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Estimation procedures for ordered categories usually assume that the estimated coefficients 

of independent variables do not vary between the categories (parallel�lines assumption). This 

view neglects possible heterogeneous effects of some explaining factors. This paper describes 

the use of an autofit option for identifying variables that meet the parallel�lines assumption 

when estimating a random effects generalized ordered probit model. We combine the test 

procedure developed by Richard Williams (gologit2) with the random effects estimation 

command regoprob by Stefan Boes. 
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regoprob2 is not an official Stata command. It is a free contribution to the research commu�

nity – like a paper – and available on SSC archive. Please cite it as such.�

Pfarr, C., Schmid, A. and U. Schneider (2010), REGOPROB2: Stata module to estimate ran�

dom effects generalized ordered probit models (update), Statistical Software Components, 

Boston College Department of Economics. 
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When estimating a model for ordered categorical variables, normally, one faces an all�or�

nothing situation. On the one hand, estimation procedures for ordered categories usually 

assume that the estimated coefficients of independent variables do not vary between the cat�

egories (parallel�lines assumption, cf. Long (1997)). This view neglects possible heterogene�

ous effects of some explaining factors. For example, the traditional ordered probit model im�

plies that all variables are constraint and meet the parallel�lines assumption. On the other 

hand, a fully flexible approach (generalized ordered probit) allows all coefficients to vary 

across the categories, which again is a very strong assumption. Of course, manually setting 

only some variables as constrained would be an option. However, in most cases theory does 

not provide adequate guidance to determine those variables that do not vary. Thus, a prag�

matic and empirically robust approach is wanted. 

In contrast to cross�section data for which the procedure gologit2 (cf. Williams (2006)) pro�

vides an automated selection mechanism, up to now, such an instrument was not available 

for panel data. Regoprob2, the stata module proposed in this paper, presents a solution to 

this problem. It is a user�written program and an extension of regoprob that estimates ran�

dom effects generalized ordered probit models for ordinal dependent variables. It includes an 

optional automated fitting procedure for identifying the relevant variables that meet the par�

allel�lines assumption (cf. Pfarr, Schmid and Schneider (2010)). 

In the following we give a brief introduction to the theoretic background and illustrate the 

application and the benefits of regoprob2 using an estimation of self assessed health. 

� #
 ���$�

When analyzing ordered choice models, the presence or absence of individual heterogeneity 

is highly relevant. For instance, considering homogenous groups like “fruit flies” the assump�

tions of zero mean, homoscedasticity and homogenous thresholds are plausible without a 

doubt. However, the analysis of a population of individuals e.g. regarding their subjective 

well�being or self assessed health status might be more complicated (cf. Greene and Hensher 

(2010), p. 208). The regression equation of an ordered categorical variable such as self as�

sessed health (SAH) will include socio�economic variables like income, education, marital 

status or health related variables as well as a series of measurable and immeasurable factors 

affecting the decision to choose one of the health categories. This raises the question if a zero 

mean and homoscedastic errors can be presumed and if so, whether these assumptions can 

capture the existing heterogeneity adequately. Hence, the hypothesis of equal thresholds for 

all individuals is at least questionable (Greene and Hensher (2010)).  
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More formally, consider the observed categorical variable self assessed health with an under�

lying latent health status of the respondent y*. In this case, ordered response models are the 

basic standard estimation procedure. Following the work of Boes and Winkelmann (2006) 

and focusing on the cross�section case first, let y be the ordered categorical outcome, y ∈  {1, 

2,…, J} where J denotes the number of distinct categories. The cumulative probabilities of the 

discrete outcome are then related to a set of explanatory variables x: 

 [ ] ( )Pr | 1, ,jy j x F x j Jκ β′≤ = − = …  (1.1) 

Here, ĸj are the unknown threshold parameters and βs are the unknown coefficients.1 The 

function F usually represents a cumulative standard normal or logistic distribution, resulting 

in an ordered probit model or an ordered logit model respectively. Including the underlying 

latent variable, this results in: 

 *
1if and only if 1, ,j jy j y x u j Jκ β κ− ′= ≤ = + < = …  (1.2) 

This means that the thresholds divide the linear slope (y*) into J categories. Moreover, ob�

servable and unobservable factors influence the latent variable health. For the latter factors, a 

zero mean and a constant variance is assumed, e.g. σ2 = 1 for the ordered probit model. 

 

The probability that a respondent reports his health status to be in category j can then be 

written as: 

 [ ] ( ) ( )1Pr | j jy j x F x F xκ β κ β−′ ′= = − − −  (1.3) 

For identification purposes, it is necessary to set the constant of the regression to zero and to 

assume a constant variance. 

 

However, one obstacle to the appropriate implementation of an ordered probit model is the 

single index or parallel�lines assumption (Long (1997)). In traditional models for categorical 

dependent variables the coefficient vector β  is assumed to be the same for all categories J. 

This means that with the increase of an independent variable, the cumulated distribution 

shifts to the right or left but there is no shift in the slope of the distribution. Boes and Win�

kelmann (2006), Greene, Harris, Hollingsworth et al. (2008) and Pudney and Shields (2000) 

suggest that in the set of thresholds, individual variation is an indicator for heterogeneity that 

appears in the data and that this case is not reflected in traditional ordered probit models. 

Relaxing the assumption of equal thresholds for all individuals and allowing the indices to 

   

1 One assumption on the threshold parameters is that 1,i i jκ κ −> ∀ and that Jκ = ∞ and oκ − ∞ . 
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differ across the outcomes leads to a generalized ordered probit model. Here, the threshold 

parameters depend on the covariates: 

 ,j j jxκ κ γ′= +ɶ  (1.4) 

where γj are the influence parameters of the covariates on the thresholds. Entering the 

threshold equation (1.4) into the cumulative probability of the generalized ordered probit 

model leads to the following expression: 

 [ ] ( ) ( )Pr | 1, ,j j j jy j x F x x F x j Jκ γ β κ β′ ′ ′≤ = + − = − =ɶ ɶ …  (1.5) 

As one can see from equation (1.5), the coefficients of the covariates and the threshold coeffi�

cients cannot be identified separately when the same set of variables x is used. It follows that 

j jβ β γ= −  and that the generalized ordered probit model has one index ´ jx β  for each cate�

gory j of the outcome variable.2 This approach leads to the estimation of J�1 binary probit 

models (Williams (2006)). The first model estimates category 1 versus categories 2,…, J; the 

second model does the same regarding categories 1 and 2 versus 3,..., J. Equation J�1 then 

compares the choice between categories 1,…, J�1 versus category J. This specification allows 

for individual heterogeneity in the β�parameters that leads to heterogeneity across the cate�

gories of the dependent variable. 

 

For panel data, individual heterogeneity is accounted for using a random effects generalized 

ordered probit approach (cf. Boes (2007), p. 133). More formally, let SAH be an ordinal vari�

able which takes on the values j = 1,…, J. In contrast to the cross�section representation, the 

outcome probabilities are conditional on the individual effect iα :3 

 

( ) ( )
( ) ( ) ( )
( ) ( )

'
1

' '
1

'
1

Pr 1| ,

Pr | , 2, , 1

Pr | , 1

it it i it i

it it i it y i it y i

it it i it J i

Y x F x

Y j x F x F x j J

Y J x F x

−

−

= = − −

= = − − − − − = −

= = − − −

…

α β α

α β α β α

α β α

 (1.6) 

For the individual effects, a zero mean and a constant variance σ2 is assumed so that

² / (1 ²)ρ σ σ= + . As for the cross�section version of the generalized ordered probit model, the 

approach allows any number of the βy  (from none to all) to vary across the categories. 

Hence, using panel data allows for the inclusion of two kinds of heterogeneity. First, unob�

served individual heterogeneity is captured by a random effects specification. Second, differ�

   

2 The generalized ordered probit model nests the standard ordered probit model with the restriction 

that 
1 1... Jβ β −= = . 

3 Note that in equation (1.6) the beta coefficients differ between the categories of the dependent varia�
ble. 
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ences in the cut�points and therefore in the beta coefficients represent the observed hetero�

geneity in the reporting of the categorical variable. 

However, the problem of identifying the constrained variables remains unsolved. As pointed 

out above, theory often does not provide good guidance. As both extremes – setting all or 

none variables constrained are equally unlikely, a pragmatic and empirically robust approach 

is wanted. Building on the automated fitting procedure that Williams (2006) developed for 

gologit2 we suggest an iterative fitting process that we have implemented in regoprob2. The 

autofit option of regoprob2 triggers an iterative process used to identify the random effects 

generalized ordered probit model that best fits the data. 

At the beginning, an unconstrained model (all coefficients could vary) is estimated. Then, in a 

first step, a Wald test is applied on each variable to prove whether the coefficients differ 

across equations. The least significant variable is then set as constrained, that means to have 

equal effects over all categories. With autofit2(alpha) one can choose another significance 

level than the standard one. The parameter alpha is the desired significance level for the 

tests; alpha must be greater than 0 and less than 1. If autofit is specified without parameters, 

as in this case, the default alpha�value is .05. Note that the higher alpha is, the easier it is to 

reject the parallel lines assumption, and the less parsimonious the model will tend to be.4 

Then the model is refitted with the constraints identified so far and the step is repeated until 

only significant variables remain. Finally, as specification test, a global Wald test on the full 

model with constraints is applied to confirm the null hypothesis that the parallel�lines as�

sumption is not violated. The following example illustrates the process and describes the fit�

ting procedure in more detail.  

% ���� 
���&�
�&���
!�'��������������� ���!����������
���������������


���(
 �!��

To discuss the estimation of a random effects generalized ordered probit model for ordered 

categorical variables we use self assessed health as dependent variable. It is a 5�point categor�

ical variable with 1 indicating very bad and 5 very good self reported health status. As explan�

atory variables, a set of ten dummy variables indicating various diseases is used.5 For illustra�

tion purposes, we restrict the analysis to a 10 %�random sample of the original SAVE data6 

consisting of 1,186 individuals for the years 2006 to 2008. 

   
4 This option may be time consuming depending on the sample size and the number of explanatory 
variables. 
5 For more details regarding reporting heterogeneity in self�assessed health see Pfarr, Schneider, 
Schneider et al. (2010). 
6 The SAVE study is conducted by the Mannheim Research Institute for the Economics of Aging (MEA) 
and was started in 2001. Originally, the longitudinal study on households’ financial behavior focused 
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�!���� Variable description  

*
�
�!���
 �� !
��!�

health self assessed health, 1=very bad, 5=very good 

backache 1, if chronic backache 

blood 1, if individual suffer from hypertension 

cancer 1, if individual is diagnosed with cancer 

chol 1, if individual has a higher cholesterol level 

gastric_ulcer 1, if a gastric ulcer is diagnosed 

heart 1, if individual suffers heart diseases 

mental 1, if mental disorders 

other_disease 1, if other diseases 

pul_asthma 1, if chronic chest disease or asthma 

stroke 1, if circulatory disorders or stroke 

First, we start with a fully constraint model (random effects ordered probit) (cf. Frechette 

(2001)). As it is clear from the results presented below (see figure 1), with the exception of 

gastric_ulcer, all other disease variables show the expected significant negative sign. The 

magnitude of the partial effects varies between the variables. 

#�&����� Results of the fully constrained random effects ordered probit model. 

 

  

      

on savings and old�age provisions but also deals with aspects of health and health behavior (cf. Börsch�
Supan, Coppola, Essig et al. (2008)). 
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In contrast to the results above, a generalized ordered probit model allows different parame�

ter vectors for each outcome. This means that we aim at assessing the observable individual 

heterogeneity in the threshold parameters as well as in the mean of the regression (cf. Greene 

and Hensher (2010)). From figure 2, it is obvious that the magnitude of the coefficients as 

well as the level of significance vary between the four binary probit models. The coefficients 

of backache are significant throughout the equations and range from �0.66 to �1.52. While the 

ordered probit estimation shows a highly significant impact, the generalized model also im�

plies an increasing significant negative coefficient. This means that individuals suffering from 

chronic backache are less likely to report a better health status. The effect is lower when 

comparing SAH categories 1 vs. 2�5, and highest for categories 1�4 vs. 5. For the variable 

blood, only equations 3 and 4 show a significant impact. People with hypertension tend to 

report the extreme categories of SAH less often. In consequence, those individuals will 

choose the middle categories more often. For heart diseases, it is obvious that there exists a 

tendency to assign oneself into the lowest categories of SAH. 

If one looks at the overall significance reported by a likelihood ratio test, the generalized or�

dered probit model fails to reject the hypothesis that all coefficients have no influence. Con�

sequently, a model with full variation seems to be overspecified and therefore unsuitable for 

estimating ordered categorical models. 

#�&����� Random effects generalized ordered probit with all variables varying. 
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Thus, at this point, it has to be decided, which variables are most likely constrained and 

which should be allowed to vary. To the best knowledge of the authors, there is no good theo�

ry that would reliably predict if a certain illness presents a constrained or an unconstrained 

factor regarding SAH – a typical problem encountered in many similar cases. For this reason, 

we now apply the autofit procedure as suggested above.7  

In our example, the first step in the estimation process is a model with full variation of all ten 

explanatory variables. After estimation of this model and Wald tests on each coefficient, the 

variable mental with a P�value of 0.9437 is identified as the least significant variable after the 

first step. Next, this procedure is repeated with the variable mental set as constraint. In step 

two, gastric_ulcer meets the parallel�lines assumption. 

#�&���%� An example of the autofit procedure. 

 

   

7 For a more detailed discussion of the autofitting procedure see Williams, R. (2006) and for the theo�

retical background of estimating random effects generalized ordered probit models see Boes, S. 
(2007). 
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As can be seen in figure 3, after eight iterations (step 8), the null hypothesis of equal coeffi�

cients is rejected for the variables backache, blood and other_disease. Hence, our final model 

consists of seven constrained and three varying variables.  

Finally, as specification test, a global Wald test on the full model with constraints is applied 

that confirming the null hypothesis that the parallel regression assumption is not violated 

(see figure 4). In the example, the result of the autofit procedure with three varying and seven 

constrained variables meets the parallel�lines assumption. Thus, in contrast to the full vary�

ing model (see figure 2), this specification is preferable and reflects best the observable het�

erogeneity in the data. 

#�&���+� Specification test 

 

The final results of the procedure are displayed in figure 5. Backache is highly significant 

throughout the categories. However, the negative effect is strongest for equation 3 (categories 

1�3 vs. 4�5). Again, the variable blood shows only a significant impact for equations 3 and 4 

and other_disease is highly significant for all categories. The main difference between a mod�

el with full variation and the preferred approach are the constrained variables. For instance, 

cancer now shows a general significant impact while in figure 2, it only has a significant effect 

in equation 2. For other variables like chol, mental, pul_asthma and stroke, the difference is 

now that these variables are significantly negative for all categories. Hence, our findings sug�

gest that the model with full variation is overspecified. The results produced with the autofit 

option show that for some variables, there exists significant variation throughout the report�
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ed categories. To sum up, the three variables blood, backache and other_disease drive the 

observed heterogeneity in our dependent variable self�assessed health. 

#�&���,� Regoprob2 with autofit 
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In the empirical analysis of categorical dependent variables, the problems associated with the 

parallel�lines assumption should be taken into account. To deal with this, knowledge about 

the effects of the explanatory variables on the different categories is needed. An analysis 

based on an underlying theory, that provides information about the variables that violate the 

parallel�lines assumption would be preferable. But in most cases that is not the case. With the 

autofitting procedure implemented in regoprob2, we suggest a pragmatic and empirically 

robust approach to identify the variables that should be constrained. Furthermore, to the best 

knowledge of the authors, this is the first application of this kind for panel data. Taking into 

account that a standard ordered probit model may violate the parallel�lines assumption and 

that a full�variation model is often overspecified, in absence of theory based advice an itera�

tive procedure like autofit could be seen as the “lesser of three evils”. In our example, we 

show in how far a variable such as self�assessed health is prone to observed heterogeneity. If 

one does not account for this, any varying effects of the explanatory variables on the catego�

ries will be neglected in the standard ordered probit model. Accordingly, our regoprob2 

command combines the detection of observed heterogeneity in categorical variables with the 

inclusion of unobserved individual heterogeneity using a random effects estimator. 

�

, ��$���!��&� �����

Stefan Boes of the University of Zurich wrote regoprob and kindly gave permission to use 

parts of his code for regoprob2. See regoprob for a description of the former regoprob com�

mand. 

Richard Williams of the Notre Dame Department of Sociology wrote gologit2 and kindly gave 

permission to use parts of his code for programming goprobit.  For a more detailed descrip�

tion of gologit2 and its features, see the reference below or gologit2. 

�
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