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Abstract 

The empirical literature on production and cost functions is divided into two strands: 1) the 

neoclassical approach that concentrates on model parameters, 2) the frontier approach that 

decomposes the disturbance term to a symmetric noise term and a positively skewed 

inefficiency term. We propose a theoretical justification for the skewness of the inefficiency 

term, arguing that this skewness is the key testable hypothesis of the frontier approach. We 

propose to test the regression residuals for skewness to distinguish the two competing 

approaches. Our test builds directly upon the asymmetry of regression residuals and does not 

require any prior distributional assumptions.  
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I. Introduction  

There is a large literature on the estimation of production and cost functions. A part of this 

literature, building upon the neoclassical theory of the firm, focuses on the estimation of the 

parameters of the specified production (or cost) function by regression techniques, and 

attributes no particular importance to the disturbance term (see e.g. Nerlove, 1963; 

Christensen and Greene, 1976). The disturbance term represent the errors of specification and 

measurement. The disturbance term will also capture differences in unobserved or omitted 

variables, such as management skills or productive efficiency of firms. In general, the 

disturbances are assumed to have zero mean (or median). 

In contrast, there is another large literature that focuses on the measurement of 

inefficiencies at the level of the individual firm (originating from Koopmans, 1951; Debreu, 

1951; and Farrell, 1957), referred to here as the frontier approach. Common to this literature 

is the notion of an efficient frontier, representing the best practice technology. Firms 

operating below this frontier are deemed as inefficient, and the degree of inefficiency is 

measured by the distance to the frontier. In this approach, the disturbance term consists of two 

components (e.g., Greene, 2008a). The first component represents errors of measurement and 

specification, and is referred to as the noise term. The noise term is assumed to have some 

symmetric distribution with zero mean. The second component is supposed to represent the 

degree of inefficiency. This component is assumed to have a signed, asymmetric distribution. 

Although the inefficiency and noise terms are both seen as unobservable random variables, 

Jondrow et al. (1982) have shown that it is possible to use the observed regression residuals 

for estimating the conditional expected value of the inefficiency term, provided that the 

inefficiency and noise terms have certain postulated distributions (see Kumbhakar and Lovell, 

2000; and Greene, 2008a; for a more detailed exposition). 
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From the econometric point of view, a failure of the zero mean assumption of the 

disturbance term will generally lead to biased and inconsistent estimates (Greene, 2008b). 

Under the assumptions of the frontier approach, the disturbance term has an expected value 

that is strictly negative. Thus, estimating the neoclassical production/cost function with 

standard regression techniques when the underlying disturbance term includes a non-positive 

inefficiency term tends to underestimate the production function (or overestimate the cost 

function). This may affect the conclusions and policy recommendations drawn from the 

estimates. By contrast, wrongly assuming the frontier model when a non-positive inefficiency 

term is not present can lead to overestimation of the production function (or underestimation 

of the cost function). Obviously, the estimated efficiency scores and rankings are meaningless 

in the latter situation. In light of these observations, we argue that the specification of 

disturbance term in the production and cost function models is of such critical importance that 

it deserves to be subjected to a rigorous statistical test  

We may note at this point that the key characteristic of the frontier approach is the 

division of the disturbance term into symmetric and asymmetric components. This paper 

contributes first by providing a formalization of how differences in managerial skill may 

translate into asymmetric inefficiencies. The assumptions of the frontier approach imply that 

disturbances must be asymmetric. We then propose that testing residuals for asymmetry may 

be used to indicate whether the frontier approach is relevant.  

In the voluminous literature on the frontier approach (see e.g. Fried, Lovell, and 

Schmidt, 2008, for a review and references), statistical testing of the properties of the 

disturbance term has attracted surprisingly little attention. The parametric frontier estimation 

methods such as stochastic frontier analysis (SFA: e.g., Kumbhakar and Lovell, 2000; 

Greene, 2008a) would readily enable one to apply conventional methods of statistical 

inference for testing the significance of the inefficiency term, but such tests are conditional on 
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the strong distributional assumptions regarding both the inefficiency and the noise terms. In 

SFA, the noise term is usually assumed to be normally distributed with zero mean and a 

constant variance, while the specification of the inefficiency term varies; the most common 

specifications involve half-normal, truncated normal, exponential, and gamma distributions. 

The choice of a particular inefficiency distribution is ad hoc; see e.g. Ondrich and Ruggiero 

(2001) for a critical discussion. Therefore, the objective of this paper is to test for the presence 

of an inefficiency component in the disturbance term without imposing any parametric 

assumptions about its distribution.  

In the nonparametric literature, Afriat (1972), Hanoch and Rothschild (1972), Diewert 

and Parkan (1983), and Varian (1984) have proposed a series of axiomatic tests to check 

whether the observed sample of data is consistent with the hypotheses of profit maximization 

or cost minimization, but these tests are non-statistical in the sense that they do not allow for 

any measurement errors or other random noise. Varian (1985) has first proposed a statistical 

test for cost minimizing behavior that accounts for stochastic noise, but this test requires that 

the variance of the noise term is known a priori. Kuosmanen, Post and Scholtes (2007) have 

extended Varian’s approach to a more general Pareto-Koopmans efficiency criterion in the 

general multi-output setting, but their test similarly requires prior specification of the variance 

of disturbance term. Unfortunately, this variance parameter cannot be estimated from the 

same sample of firms for which the inefficiency hypothesis is tested. 

This paper follows up on Varian (1984) and Kuosmanen et al. (2007) by approaching 

the notion of inefficiency as an empirically testable hypothesis at the sample level. We 

propose to test for the neoclassical versus the frontier specification in a nonparametric fashion 

based on the hypothesis that the disturbance terms have a negatively skewed distribution. We 

first test the null hypothesis of a normally distributed disturbance term against the alternative 

hypothesis of a negatively skewed composite disturbance term. The powerful 1b  test 
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(Shapiro, Wilk, and Chen, 1968) of this hypothesis is based on the third central moment of the 

residual distribution. We complement the skewness test by applying the b2 test based on the 

fourth central moment of residuals to test for violations of normality due to unusual kurtosis 

or fat/thin tails, which are difficult to interpret as signs of inefficiency. We then relax the 

normality assumption, and test the null hypothesis of a symmetrically distributed disturbance 

term against the alternative hypothesis of a negatively skewed composite disturbance term. 

The 1b  test is adapted to the more general null hypothesis by applying the consistent 

bootstrap procedure devised by Pérez-Alonso (2007). In both tests, the acceptance of the null 

hypothesis is interpreted as evidence in favor of the neoclassical model, whereas its rejection 

is seen as evidence in favor of the frontier model.  

We apply the proposed skewness tests to the classic data set of U.S. electricity firms 

examined by Nerlove (1963) and Christensen and Greene (1976). This data has been used as a 

textbook example in a number of neoclassical and frontier production studies (see e.g. 

Greene, 2008a,b), and it hence qualifies as an ideal test case for examining the results of the 

skewness test. We apply four different methods for estimating the production technology, and 

apply the proposed skewness tests to the residuals obtained with each method. The application 

shows that the proposed tests can be useful for identifying the specific assumptions, model 

types and estimation methods for which the use of the frontier model is consistent with the 

data.  

The rest of the paper is organized as follows. Section 2 describes the production model 

and the related notation, terminology, and assumptions. Section 3 presents the test of 

normality against the skewed alternative. Section 4 relaxes the normality assumption, and 

presents the test of symmetry against the skewed alternative. Section 5 applies the test in a 

number of data sets reported in the literature. Section 6 contains our concluding remarks. 
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II. Neoclassical versus frontier models 

Consider the standard econometric production model of type   

ln (ln ) ,   1,...,i i iy f i nε= + =x ,    (1) 

where 
iy  represents the output of firm i, f denotes the production function that characterizes 

the technology, m

i +∈x   is the vector of inputs, and iε  denotes the disturbance term (assumed 

to be exogenous in the sense that 
1( ,..., ) 0 1,...,ε = ∀ =x xi nE i n ). Alternatively, f could be 

interpreted as the cost function, in which case iy  would be the observed total cost of firm i, 

and m

i +∈x   would be a vector of input prices and outputs. Moreover, model (1) could be 

interpreted in terms of profit or distance functions in an analogous fashion. The particular 

interpretation of the model will be immaterial for the analysis that follows. For brevity, we 

will henceforth restrict attention on the production function interpretation of model (1). 

The production function f  is referred to as the deterministic part and the disturbance 

term iε  as the stochastic part of the model.
1
 The disturbance term captures the effects of 

measurement errors, specification errors, and any other deviations from the otherwise stable 

deterministic technology. It will also capture effects of omitted variables, such as unobserved 

differences in management skill. Therefore, it must be emphasized that whereas the 

neoclassical theory of the firm postulates that rational firms operate with full efficiency, the 

empirical production models referred to above as “neoclassical” can assimilate inefficiencies 

in the disturbance terms ε , provided that these inefficiencies are symmetrically distributed. 

We elaborate to the symmetry requirement in more detail below.    

                                                 
1 Inputs x may be considered as deterministic or stochastic. At the firm level, inputs may be seen as deterministic 

decision variables specified by the management: observed input demands x are optimal choices to the firm’s 

profit maximization problem. If we aggregate across firms and/or sectors, then aggregate inputs could be treated 

as random variables. Deterministic or stochastic specification of inputs does not make any difference to the tests 

we propose. 
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The frontier models are identical to the above neoclassical model with respect to the 

deterministic part; the only difference concerns the disturbance term 
iε . The frontier models 

treat 
iε  as a composite disturbance that can be decomposed as  

  ,   1,...,i i iv u i nε = − = ,    (2) 

where 0iu ≥  is a one-sided, asymmetric inefficiency component with ( ) 0>iE u , and 
iv  is a 

symmetric noise component with ( ) 0=iE v . To disentangle inefficiency from noise, more 

detailed assumptions are necessary; we will return to the specific assumptions in the next 

sections. However, it is worth emphasizing the negative skewness of the disturbance term 
iε  

as the key testable implication of the frontier model. Note that the neoclassical model is 

obtained as a restricted special case of (2) if 0iu = . Moreover, the inefficiency term 
iu  is 

indistinguishable from 
iv  if it has a symmetric distribution. Importantly, introducing the 

asymmetric inefficiency term violates the exogeneity assumption: 

1( ,..., ) ( ) 0 1,...,ε = − < ∀ =x xi n iE E u i n . Moreover, we note that 

( ) =xi iE y ( ) ( ) ( )− <x xi i if E u f . Thus, assuming the neoclassical model when the 

disturbance term contains the inefficiency component will result in biased and inconsistent 

estimates regarding f. 

The positive skewness of the inefficiency component 
iu  can be motivated as follows.

2
 

Let us think of the inefficiency component ui as a function of unobserved management skill si. 

More specifically, the inefficiency component is a bounded function ( )=i iu u s , such that 

lim ( ) 0
→∞

=
s

u s . The upper bound of ( ) 0=u s  represents the best practice: however good the 

manager, one cannot achieve better than the best practice. It seems meaningful to assume that 

inefficiency decreases as skill increases, that is, ( ) 0′ <u s  for all s. Furthermore, achieving 

                                                 
2 We are grateful to Professor Nils Gottfries for suggesting this idea in his editorial comments. 
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higher levels of performance gets progressively more difficult, in other words, skill has 

diminishing marginal returns: ( ) 0′′ >u s  for all s. Now, suppose the distribution of 

management skill s is unimodal and symmetric (measurable skills, such as running skill or IQ 

test results, tend to follow this pattern). Thus, differences in unobserved management skill 

could be directly attributed to the standard symmetric disturbance term of the neoclassical 

model. However, if management skill is converted to inefficiency through a decreasing and 

convex function ( )u s , as assumed above, then the symmetric, unimodal distribution of s  will 

result in a right-skewed unimodal distribution of the inefficiency term iu , in line with the 

frontier model.  

The conversion of symmetric skill to right-skewed inefficiency through a convex 

inefficiency function u is illustrated by a numerical example in Figure 1. Suppose 

management skill s is a normally distributed random variable, with the density function 

graphed in the bottom-right quarter of Figure 1. The inefficiency function is assumed to take 

the form of u(s) = exp(-s), which satisfies all of the postulated properties (i.e., u is decreasing, 

concave, and has the limit zero as s approaches to infinity). The inefficiency function is 

plotted in the top-right quarter of the diagram. Now, converting the normally distributed skill 

through this inefficiency function u results as a skewed inefficiency distribution, as illustrated 

in the top-left quarter of Figure 1. The thin grey lines further illustrate the conversion by 

showing the correspondence between the lower and upper quartiles of the skill and 

inefficiency distributions. Note that the inefficiency distribution obtained in this example is 

log-normal, with the distinct right-skewed shape of the density function that closely resembles 

that of the standard half-normal inefficiency distribution typically assumed in the literature of 

frontier estimation.         

 (Figure 1 around here) 
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The question of whether skill influences performance directly, or through a convex 

inefficiency function ( )u s , need not be taken by faith: it can be tested empirically. In the 

following sections we propose some statistical test procedures for this purpose. As a 

preliminary step, we must estimate the conditional expectation ( ) ( ) ( )= −x xi i i iE y f E u  by 

some parametric or nonparametric regression technique. The parametric approach requires 

that the functional form of f is specified a priori, and the unknown parameters of f are 

estimated, e.g., by means of maximum likelihood or least squares techniques (see e.g. Greene, 

2008b). Nonparametric estimation of (1) can build upon local averaging or shape constraints. 

A prime example of local averaging is kernel regression; see Fan, Li, and Weersink (1996) for 

an application of kernel regression to frontier estimation. If one assumes that f satisfies certain 

regularity conditions (monotonicity, concavity) then one can estimate f by nonparametric least 

squares (NLS) subject to shape constraints (Hildreth 1954; Hanson and Pledger 1976; 

Groneboom et al., 2001; Kuosmanen 2008); see Kuosmanen (2006) and Kuosmanen and 

Kortelainen (2007) for applications of NLS to frontier estimation. Other than the regularity 

conditions, the NLS approach does not require any prior assumptions about the functional 

form of f or its smoothness. However, it may be sensible to impose some additional 

smoothness conditions to alleviate the curse of dimensionality.  

As a result of the regression analysis, we obtain a vector of residuals denoted by 

1( ... )ne e ′=e . The tests developed in the next sections use the residuals conditional on the 

estimated models. The residuals are the object of interest in the frontier approach. We 

conclude by emphasizing that the estimation of model (1) by regression techniques does not 

involve any loss of generality as such. Moreover, the efficiency tests to be developed in the 

next section are not limited to any particular regression technique.   

 

III. Testing normality against skewness 
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In regression analysis, normality of the disturbance term is a standard assumption that is 

frequently invoked to facilitate maximum likelihood estimation and the conventional methods 

of statistical inference. In the SFA literature, the normality of the noise component is widely 

used; virtually all cross-sectional SFA studies known to us assume a normally distributed 

noise component (one notable exception is Goldstein, 2003). Therefore, we start by 

formulating the null hypothesis as: 

H0: Disturbances ε  of model (1) are normally distributed. 

Acceptance of the null hypothesis is interpreted as evidence in favor of the neoclassical 

model. The normality assumption will be relaxed in Section 4. 

While it might seem desirable to test normality against a general non-normal alternative, 

it is well-known that narrowing the class of alternatives can substantially improve the 

statistical power of the test (see, e.g., Poitras 2006). In the present context, violations of 

normality due to non-normal kurtosis or too fat or thin tails of the residual distribution are 

difficult to interpret as signs of the presence of an inefficiency term. Therefore, we exploit the 

asymmetric structure of the inefficiency component, and specify the alternative hypothesis as 

H1: Disturbances ε  of model (1) are negatively skewed. 

As the negative sign of skewness matches with the theoretical model of inefficiency presented 

in Section 2, we interpret the rejection of H0 in favor of H1 as evidence supporting the frontier 

model.  

Few subjects in applied statistics have attracted as much attention as the tests of 

normality, and the main use of these tests concerns normality of the regression residuals. As a 

result, a number of alternative procedures are available. The statistical power of the normality 

tests has been investigated over a wide range of different distributions by means of Monte 

Carlo simulations (see e.g. D’Agostino, 1986, and Throde, 2002, for reviews). A general 

conclusion from these power studies is that the classic chi-squared and Kolmogorov-Smirnov 
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tests have poor power properties and should not be used for testing normality. The 

recommended tests include the Shapiro-Wilk W test (Shapiro and Wilk, 1965), the third 

sample moment ( 1b ) tests (Shapiro, Wilk, and Chen, 1968), the fourth sample moment (b2) 

tests (D’Agostino and Pearson, 1973), and the D’Agostino-Pearson K
2
 test that combines 

them. The W and K
2
 tests are general purpose (omnibus) tests that have good power against a 

range of non-normal distributions, while the third and fourth sample moment tests ( 1b , b2) 

are particularly good at detecting non-normal skewness and kurtosis, respectively. Given the 

particular specification of H1 above, the third moment 1b  test is our preferred choice.
3
  

  The third moment 1b  test is simple to implement. Given the central moments of the 

residual distribution, defined as 
1

( ) /
n

j

j i

i

m e e n
=

= −∑ , j=2,3, where e  denotes the mean 

1

/
n

i

i

e e n
=

=∑ , the test statistic is computed as 

3/ 2

1 3 2/( )b m m= .    (3) 

The test statistic is invariant to location and scale, so the critical values of 1b  under the null 

hypothesis can be computed for any sample size and desired level of significance by means of 

a simple Monte Carlo simulation where random pseudo-samples are drawn from the standard 

normal distribution. More specifically, we draw M random pseudo-samples of n observations 

independently from N(0,1), and compute the 1b  statistic for each pseudo-sample. Given 

                                                 
3 See Poitras (2006) for some recent evidence from Monte Carlo simulations that demonstrates the high power of 

the 
1b  test against skewed alternative hypotheses compared to the omnibus tests such as D’Agostino-Pearson 

K
2 test as well as different variants of the Jarque and Bera (1980) test. 



 12

sufficiently large M, the α  percentile of the thus obtained simulated distribution of the 
1b  

statistics can be used as the critical value of the test statistic at the significance level α .
4
  

Although the 1b  test is the most powerful known method for detecting non-normal 

skewness, it may reject the null hypothesis even if the true distribution is perfectly symmetric 

but has non-normal kurtosis (see e.g. Poitras, 2006). In contrast to skewness, fat or thin tails 

of the residual distribution are difficult to interpret as signs of inefficiency. Indeed, in the 

context of H0, non-normal kurtosis can be viewed as a sign of some data problems (e.g., 

outliers) or some sort of model misspecification. Hence, testing for non-normal kurtosis can 

provide useful supplementary information.  

The standard b2 kurtosis test, based on the fourth central moment of the residual 

distribution can be implemented similarly to the 1b  test. The test statistic is computed as  

2

2 4 2/( )b m m= .    (4) 

The critical values of the b2 statistic can be computed by the Monte Carlo method as 

described above.  

The combined use of the 1b  and b2 tests can result in four possible outcomes with the 

following interpretations: 1) the null hypothesis is maintained in both 1b  and b2 tests: this 

supports the neoclassical model. 2) the null is rejected by the 
1b  test but is maintained by 

the b2 test: this supports the frontier model. 3) both tests reject the null hypothesis: both 

neoclassical and frontier models are plausible but the evidence is inconclusive due to data 

problems or model misspecification. 4) the null is maintained by the 
1b  test but is rejected 

                                                 
4 The critical values of 1b  for certain sample sizes and significance levels have been tabulated by Pearson and 

Hartley (1966). D’Agostino (1970) has derived a simple transformation of 1b  that follows approximately 

N(0,1). With present computers it is, however, easy to compute critical values by simulation. 
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by the b2 test: the frontier model is rejected, but the neoclassical model assuming normality 

also suffers from data problems or model misspecification.  

In conclusion, the 1b  and b2 tests are easy to implement, and have proved as powerful 

methods for detecting non-normal skewness and kurtosis in a large number of Monte Carlo 

studies (see e.g. D’Agostino, 1986; Throde, 2002; Poitras, 2006; and references therein). 

Since skewness is the distinguishing feature of the presence of an asymmetric inefficiency 

component in the disturbance term, a test directed at skewness will be more powerful than any 

alternative omnibus test against an unspecified non-normal alternative. However, the null 

hypothesis of a normally distributed disturbance term can be questioned. If the true 

distribution of disturbances is symmetric but non-normal, the wrongly imposed normality 

assumption can yield misleading results. In the next section we relax the normality 

assumption and devise a fully nonparametric test based on the symmetry of the disturbance 

term under the null hypothesis. 

 

IV. Testing symmetry against skewness 

Normality of the disturbance term is not an innocuous assumption. In economic applications, 

distributions of regression residuals often exhibit fat tails that violate normality, but this 

cannot be interpreted as evidence in favor of the frontier model. Therefore, in this section we 

consider the neoclassical model from a broader perspective, relaxing the strong normality 

assumption. 

Specifically, we test the following hypotheses: 

H0’: Disturbances ε  of model (1) are symmetrically distributed. 

H1’: Disturbances ε  of model (1) are negatively skewed. 

Acceptance of the null hypothesis is again interpreted as evidence in favor of the neoclassical 

model, while its rejection is viewed as evidence in favor of the frontier model. However, it 
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should be emphasized that H0 considered in Section 3 represents a more restrictive 

interpretation of the neoclassical model than H0’. While the test of Section 3 is based on the 

null hypothesis of normally distributed disturbances, the test in this section is based on the 

null hypothesis of symmetrically distributed disturbances.  These are two different hypotheses 

that should not be confused. We emphasize that acceptance of the null hypothesis, like in 

section 3, does not imply that firms are fully efficient. It merely implies that disturbances do 

(probably) not contain an asymmetric component, which is the distinguishing feature of the 

frontier approach. 

Testing symmetry of the distribution of residuals has attracted a lot of attention in 

econometrics and statistics in the recent decades (e.g. Godfrey and Orme, 1991; Ahmad and 

Li, 1997; Bai and Ng, 2001; and Hyndman and Yao, 2002). The test by Godfrey and Orme 

(1991) is based on the asymptotic distributions of the central moments. However, the higher 

central moments are known to converge slowly, which may result in low power of the 

asymptotic tests even in moderately sized samples, e.g., n = 100 (see Poitras, 2006, for 

discussion). Therefore, we resort to the 1b  test described in Section 3 and extend its scope 

to the non-normal case by applying the bootstrap approach proposed by Pérez-Alonso (2007).     

The challenge of applying the 1b  test to the more general, nonparametric H0’ arises 

from the fact that the true distribution under the null remains unspecified. Pérez-Alonso 

(2007) has devised a nonparametric bootstrap approach, which can be adapted to our 

purposes. The main idea is to find a bootstrap distribution that mimics the actual distribution 

of disturbances under the null hypothesis. Pérez-Alonso proposes a simple resampling scheme 

where the bootstrap data-generating process respects the null hypothesis and mimics the 

observed empirical distribution as closely as possible. She also proves the consistency of the 

proposed bootstrap procedure.  

Deleted: approach 

Deleted: ;

Deleted: can distinguish 

inefficiency from noise provided 

that inefficiency is non-normal, 

the test of this section additionally 

requires that inefficiency is non-

symmetric.

Deleted: t

Deleted:  
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Pérez-Alonso’s (2007) bootstrap procedure can be adapted for our purposes as follows. 

We compute the critical values of the 1b  statistic under the H0’ of symmetry in five stages.   

Stage 1: Construct re-centered versions of the residuals i ie e e= −% .  

Stage 2: Assign random signs to the centered residuals ie%  according to independent 

realizations of a Rademacher random variable is , independent of 
ie% , taking values -1 and +1 

with equal probability of 1/2 each. As a result, we obtain a set of symmetrized residuals 

{ }1 1,..., n ns e s e% % . 

Stage 3: Apply a random number generator to independently draw integers 

{ }1,..., n

ni i +∈ , where { }Pr( ) 1/  1,...,ii z n z n= = ∀ ∈ . Use the thus obtained sequence of 

integers to select elements of { }1 1,..., n ns e s e% %  to the bootstrap sample { }1, ..., nb b . Note that we 

sample with replacement to allow any residual 
i is e%  to appear more than once in the sample. 

Stage 4:  Compute the 
1b  statistic (5) using the bootstrap sample { }1,..., nb b . 

Stage 5: Repeat Stages 2-4 M times to construct a bootstrap distribution of the 
1b  

statistic under the null hypothesis of symmetry. The 1-α  percentile of the thus obtained 

distribution can be used as the critical value of the test statistic at the significance level α .   

Note that the only difference between the proposed 1b  test of symmetry and the 

classic 
1b  test of normality concerns the true distribution under the null, which is used for 

computing the critical values. In the symmetry test we sample from the symmetrized residual 

distribution, whereas in the normality test we sample from the standard normal density. The 

power of the bootstrap method is evident from the Monte Carlo simulations reported by 

Pérez-Alonso (2007).  

 

V. Application 
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To illustrate how the proposed tests work in practice, we re-examined the classic production 

data of the U.S. electricity companies from years 1955 and 1970, reported by Nerlove (1963) 

and Christensen and Greene (1976), respectively.
5
 The data sets include one output 

(electricity) and three inputs (labor, capital, and fuel). Both volume and cost data are 

available, which facilitates the estimation of both production and cost functions. The sample 

sizes are 145 and 123 in years 1955 and 1970, respectively. The sample sizes and 

dimensionality of these data are well representative of empirical studies reported in the 

literature. These particular data are widely used as a textbook example case (Greene, 2008b), 

and they have been re-examined by frontier methods (see e.g. Greene, 2008a). Hence, these 

data provide an ideal test case for the proposed tests.  

We estimated both production and cost function models for years 1955 and 1970. All 

four models were estimated by four different regression methods: 1) OLS with Cobb-Douglas 

functional form, 2) OLS with the flexible translog functional form, 3) kernel regression, and 

4) nonparametric least squares (NLS) subject to monotonicity and concavity constraints.
6
 

Given the residuals, we tested for the skewness of the disturbance terms against the 

symmetric and normal alternatives. We also tested for the non-normal kurtosis. This results in 

48 different tests in total. The values of the test statistics and the p-values (i.e., the probability 

of obtaining the observed value of the test statistic or lower when the null hypothesis is true) 

are summarized in Tables 1 and 2. Table 1 relates to the production function and Table 2 to 

the cost function estimations, respectively.  

(Table 1 around here) 

(Table 2 around here) 

                                                 
5 The data are available online at: http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm. 
6 In the kernel method, the Gaussian kernel function was used. The bandwidth parameters were selected by 

cross-validation to minimize the mean squared error.  
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   The first columns of Tables 1 and 2 report the 
1b  test statistics. According to the 

inefficiency hypothesis, we should expect negative skewness in the case of the production 

function, and positive skewness in the case of the cost function. All eight production function 

models have the expected sign, but in the case of the cost function, four out of eight models 

have the unexpected (negative) sign. The production function models can only capture 

technical inefficiencies (i.e., output falling short of its maximum value), whereas the cost 

function model can also identify allocative inefficiencies (i.e., excess costs due to the wrong 

input mix).  

Two possible interpretations of the neoclassical hypothesis have been considered: in 

Section 3 we interpreted normality of the residuals as evidence in favor of the neoclassical 

model, in Section 4 we considered symmetry of residuals as sufficient evidence in its favor. 

The conclusions drawn from the tests depend on how much we require from the neoclassical 

hypothesis. 

If normality of the disturbance term is viewed as an integral part of the neoclassical 

model, then we recommend the combined use of the 
1b  and b2 tests, as discussed in Section 

3. The relevant p-values of these normality tests are reported in Tables 1 and 2 in the second 

and third columns from the right. From the b2 test we see that the normality is rejected due to 

excess kurtosis in all 16 cases considered. Regarding the 1b  test, normality is rejected in 

favor of skewness, in the half of the cases (five production functions and three cost functions). 

In those cases we conclude that the frontier model is plausible, but the evidence is 

inconclusive due to data problems or model misspecification. In those eight cases where the 

1b  test maintains normality, the evidence does not support either the frontier or the 

neoclassical models. Neither model explains the fat tails of the residual distribution, observed 
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across all model types and specifications. Since the fat tails occur both in parametric and 

nonparametric models, we suspect it is an inherent feature of the data.  

If we interpret the neoclassical model more broadly and accept symmetry of the 

disturbances as its distinguishing feature compared to the frontier model, then the symmetry 

test described in Section 4 is the relevant test to consider. The same 1b  test statistic is used 

as in the case of the normality test, but the p-values of the symmetry tests should be read from 

the right-most columns of Tables 1 and 2. The results of the symmetry test broadly support 

the neoclassical view; the null hypothesis of symmetry is only rejected in two cases 

(production functions estimated by the kernel regression). For most model types and 

estimation methods, the evidence does not support the application of the frontier model to 

these specific data.  

In conclusion, the most robust finding in our tests was the rejection of normality due to 

excess kurtosis. Proponents of the frontier approach might argue that non-normal kurtosis is 

just an artifact of an inefficiency term that is present in the disturbances, but the fact that 

excess kurtosis occurs even when skewness is insignificant or has an unexpected sign speaks 

against this interpretation. Neither of the competing paradigms can explain the fat tails of the 

distribution. To our knowledge, the problem of fat tails has gone unnoticed in the previous 

studies that have analyzed these data. This should be taken into account in the statistical 

inferences; the conventional methods of statistical inference can yield misleading results if the 

disturbances are non-normal.  

 

VI. Concluding remarks 

We have shown that the question of neoclassical versus frontier production model is 

amenable to statistical testing. We first outlined a new theoretical model where a symmetric 

unimodal skill distribution is transformed to a positively skewed inefficiency distribution 
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through a decreasing and convex inefficiency function. Using the resulting negative skewness 

of the composite disturbance term as the key testable implication of the frontier model, we 

formulate pairs of hypotheses that are empirically testable at the sample level. Thus, it is no 

longer necessary to choose a neoclassical or frontier model based on faith: it is ultimately an 

empirical question.  

 We performed the proposed tests to the classic data sets of the U.S. electricity firms 

from years 1955 and 1970, using a variety of different regression methods to estimate the 

production technology. Our analysis pinpoints the specific assumptions, model types and 

estimation methods for which the use of the frontier model can be justified. For most models 

considered, the empirical evidence supports the neoclassical model when symmetry of the 

disturbance term is broadly interpreted as its distinguishing feature. However, the most robust 

finding of our tests was the identification of non-normal fat tails in the residuals, which might 

affect the skewness tests as well. Fat tails occurred in all different parametric and 

nonparametric production and cost function models considered, which strongly suggests that 

it is a real feature of the data.  

We consider it relevant to perform the proposed skewness and kurtosis tests in empirical 

studies of production and cost functions. Whatever the preferred paradigm, the test results 

provide an empirical basis for choosing between the conventional and the frontier 

specification of production/cost functions. We hope that evidence will be accumulated to 

enable a more informed assessment of the relative merits of the two competing paradigms 

prevailing in the literature.  
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Figure 1: Illustration of how the decreasing convex inefficiency function u(s) = exp(-s) 

converts a symmetric skill distribution into a positively skewed inefficiency distribution.  
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Table 1: Results of the skewness and kurtosis tests; production function 

 Production function test statistics p-values 

year regression method 1b  b2 
1b  

normality

2b  

normality

1b  

symmetry 

1955 OLS Cobb-Douglas -0.209 8.287 0.255 0.000 0.448 

 OLS Translog -0.530 7.630 0.044 0.000 0.339 

 Kernel  -2.356 8.052 0.000 0.000 0.007 

 Nonparametric least squares -0.263 9.194 0.203 0.000 0.437 

       

1970 OLS Cobb-Douglas -1.256 8.127 0.000 0.000 0.195 

 OLS Translog -0.092 5.509 0.395 0.000 0.457 

 Kernel  -3.835 18.511 0.000 0.000 0.047 

 Nonparametric least squares -2.045 10.029 0.000 0.000 0.089 
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Table 2: Results of the skewness and kurtosis tests; cost function 

 Cost function test statistics p-values 

year regression method 1b  b2 
1b  

normality

2b  

normality

1b  

symmetry 

1955 OLS Cobb-Douglas 1.302 7.614 0.000 0.000 0.153 

 OLS Translog 0.289 6.944 0.187 0.000 0.413 

 Kernel  -2.685 11.925 1.000 0.000 0.968 

 Nonparametric least squares 2.054 9.283 0.000 0.000 0.058 

       

1970 OLS Cobb-Douglas 0.991 6.078 0.002 0.000 0.188 

 OLS Translog -0.020 3.718 0.533 0.040 0.526 

 Kernel  -2.607 9.581 1.000 0.000 0.983 

 Nonparametric least squares -0.128 3.987 0.648 0.017 0.568 
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