performed with 20T steps and 100.000
paths. The error is defined as a difference between the reference implied volatilities and the
approximation. The parameters were chosen as follows: κ = 0.3, γ = 0.6, v(0) = v̄ = 0.05,
λ = 0.01, r(0) = θ = 0.02, η = 0.01, S(0) = 100 and the correlations ρx,v = −30% and
ρx,r ∈ {20%, 60%}. Numbers in brackets indicate standard deviations.

We also present the time needed for obtaining the plain vanilla option prices, with the
characteristic functions H2-HW (Section 4.2) and H2-CIR (Section 5.2) based on the numerical
solution for the system of Riccati ODEs. Table 5.2 shows that, although the ODEs in
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Lemma 5.3 need to be solved numerically, the time for obtaining European option prices, by
the COS pricing method [Fang,Oosterlee-2008], is often less than 0.1 seconds. The pricing of
the options by means of the COS method, a method based on Fourier cosine series expansions,
was performed with a fixed number of 250 terms, which guaranteed highly accurate option
prices (up to machine precision).

The tolerance for the ODE solves, by Matlab’s ode45, is varied in the experiments shown
in the table.

Table 5.2: Time in seconds for pricing a call option based on an explicit Runge-Kutta method
combined with the COS method [Fang,Oosterlee-2008].

Model Accuracy Maturity

τ = 0.5 τ = 1 τ = 2 τ = 5 τ = 10

H2-HW 10−2 4.37e-2 4.80e-2 6.41e-2 7.49e-2 8.10e-2
10−5 5.32e-2 5.82e-2 8.05e-2 9.74e-2 1.21e-1

H2-CIR 10−2 7.78e-2 7.80e-2 8.38e-2 8.48e-2 8.90e-2
10−5 8.33e-2 8.97e-2 1.05e-1 1.34e-1 1.62e-1

6 Calibration of the Heston Hybrid Models

Here, we evaluate the performance of the approximations H1-HW and H2-HW for the HHW
hybrid model in a calibration setting.

Reference call option prices, based on synthetic data that is representative for the skew and
smile patterns observed in real-life applications. For all models the simulation was performed
with an a-priori defined speed of mean reversion for the variance process, κ = 0.3 (which is set
small on purpose). The calibration is here performed with constant correlation, ρx,r = 20%.
In practice, this correlation can be obtained from historical data.

The calibration procedure is performed in two stages. First, the parameters for the short
rate process are determined (independent of the equity part). In the second stage, the
calibrated r(t) is included in the Heston model, and the remaining parameters are determined.
The parameters for the interest rate part are found to be λHW = 0.501, ηHW = 0.005 and
r(0) = 0.04.

First, we also perform, as a benchmark, the calibration of the pure Heston model with
constant interest rate, see Table 6.1. SSE stands stands for the “sum-squared error”. We
calibrate the models for different maturities, τ .

Table 6.1: Calibration results for the Heston stochastic volatility model with deterministic
interest rate. The mean reversion parameter is κ = 0.3.

model γ v̄ ρx,v v(0) r SSE

Heston (τ = 0.5) 0.5992 0.0823 -58.32% 0.0407 0.04 4.9063E-4
Heston (τ = 10) 0.6019 0.0828 -48.49% 0.0411 0.04 1.2182E-4

In Table 6.2 the calibration results for the HHW approximations, H1-HW and H2-HW,
are presented. For both models a highly satisfactory fit is obtained, with a slightly better
performance of the stochastic approximation H2-HW. For ρx,r = 0.2 the calibration procedure
gives roughly the same sets of parameters for both models. When comparing the calibration
results for HHW with those for the pure Heston model, we see that the inclusion of stochastic
interest rates in the model results in a lower vol-vol parameter, γ, and a more negative
correlation, ρx,v. The lower value of parameter γ can be explained by the additional volatility
which comes from the interest rate process.

In Figure 6.1 the corresponding implied volatilities, for the full-scale model, for a short and
long maturity time (τ = 0.5 and τ = 10y) are presented. The left-hand sides of the figure
present the implied volatilities and their errors for H1-HW and H2-HW. The related implied
volatilities of the full-scale HHW model, with the parameters from H1-HW and H2-HW, are
shown in the right-hand side of the figure.

Both hybrid models perform very well. For long maturities a higher accuracy for the hybrid
models compared to the plain Heston model can be observed.
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Table 6.2: Calibration results for the H1-HW model from Section 3.2, and the H2-HW model
from Section 4.2, with κ = 0.3, and correlation ρx,r = 20%.

model τ γ v̄ ρx,v v(0) SSE

H1-HW τ = 0.5 0.5840 0.0822 -60.06% 0.0407 4.4581E-4
τ = 10 0.4921 0.0826 -61.50% 0.0418 3.2912E-4

H2-HW τ = 0.5 0.5879 0.0930 -60.10% 0.0398 4.9677E-4
τ = 10 0.4884 0.0820 -60.72% 0.0421 8.5934E-5

Figure 6.1: For τ = 0.5 and τ = 10, ρx,r = 20%, the implied Black-Scholes volatilities for
Heston hybrid models are compared to the pure Heston model and a reference implied volatility
curve. The left-hand graphs present the implied volatilities and errors for H1-HW and H2-HW.
The implied volatilities for the full-scale HHW model, with the parameters from H1-HW and
H2-HW are in the right-hand figures.

7 Concluding Remarks

In this article we have presented the extension of the Heston stochastic volatility equity
model by stochastic interest rates. We have focused our attention on two hybrid models, the
Heston-Hull-White and the Heston-Cox-Ingersoll-Ross models.

By approximations of the non-affine terms in the corresponding instantaneous covariance
matrix, we placed the approximation hybrid models in the framework of affine diffusion
processes. The approximations in the models have been validated by comparing the implied
volatilities to the full-scale hybrid models.

The approximations in the Heston-Hull-White and the Heston-Cox-Ingersoll-Ross models
lead to highly efficient determination of the corresponding characteristic functions. The more
sophisticated approximation is based on a transformation of the 3D Heston-CIR model to a
6D representation.

The deterministic and the stochastic approaches for approximating the instantaneous
covariance matrix of the hybrid model provide highly satisfactory approximations for prices
for European options.
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The approximations compare favorably, in terms of accuracy and CPU time, to the
alternative methods available.
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[Jäckel-2004] P. Jäckel, Stochastic Volatility Models: Past, Present and Future. The Best of Wilmott

I: Incorporating the Quantitative Finance Rewiev, 379-390, 2004.
[Johnson, et al.-1994] N.L. Johnson, N.L. Kotz, N. Balakrishnan, Continuous Univariate

Distributions, Volume 2, Second Edition, Wiley, New York, 1994.
[Lee-2004] R. Lee, Option Pricing by Transform Methods: Extensions, Unification, and Error Control.

J. Comp. Finance, 7(3): 51–86, 2004.
[Lewis-2001] A. Lewis, Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach,

2001.
[Muskulus, et al.-2007] M. Muskulus, K. in’t Hout,J. Bierkens, A.P.C. van der Ploeg, J. in’t

Panhuis, F. Fang, B. Janssens, C.W. Oosterlee, The ING Problem- A problem from Financial

Industry; Three papers on the Heston-Hull-White model. Proc. Math. with Industry, Utrecht,
Netherlands, 2007.

[Kahaner-1989] D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software. Prentice-Hall,
New Jersey, 1989.
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A Proofs and Details

A.1 Limits of the Approximation in Equation (3.5)

We show here for which parameters the expression under the square-root in approxima-
tion (3.5), i.e.,

E(
√
v(t)) ≈

√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d+ λ(t))
(A.1)

(repeated here for convenience) is non-negative.
Consider the following inequality, with c(t) > 0:

c(t)(λ(t) − 1) + c(t)d+
c(t)d

2(d+ λ(t))
≥ 0. (A.2)

Dividing both sides by c(t) > 0 gives:

2 (λ(t) + d) (d+ λ(t)) + d

2(d+ λ(t))
≥ 1. (A.3)

So,

2 (λ(t) + d)
2 − 2(λ(t) + d) + d ≥ 0. (A.4)

By setting y = λ(t) + d we find 2y2 − 2y + d ≥ 0. The parabola is non-negative for the
discriminant 4 − 4 · 2 · d ≤ 0, so that the expression in (A.1) is nonnegative for d ≥ 1

2 (i.e.,
2d ≥ 1). With d = 4κv̄/γ2 we can compare the inequality obtained to the Feller condition. If
the Feller condition is satisfied, the expression under the square-root is certainly well-defined.
If 8κv̄/γ2 ≥ 1 but the Feller condition is not satisfied, the approximation is also valid. If the
expression under the square-root in (A.1) gets negative, we suggest to use the approximations
in Lemma 3.1 instead.
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A.2 Proof of Lemma 3.5

Proof. For a given state vector X(t) = [x(t), r(t), v(t)]T, and φ := φ(u,X(t), t, T ) we find the
system of the ODEs satisfying the following pricing PDE:

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2 ∂

2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ ηρx,rE(

√
v(t))

∂2φ

∂x∂r
− rφ, (A.5)

subject to terminal condition φ(u,X(T ), T, T ) = exp (iux(T )).
Since the PDE in (A.5) is affine, its solution is of the following form:

φ := φ(u,X(t), t, T ) = exp (A(u, t, T ) +B(u, t, T )x(t) + C(u, t, T )r(t) +D(u, t, T )v(t)) .

By setting A := A(u, t, T ), B := B(u, t, T ), C := C(u, t, T ) and D := D(u, t, T ) we find the
following partial derivatives:

∂φ

∂t
= φ

(
∂A

∂t
+ x(t)

∂B

∂t
+ r(t)

∂C

∂t
+ v(t)

∂D

∂t

)
, (A.6)

∂φ

∂x
= Bφ,

∂2φ

∂x2
= B2φ,

∂2φ

∂x∂v
= BDφ,

∂2φ

∂x∂r
= BCφ, (A.7)

∂φ

∂r
= Cφ,

∂2φ

∂r2
= C2φ, (A.8)

∂φ

∂v
= Dφ,

∂2φ

∂v2
= D2φ. (A.9)

By substitution, PDE (A.5) becomes:

0 =
∂A

∂t
+ x

∂B

∂t
+ r

∂C

∂t
+ v

∂D

∂t
+

(
r − 1

2
v

)
B + κ(v̄ − v)D + λ(θ(t) − r)C

+
1

2
vB2 +

1

2
γ2vD2 +

1

2
η2C2 + ρx,vγvBD + ηρx,rE(

√
v(t))BC − r. (A.10)

Now, by collecting the terms for x(t), r(t) and v(t) we find the following set of ODEs:

∂B

∂t
= 0, (A.11)

∂C

∂t
= −B + λC + 1, (A.12)

∂D

∂t
=

1

2
B + κD − 1

2
γ2D2 − ρx,vγBD − 1

2
B2, (A.13)

∂A

∂t
= −κv̄D − λθC − 1

2
η2C2 − ρx,rηE(

√
v(t))BC. (A.14)

By setting τ = T − t the proof is finished.

A.3 Proof of Lemma 3.6

Obviously, due to the boundary condition, B(u, 0) = iu, we have B(u, τ) = iu. For the
second ODE, by multiplying both sides with eλτ we get:

d

dτ

(
eλτC(u, τ)

)
= (iu− 1)eλτ , (A.15)

by integrating both sides and using the boundary condition, C(u, 0) = 0, we find

C(u, τ) = (iu− 1)λ−1
(
1 − e−λτ

)
.

By setting a = − 1
2 (u2 + iu), b = γρx,viu−κ, and c = 1

2γ
2, the ODEs for D(u, τ) and I2(τ) are

given by the following Riccati-type of equation:

d

dτ
D(u, τ) = a+ bD(u, τ) + cD2(u, τ), D(u, 0) = 0, (A.16)

I2(τ) = κv̄

∫ τ

0

D(u, s)ds. (A.17)
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Equations (A.16) and (A.17) are of the same form as those in [Heston-1993]. Their solutions
are given by:

D(u, τ) =
−b−D1

2c(1 −Ge−D1τ )
(1 − e−D1τ ), (A.18)

I2(τ) =
1

2c

(
(−b−D1)τ − 2 log

(
1 −Ge−D1τ

1 −G

))
, (A.19)

with D1 =
√
b2 − 4ac, G =

−b−D1

−b+D1
.

The evaluation of the integrals I1(τ), I3(τ) and I4(τ) is straightforward. The proof is
finished by appropriate substitutions.

B Hybrid Model with Full Matrix of Correlations

Similar to the approximation of the non-affine terms in the instantaneous covariance matrix
of the Heston hybrid model presented in Section 3.1, we discuss here the inclusion of the
additional correlation, ρr,v, between the interest rate, r(t), and the stochastic variance, v(t).
We call the resulting model the Heston-Hull-White Hybrid Model-3, and denote it by H3-HW.
For the state vector X(t) = [x(t), v(t), r(t)]T the H3-HW model has the following symmetric
instantaneous covariance matrix:

Σ := σ(X(t))σ(X(t))T =



v(t) ρx,vγv(t) ρx,rη

√
v(t)

∗ γ2v(t) ρr,vγη
√
v(t)

∗ ∗ η2




(3×3)

. (B.1)

The affinity issue arises in two terms of matrix (B.1), namely, in elements (1, 3) and (2, 3):

Σ(1,3) = ρx,rη
√
v(t), Σ(2,3) = ρr,vγη

√
v(t).

For completeness, we also present the associated Kolmogorov backward equation, which is now
given by:

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2
+

1

2
γ2v

∂2φ

∂v2

+
1

2
η2 ∂

2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ Σ(1,3)

∂2φ

∂x∂r
+ Σ(2,3)

∂2φ

∂r∂v
− rφ, (B.2)

with boundary condition equal to:

φ(u,X(T ), T, T ) = exp(iux(T )).

With ρr,v = 0 the H3-HW model with a full matrix of correlations collapses to the setup
in Section 3.1.

As before, we can use the deterministic approximation Σ(1,3) ≈ ρx,rηE(
√
v(t)) and Σ(2,3) ≈

ρr,vγηE(
√
v(t)) for which Result 3.3 can be used.

The representations of the Heston-Hull-White model in (2.8) and the model in (2.3) with
ρr,v 6= 0 for p = 0 are closely related. The lemma below specifies the relation in terms of the
coefficients of the corresponding ChF.

Lemma B.1 (The ChF for the H3-HW model with a full matrix of correlations). The
discounted ChF for the H3-HW model is of the following form:

φH3-HW(u,X(t), τ) = exp
(
Â(u, τ) + B̂(u, τ)x(t) + Ĉ(u, τ)r(t) + D̂(u, τ)v(t)

)
,

with the functions Â(u, τ), B̂(u, τ), Ĉ(u, τ) and D̂(u, τ) given by:

B̂(u, τ) = B(u, τ), Ĉ(u, τ) = C(u, τ), D̂(u, τ) = D(u, τ), (B.3)

with B(u, τ) in (3.21), C(u, τ) in (3.22) and D(u, τ) given in (3.23). For Â(u, τ) we have:

Â(u, τ) = A(u, τ) + ρr,vγη

∫ τ

0

E(
√
v(T − s))Ĉ(u, s)D̂(u, s)ds, (B.4)

where A(u, τ) is given in (3.24).

The accuracy of the HHW approximations with a full matrix of correlations is discussed in
Appendix C.
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C Comparison to Markov Projection Method

In this appendix we compare our results to the Markovian projection (MP)
method [Antonov, et al.-2008]. We check the results of three different approximation
schemes: The MP method, Approx 1, i.e. the approximation with

√
v(t) ≈ E(

√
v(t))

(Section 3.1), and Approx 2, i.e. the method with
√
v(t) ≈ N (·) (Section 4.1).

In the experiment, taken directly from [Antonov-2007], we price an equity option with
continuous dividend. The model parameters for the HHW model are given by κ = 0.25,
v̄ = v(0) = 0.0625, γ = 0.625, λ = 0.05, η = 0.01 and a zero-coupon bond is given by P (0, T ) =
e−0.05T , and a continuous dividend of 2%. A full matrix of correlations, as in [Antonov-2007],
is given by:

C =




1 ρx,v ρx,r

ρx,v 1 ρv,r

ρx,r ρv,r 1


 =




100% −40% 30%
−40% 100% 15%
30% 15% 100%


 . (C.1)

The Monte Carlo reference for the implied volatilities, the corresponding standard deviations,
as well as the results for the MP method are all taken from [Antonov-2007].

In order to incorporate a continuous dividend in the equity model one can model foreign-
exchange (FX), in which the volatility of the foreign interest rates is set to zero. In such a
setup, the forward, F (t), is defined as:

F (t) = S(t)
Pf (t, T )

Pd(t, T )
, and F (0) = S(0)

e−0.02T

e−0.05T
,

where Pf (t, T ) and Pd(t, T ) are the foreign and domestic zero-coupon bonds, respectively,
paying e1 at the maturity T . By switching from the spot risk-neutral measure, Q, to the
T−forward measure, QT , discounting will be decoupled from taking the expectation, i.e.:

E

(
1

B(t)
max(S(T ) −K, 0)|F0

)
= Pd(0, T )ET (max(F (T ) −K, 0)|F0) .

Moreover, the forward, F (t), is a martingale with dynamics given by:

dF (t)/F (t) =
√
v(t)dWT

x (t) − ηBr(t, T )dWT
r (t),

dv(t) =
(
κ(v̄ − v(t)) + γρv,rηBr(t, T )

√
v(t)

)
dt+ γ

√
v(t)dWT

v (t),
(C.2)

where Br(t, T ) = 1
λ

(
e−λ(T−t) − 1

)
, and the full correlation structure given in (C.1).

Under the log-transform, x(t) = logF (t), the Kolmogorov backward partial differential
equation reads:

− ∂φ

∂t
=
(
κ(v̄ − v) + ρv,rγη

√
v
) ∂φ
∂v

+

(
1

2
v − ρx,rηBr(t, T )

√
v − 1

2
η2B2

r (t, T )

)(
∂2φ

∂x2
− ∂φ

∂x

)

+
(
ρx,vγv − ρv,rγη

√
vBr(t, T )

) ∂2φ

∂x∂v
+

1

2
γ2v

∂2φ

∂v2
, (C.3)

with the final condition φ(u,X(T ), T, T ) = eiux(T ).
We linearize PDE (C.3) in two ways: By the deterministic approach described in Section 3.1

and Appendix B), and by the stochastic approach as in Section 4.1. Both approximations result
in affine approximations of PDE (C.3).

The results of the experiments performed, presented in Table C.1, show a highly satisfactory
accuracy of the HHW approximations introduced in this paper. When comparing to the MP
method, we see that the MP method is more accurate for low strike values, whereas our proxies
perform favorably for larger strike values, especially when large maturities are considered.

In Figure C.1 the error results for T = 10 are presented. In this experiment, the stochastic
approximation, Approx 2, performed somewhat better than the deterministic approach,
Approx 1.

In the case of the deterministic approach, pricing of European options is done in a split-
second (the corresponding ChF is analytic for when the Feller condition is satisfied; one
integration step is required otherwise). In the case of the stochastic approach a numerical
routine for solving the ODEs is employed. This however can also be done highly efficiently, as
already presented in Table 5.2.
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T Strike Imp.vol [%] MP Approx 1 Approx 2 err.MP err.1 err.2

86.07 24.45 24.49 24.48 24.48 -0.04 -0.03 -0.03
92.77 22.25 22.27 22.27 22.25 -0.02 -0.02 0.00

1y 100.00 20.36 20.32 20.35 20.30 0.04 0.01 0.06
107.79 19.42 19.34 19.38 19.34 0.08 0.04 0.08
116.18 19.67 19.64 19.62 19.64 0.03 0.05 0.03
77.12 22.61 22.65 22.61 22.63 -0.04 0.00 -0.02
87.82 20.05 20.05 20.09 20.06 0.00 -0.04 -0.01

3y 100.00 17.95 17.91 18.09 17.90 0.04 -0.14 0.05
113.87 17.23 17.14 17.32 17.15 0.09 -0.09 0.08
129.67 18.02 17.92 17.93 18.00 0.10 0.09 0.02
71.50 21.89 21.94 21.90 21.95 -0.05 -0.01 -0.06
84.56 19.43 19.45 19.52 19.48 -0.02 -0.09 -0.05

5y 100.00 17.49 17.44 17.71 17.45 0.05 -0.22 0.04
118.26 16.83 16.72 17.01 16.76 0.11 -0.18 0.07
139.85 17.55 17.42 17.49 17.57 0.13 0.06 -0.02
62.23 21.55 21.61 21.57 21.68 -0.06 -0.02 -0.13
78.89 19.52 19.51 19.67 19.61 0.01 -0.15 -0.09

10y 100.00 18.01 17.91 18.31 17.97 0.10 -0.30 -0.04
126.77 17.41 17.22 17.67 17.30 0.19 -0.26 0.11
160.70 17.75 17.51 17.79 17.78 0.24 -0.04 -0.03
51.13 22.28 22.32 22.37 22.47 -0.04 -0.09 -0.19
71.50 20.91 20.86 21.14 21.03 0.05 -0.23 -0.12

20y 100.00 19.94 19.77 20.27 19.91 0.17 -0.33 0.03
139.85 19.44 19.16 19.77 19.32 0.28 -0.33 0.12
195.58 19.40 19.05 19.63 19.39 0.35 -0.23 0.01

Table C.1: The error for a deterministic (Approx 1) and stochastic approximation (Approx 2)
of the HHW model compared to the MP method. The Markovian projection and Monte Carlo
results with the corresponding standard deviations were taken from [Antonov-2007]. The error
is defined as a difference between the reference implied volatilities and the approximation.
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Figure C.1: LEFT: Implied volatilities for a maturity of 10 years. RIGHT: The error for the
different approximations. (MP stands for Markovian Projection, Approx 1 is the deterministic
approach, and Approx 2 corresponds to the approximation with

√
v(t) ≈ N (·).)
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