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Abstract

This paper studies the effects of capital taxation in a dynamic heterogeneous-agent economy

with uninsurable entrepreneurial risk. Although it allows for rich general-equilibrium effects and

a stationary distribution of wealth, the model is highly tractable. This permits a clear analysis,

not only of the steady state, but also of the entire transitional dynamics following any change

in tax policies. Unlike either the complete-markets paradigm or Bewley-type models where

idiosyncratic risk impacts only labor income, here it is shown that capital taxation may actually

stimulate capital accumulation. This possibility emerges because of the general-equilibrium

effects of the insurance aspect of capital taxation. In particular, for the preferred calibrated

version of the model, when the tax on capital is 25%, output per work-hour is 2.2% higher

than it would have been had the tax rate been zero. Turning to the welfare effects of a reform

in capital taxation, it is examined how these effects depend on whether one focuses on the

steady state or also takes into account transitional dynamics, as well as how they vary in the

cross-section of the population (rich versus poor, entrepreneurs versus non-entrepreneurs).
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Papanikolaou, James Poterba, José-Vı́ctor Ŕıos-Rull, Catarina Reis, Pedro Teles, Robert Townsend, Harald Uhlig
and seminar participants at MIT, the Federal Reserve Board, the Bank of Portugal, Bern University, Georgetown
University, Indiana University, the Kellogg School of Management, the New York Fed, the University of Notre Dame,
Tufts University, the 2008 SED annual meeting, and the 2008 NSF/NBER Conference on General Equilibrium and
Mathematical Economics at Brown University for useful comments. The views presented are solely those of the
author and do not necessarily represent those of the Board of Governors of the Federal Reserve System or its staff
members.



1 Introduction

This paper studies the macroeconomic and welfare effects of capital-income taxation in an en-

vironment where agents face uninsurable idiosyncratic investment risk. Such risk is empirically

important for entrepreneurs and wealthy agents, who, even though they represent a small fraction

of the population, yet they hold most of an economy’s wealth. In this context, capital taxation

raises an interesting tradeoff between the distortion of investment versus the provision of insurance

against idiosyncratic capital-income risk. On the one hand, capital taxation comes at a cost, since

it distorts agents’ saving decisions. On the other hand, it has benefits, since it provides agents with

partial insurance against idiosyncratic investment risk. This suggests that a positive tax on capital

income could be welfare-improving, even if it reduced capital accumulation.

Most surprisingly though, it is shown that a positive tax on capital income may actually stimu-

late capital accumulation. Indeed, the steady-state levels of the capital stock, output and employ-

ment may all be maximized at a positive value of the capital-income tax. This possibility emerges

because of the general-equilibrium effects of the insurance aspect of capital taxation. This result

stands in stark contrast to the effect of capital taxation both under complete-markets models,

and under incomplete-markets models with uninsurable labor-income risk alone. In these mod-

els, capital-income taxation, irrespectively of whether it is welfare-improving or not, necessarily

discourages capital accumulation.

Model. This paper represents a first attempt to study the effects of capital-income taxation

in a general-equilibrium incomplete-markets economy, where agents are exposed to uninsurable

idiosyncratic investment risk. The framework builds on Angeletos (2007), who develops a variant of

the neoclassical growth model that allows for idiosyncratic investment risk, and studies the effects

of such risk on macroeconomic aggregates. Agents own privately held businesses that operate

under constant returns to scale. Agents are not exposed to labor-income risk, and they can freely

borrow and lend in a riskless bond, but they cannot diversify the idiosyncratic risk in their private

business investments. Abstracting from labor-income risk, borrowing constraints, and other market

frictions, isolates the impact of the idiosyncratic investment risk and preserves the tractability of the

general-equilibrium dynamics. The present model extends Angeletos’s model in the following ways.

First, a government is introduced, imposing proportional taxes on capital and labor income, along

with a non-contingent lump-sum tax or transfer. Second, agents have finite lives, which ensures

the existence of a stationary wealth distribution. Third, there is stochastic, though exogenous,

transition in and out of entrepreneurship, which helps capture the observed heterogeneity between

entrepreneurs and non-entrepreneurs without the complexity of endogenizing occupational choice.

Fourth, labor supply is endogenous. Clearly the first element is essential for the novel contribution

of the paper. The other three improve the quantitative performance of the model and demonstrate

the robustness of the main result.

Preview of results. The main result of the paper is that an increase in capital-income taxation
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may actually stimulate capital accumulation. The intuition behind this result comes from recog-

nizing that the overall effect of the capital-income tax on capital accumulation can be decomposed

in two parts. The first part captures the response of capital to the tax in a setting with endogenous

saving but exogenously fixed interest rate. This is isomorphic to examining the effects of the capital

tax in a “small open economy”. In this context, it is shown that an increase in the capital-income

tax unambiguously decreases the steady-state capital stock. The second part, which is the core

result of this paper, captures the importance of the general-equilibrium adjustment of the interest

rate for wealth and capital accumulation. Here, an increase in the tax reduces the effective variance

of the risk agents are exposed to. This reduces the demand for precautionary saving, and therefore

increases the interest rate, which in turn increases steady-state wealth. With decreasing absolute

risk aversion, wealthier agents are willing to undertake more risk, and hence they will increase their

investment in capital. In other words, the general-equilibrium effect of the interest rate adjustment

is a force that tends to increase investment and the steady-state capital stock.

For plausible parameterizations of the closed economy, the general equilibrium effect dominates

for low levels of the capital-income tax, so that steady-state capital at first increases with the tax.

In particular, for the preferred calibrated version of the model, the steady-state capital stock is

maximized when the tax on capital is 40%. So, for example, when the tax on capital is 25%, output

per work-hour is 2.2% higher than what it would have been had the tax rate been zero. The result

that the steady-state capital stock is inversely U-shaped with respect to the capital-income tax

is robust for a wide range of empirically plausible parameter values. Furthermore, the tax that

maximizes steady-state capital is increasing in risk aversion and/or the volatility of idiosyncratic

risk. This finding reinforces the insurance interpretation of the tax system.

Subsequently, the paper examines the aggregate and welfare effects of eliminating the capital-

income tax. This is because an extensive discussion has been conducted within the context of the

complete-markets neoclassical growth model about the welfare benefits of setting the capital-income

tax to zero. In light of the main result here, revisiting this discussion is worthwhile. In particular,

the aggregate and welfare effects are presented from two different perspectives. On the one hand,

one might be interested in examining the welfare of the current generation immediately after the

policy reform, taking into account the entire transitional dynamics of the economy towards the

new steady state with the zero tax. On the other hand, one might be interested in examining the

welfare of the generations that will be alive in the distant future, i.e. at the new steady state with

the zero tax.

First, consider the macroeconomic effects of eliminating the capital-income tax. When markets

are complete, investment increases in the short run, and it is also higher at the new long-run steady

state with the zero tax, compared to the old steady state with the positive tax. By contrast, in the

present model of incomplete markets, investment falls in the short run, as well as in the long run.

Second, consider the welfare effects of eliminating the capital-income tax. These vary across the
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different types of agents, the different levels of wealth, and the current versus the future generations.

In the current generation, poor agents, whether entrepreneurs or non-entrepreneurs, prefer the zero

tax. This is because most of their wealth comes from wage income, and, with capital fixed, the

present value of wages increases due to a fall in the interest rate. Rich agents, on the other hand,

prefer a positive tax, since they benefit more from insurance provision.

In the long run, all types of agents, and at all levels of wealth, prefer a positive tax on capital

income. However, the cost of switching to a zero-tax regime is much higher for poorer than for

wealthier agents of all types. This is because, in the long run, the elimination of the tax decreases

the steady-state capital stock, thereby decreasing the present value of wages. Therefore poorer

agents will suffer the most, since human wealth constitutes a big part of their total wealth.

Literature review. This paper focuses on entrepreneurial risk, because such risk is in fact

empirically relevant, even in a financially developed country like the United States. For example,

Moskowitz and Vissing-Jørgensen (2002) find that 75% of all private equity is owned by agents for

whom such investment constitutes at least half of their total net worth. Furthermore, 85% of private

equity is held by owners who are actively involved in the management of their own firm.1 Given

this evidence about the US, one expects that entrepreneurial risk must be even more prevalent in

less developed economies, where a large part of production takes place in small unincorporated

businesses and where risk-sharing arrangements are much more limited.

Furthermore, idiosyncratic investment risk need not be interpreted as affecting solely the owners

of privately held businesses. In recent work, Panousi and Papanikolaou (2008) find a significant and

robust negative relationship between idiosyncratic risk and the investment of publicly traded firms

in the US. In addition, they show that this relationship is stronger in firms where the insider mangers

hold a larger fraction of the firm’s shares, and they provide evidence for a possible explanation that

has to do with managerial risk aversion. Combined with the work of Moskowitz and Vissing-

Jørgensen (2002), this demonstrates that a large fraction of total investment in the US, whether

by publicly traded or privately held businesses, is sensitive to idiosyncratic risk, and therefore

strengthens the empirical applicability of the present model setup.

This paper relates to the strand of the macroeconomic literature discussing optimal taxation

and the effects of taxation. However, most of this literature has focused on labor income risk.

Chamley (1986) and Judd (1985) first established the result of zero optimal capital taxation in the

long run when markets are complete. Atkeson, Chari and Kehoe (1999) generalized this result to

most of the short run for an interesting class of preferences, and to the case of finitely lived agents.

Aiyagari (1995) extended the complete-markets framework to include uninsurable labor income

risk and borrowing constraints. In this context, when only a limited set of policy instruments are

available, it becomes optimal to tax capital in the long run: a positive capital tax increases welfare,

1Further evidence for these observations is also provided by Quadrini (00), Carroll (02), Gentry and Hubbard
(00), and Cagetti and DeNardi (06).
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but it unambiguously lowers the level of the capital stock.2

A related but different normative exercise is conducted by Davila et al. (2007). They examine

constrained efficiency, in the spirit of Geanakoplos-Polemarchakis, within a version of Aiyagari’s

model. This exercise does not allow for risk-sharing through taxes or any other instruments, and

instead considers an efficiency concept where the planner directly dictates to the agents how much

to invest and to trade. Angeletos and Werning (2006) examine a similar constrained efficiency

problem in a two-period version of a model with idiosyncratic investment risk. Albanesi (2006)

considers optimal taxation in a two-period model of entrepreneurial activity, in a constrained ef-

ficiency setting, and following the Mirrlees optimal policy tradition. The benefit of her approach

is that the source of incomplete risk-sharing is endogenously specified as the result of a private

information (moral hazard) problem, and that there are no ad hoc restrictions placed on the tax

instruments. However, her model does not allow for dynamics, for long-run considerations, or for

general-equilibrium effects like those studied in the present paper. In general, the extensive theo-

retical work on taxation originating from the Mirrlees and the new dynamic public finance tradition

focuses on labor-income risk, as does the literature that examines the optimal progressivity of the

tax code.3

The growing literature on the effects of borrowing constraints on entrepreneurial choices has

examined policy questions, and especially the implications of replacing a progressive with a propor-

tional income-tax schedule, in an Aiyagari-type environment, i.e. with decreasing returns to scale

at the individual level, borrowing constraints, and undiversifiable labor income risk. Some examples

in this area include Li (2002), Domeij and Heathcote (2003), Meh (2005), Cagetti and DeNardi

(2007), and Kitao (2007). Benabou (2002) develops a tractable dynamic general-equilibrium model

of human capital accumulation with endogenous effort and missing credit and insurance markets.

Within this framework he examines the long-run tradeoffs of progressive taxation and education

finance. Finally, Erosa and Koreshkova (2007) examine the long-run effects of switching from

progressive to proportional income taxation in a quantitative dynastic model of human capital.

This paper also relates to the branch of the public finance literature that considers the effects of

capital taxation on portfolio allocation and risk-taking. Domar and Musgrave (1944) first proposed

the idea that proportional income taxation may increase risk-taking, by having the government

2Alvarez et al. (1992), Erosa and Gervais (2002), and Garriga (2003), show that in life-cycle models the optimal
capital-income tax is in general different from zero, at least if the tax code cannot explicitly be conditioned on the
age of the household. Conesa et al. (2008) quantitatively characterize the optimal capital- and labor- income tax
in an overlapping-generations model with idiosyncratic uninsurable labor-income shocks and permanent productivity
differences across households, and find for an optimal capital-income tax of 36%. Uhlig and Yanagawa (1995) show
that, under mild conditions, higher capital-income taxes lead to faster growth in an overlapping-generations economy
with endogenous growth. It should be noted, however, that the results of the present paper do not depend on a
life-cycle or overlapping-generations setup. Instead, they arise in the context of the standard neoclassical framework
of infinitely-lived agents.

3Some examples here include Golosov et al. (2003), Albanesi and Sleet (2005), Conesa and Krueger (2006),
Werning (2007), and Reiter (2004).
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bear part of the risk facing the agents.4 This idea was formalized by Stiglitz (1969), within a two-

period single-agent model, where asset returns and the level of saving are exogenously given, but

where the agent optimally chooses the allocation of his fixed amount of saving between a risky and

a riskless asset. Ahsan (1974) extended Stiglitz by endogenizing the intertemporal consumption-

saving decision in a two-period model. He showed that the partial-equilibrium effect of capital-

income taxation on risk-taking is in general ambiguous. By contrast, in the “small open economy”

version of the present model, which differs from Ahsan’s in that the horizon is infinite and the

return to capital is endogenous, it is shown that the steady-state capital stock is decreasing in

the capital-income tax. This finding highlights that the results here are driven by, novel to the

literature, general-equilibrium effects.

As already mentioned, the present model builds on Angeletos (2007), who abstracted from policy

questions and considered instead the effect of investment risk on macroeconomic aggregates. The

contribution of the present paper is to study the effects of capital-income taxation on aggregates

and welfare. Angeletos and Panousi (2009), in a framework like the one in Angeletos (2007),

examine the effects of government spending on macroeconomic aggregates, but for the case where

government spending is financed exclusively through lump-sum taxation.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 describes

individual behavior and the aggregate equilibrium dynamics. Section 4 characterizes the steady

state in terms of aggregates and distributions. Section 5 presents and discusses the main theoretical

result. Section 6 presents the calibration methodology and the parameter choices, along with

the implications of the preferred calibrated model for aggregates and distributions. Section 7

quantifies the steady-state effects of capital taxation, as well as the short-run and long-run effects

of eliminating the capital-income tax. Section 8 examines the robustness of the results to the

availability of a safe asset in positive net supply. Section 9 concludes. All proofs are delegated to

the appendix.

2 The Model

Time is continuous and indexed by t ∈ [0,∞). There is a continuum of agents distributed uniformly

over [0, 1]. At each point in time an agent can be either an entrepreneur, denoted by E, or a laborer,

denoted by L. The probabilities of switching between these two types are exogenous. In particular,

the probability that an agent will switch from being an entrepreneur to being a laborer is pEL dt,

and the probability that he will switch from being a laborer to being an entrepreneur is pLE dt.

The measure of entrepreneurs in the economy at time t is denoted by χt.

In what follows, and for expositional simplicity, labor is taken to be exogenous. All of the

proofs, which are delegated to the appendix, and all of the calibrations, will consider the general

4Sandmo (1977) extended this idea to the case of multiple risky assets.
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case of endogenous labor, where preferences are homothetic between consumption and leisure, i.e.

they are of the King-Plosser-Rebelo (1988) specification.

2.1 Preferences

All agents are endowed with one unit of time. Preferences are Epstein-Zin over consumption, c,

and they are defined as the limit, for ∆t→ 0, of 5:

Ut = { (1 − e−β∆t) c
1−1/θ
t + e−β∆t (Et [ U1−γ

t+∆t ] )
1−1/θ
1−γ }

1

1−1/θ , (1)

where β > 0 is the discount rate, γ > 0 is the coefficient of relative risk aversion, and θ > 0 is the

elasticity of intertemporal substitution. For θ = 1/γ, this reduces to the case of standard expected

utility, Ut = Et
∫

∞

t e−β s U(cs) ds, where U(ct) =
c
1−1/θ
t

1−1/θ .

2.2 Entrepreneurs

When an agent is an entrepreneur, he owns and runs a firm operating a constant-returns-to-scale

neoclassical production function F (k, l), where k is capital input and l is labor input. An en-

trepreneur can only invest in his own firm’s capital, although he supplies and employs labor in

the competitive labor market. Capital investment in his firm is subject to uninsurable risk. The

idiosyncratic shocks are i.i.d., hence there is no aggregate uncertainty. An entrepreneur can also

save in a riskless bond.

The financial wealth of an entrepreneur i, denoted by xit, is the sum of his holdings in private

capital, kit, and the riskless bond, bit:

xit = kit + bit . (2)

The evolution of xit is given by:

dxit = (1 − τKt ) dπit + [ (1 − τKt )Rt b
i
t + (1 − τLt )ωt + Tt − cit ] dt , (3)

where dπit are firm profits (capital income), Rt is the interest rate on the riskless bond, τKt is the

proportional capital-income tax, ωt is the wage rate in the aggregate economy, τLt is the proportional

labor-income tax, Tt are non-contingent lump-sum transfers received from the government, and cit

is consumption. Finally, a no-Ponzi game condition is imposed.

Firm profits are given by:

dπit = [ F (kit, l
i
t) − ωt l

i
t − δ kit ] dt + σ kit dz

i
t , (4)

where F (k, l) = kαl1−α with α ∈ (0, 1), and δ is the mean depreciation rate in the aggregate

5Lemma 1 in the appendix gives the formal description of preferences.
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economy. Idiosyncratic risk is introduced through dzit, a standard Wiener process that is i.i.d.

across agents and across time6. The scalar σ measures the amount of undiversified idiosyncratic

risk, and is an index of market incompleteness, with higher σ corresponding to a lower degree of

risk-sharing, and σ = 0 corresponding to complete markets.

2.3 Laborers

When an agent is a laborer, he cannot invest in capital, and he can only hold the riskless bond. He

also supplies labor in the competitive labor market. Financial wealth for a laborer i is therefore:

xit = bit , (5)

and its evolution is given by:

dxit = [ (1 − τKt )Rt b
i
t + (1 − τLt )ωt + Tt − cit ] dt . (6)

2.4 Government

At each point in time the government taxes capital and bond income at the rate τKt , and labor

income at the rate τLt . Part of the tax proceeds is used by the government for own consumption

at the deterministic rate Gt. Government spending does not affect the utility from private con-

sumption or the production technology. The remaining tax proceeds are then distributed back

to the households in the form of non-contingent lump-sum transfers, Tt. The government budget

constraint is therefore:

0 = [ τLt FLt(

∫

i
kit, 1) + τKt (FKt(

∫

i
kit, 1) − δ )

∫

i
kit −Gt − Tt ] dt , (7)

where FKt(
∫

i k
i
t, 1) is the marginal product of capital in the aggregate economy, FLt(

∫

i k
i
t, 1) is the

marginal product of labor, and
∫

i l
i
t = 1.

2.5 Finite lives and annuities

All households face a constant probability of death, with Poisson arrival rate v dt at every instant

in time.7 There is no intergenerational altruism linking a household to its descendants, and utility

6Idiosyncratic risk is modeled here as coming from uninsurable i.i.d. depreciation shocks. However these shocks
could also be modeled as or interpreted as i.i.d. productivity shocks.

7The (small) positive probability of death is introduced in order to guarantee the existence of a stationary wealth
distribution. In general, with finite lives and no altruism, Ricardian equivalence might fail, since some of the tax
burden associated with the current issue of a bond is borne by agents who are not alive when the bond is issued. Here,
for v = 0, Ricardian equivalence holds, because all agents can freely borrow in the riskless bond. The theoretical
steady-state results for the aggregates are derived for v = 0, and they carry through for v small but positive. However,
it might still be the case that the dynamic effects of time-varying policy changes possibly depend on the validity of
Ricardian equivalence. Nonetheless, for the purposes of this paper, the government budget constraint will be written
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is zero after death. The discount rate in preferences can then be reinterpreted as β = β̃ + v, where

β̃ is the psychological or subjective discount rate and v is the probability of death8.

In order to isolate the effects of capital-income risk, it is assumed that there exist annuity

firms permitting all agents to get insurance against mortality risk, by freely borrowing the entire

net present value of their future labor income. As a result, all agents have (safe) human wealth,

denoted by ht, and defined as the present discounted value of their net-of-taxes labor endowment

plus government transfers:9

ht =

∫

∞

t
e−

∫ s
t ( (1−τKj )Rj+v ) dj( (1 − τLs )ωs + Ts ) ds . (8)

Then, the total effective wealth, wit, for an agent is defined as the sum of his financial and

human wealth, i.e. wit ≡ xit + ht. Hence, effective wealth for an entrepreneur is given by:

wit = kit + bit + ht , (9)

and effective wealth for a laborer is given by:10

wit = bit + ht . (10)

3 Equilibrium

This section characterizes individual behavior and the general equilibrium in the economy. The

analysis will be in closed-form, since, as will be shown, the wealth distribution is not a relevant

state variable for the characterization of aggregate equilibrium dynamics.

as in (7) for v positive but small.
8Since utility is zero after death, this is a valid interpretation that does not violate the axioms of expected utility.
9Let ḣt = (Rt + v)ht − ωt, and bt = −ht. Then, ḃt = Rtbt − vht + ωt. These equations are consistent with each

other and with market clearing, and they have two alternative but isomorphic interpretations. First, in the beginning
of time, every agent borrows from annuity firms an amount equal to his entire human wealth. From then on, he
repays this debt every period by giving up his wage plus interest to the annuity firms, and this only stops when he
dies. Second, the annuity firms borrow from the agent his entire human wealth, and every period from then on they
repay the agent by giving him wage plus interest, until the agent dies. Either of these interpretations is consistent
with the analysis here.

10It is assumed that capital is fully fungible upon exit from entrepreneurship. The assumption of exogenous
transition probabilities is maintained here for tractability, in order to ensure a closed-form solution. This assumption
could have the interpretation that, at some random point in time, the agent is given the chance to operate a high-
return, high-risk technology, while at some other random point in time the option to save in this alternative technology
is taken away (for example, the agent has an idea which depreciates at some exogenous rate).
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3.1 Individual Behavior

Entrepreneurs choose employment after their capital stock has been installed and their idiosyncratic

shock has been observed. Hence, since their production function, F , exhibits constant returns to

scale, optimal firm employment and optimal profits are linear in own capital:

lit = l(ωt) k
i
t and dπit = r(ωt) k

i
t dt+ σ kit dz

i
t , (11)

where l(ωt) ≡ arg maxl[F (1, l) − ωt l ] and r(ωt) ≡ maxl [F (1, l) − ωt l ] − δ. Here, rt ≡ r(ωt) is an

entrepreneur’s expectation of the return to his capital prior to the realization of his idiosyncratic

shock, as well as the mean of the realized returns in the cross-section of firms. The key result here

is that entrepreneurs face risky, but linear, returns to their investment.

The evolution of effective wealth for an entrepreneur is described by:

dwit = [ (1 − τKt ) rt k
i
t + (1 − τKt )Rt (b

i
t + ht) − cit ] dt+ σ (1 − τKt ) kit dz

i
t . (12)

The first term captures the expected rate of growth of effective wealth, and it shows that wealth

grows when the total return to saving for an entrepreneur exceeds consumption expenditures. The

second term captures the impact of idiosyncratic risk. The evolution of effective wealth for a laborer

is described by:

dwit = [ (1 − τKt )Rt (b
i
t + ht) − cit ] dt . (13)

Let the fraction of effective wealth an agent saves in the risky asset be:

φit ≡
kit
wit

. (14)

Let an agent’s marginal propensity to consume out of effective wealth be:

mi
t ≡

cit
wit

. (15)

Let µt = (1 − τKt )rt − (1 − τKt )Rt denote the risk premium. Since investment in capital is risky,

it has to be the case that rt > Rt, otherwise no one would invest in capital. In other words,

agents require a positive risk premium as compensation for undertaking capital investment. Let

ρt ≡ φt (1 − τKt ) rt + (1 − φt) (1 − τKt )Rt denote the net-of-tax mean return to saving for an

entrepreneur, and let ρ̂t ≡ ρt − 1/2 γ φ2
t σ

2 (1 − τKt )2 denote the net-of-tax risk-adjusted return to

saving for an entrepreneur. The net-of-tax return to saving for a laborer is simply (1 − τKt )Rt.

Then, since Rt < rt, it has to be that (1 − τKt )Rt < ρ̂t < ρt < (1 − τKt ) rt.

Because of the linearity in assets of the budget constraints (12) and (13), and the homotheticity

of the preferences, the optimal individual policy rules will be linear in total effective wealth, for
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given prices and government policies. Hence, for given prices and policies, an agent’s consumption-

saving problem reduces to a tractable homothetic problem as in Samuelson’s and Merton’s classic

portfolio analysis. Optimal individual behavior is then characterized by the following proposition.

Proposition 1. Let {ωt, Rt, rt}t∈[0,∞) and {τKt , τ
L
t , Tt, Gt}t∈[0,∞) be equilibrium price and policy

sequences. If an agent i is an entrepreneur, his optimal consumption, investment, portfolio, and

bond holding choices, respectively, are given by:

cit = mE
t w

i
t, kit = φtw

i
t, φt =

(1 − τKt ) rt − (1 − τKt )Rt

γ σ2 (1 − τKt )2
, bit = (1 − φt)w

i
t − ht . (16)

If an agent i is a laborer, his optimal consumption, investment, and bond holding choices, respec-

tively, are given by:

cit = mL
t w

i
t, kit = 0, bit = wit − ht . (17)

The marginal propensities to consume satisfy the following system of ordinary differential equations:

ṁt
E

mE
t

= mE
t − θβ + (θ − 1) ρ̂t +

θ − 1

1 − γ
pEL [ (

mL

mE
)

1−γ
1−θ − 1 ] (18)

ṁt
L

mL
t

= mL
t − θβ + (θ − 1)(1 − τKt )Rt +

θ − 1

1 − γ
pLE [ (

mE

mL
)

1−γ
1−θ − 1 ] . (19)

From (16) and (17) it is clear that optimal consumption is a linear function of total effective

wealth, where the marginal propensity to consume depends only on the type of the agent, and

not on the level of wealth. In other words, all entrepreneurs share a common marginal propensity

to consume, mE
t , and all laborers share a common marginal propensity to consume, mL

t . The

fraction φt of wealth invested in the risky asset by an agent who happens to be an entrepreneur is

increasing in the risk premium, decreasing in risk aversion, and decreasing in the effective variance

of risk, σ(1 − τKt ). Because of homotheticity and linearity, φt is the same across all entrepreneurs,

and independent of the level of wealth. The policy for optimal bond holdings follows from (9) or

(10), and (14). The system of (18) and (19) is a system of two Euler equations. It shows that

the marginal propensities to consume, conditional on being an entrepreneur or a laborer, depend

on two factors. First, on the process of the corresponding net-of-tax anticipated (risk-adjusted)

returns to saving, in accordance with whether the elasticity of intertemporal substitution, θ, is

higher or lower than 1. Second, on the probability that the agent might switch between being an

entrepreneur and being a laborer.

3.2 General equilibrium

The initial position of the economy is given by the distribution of (ki0, b
i
0) across households. An

equilibrium is a deterministic sequence of prices {ωt, Rt, rt}t∈[0,∞), a deterministic sequence of poli-

10



cies {τKt , τ
L
t , Tt, Gt}t∈[0,∞), a deterministic macroeconomic path {Ct,Kt, Yt, Lt,Wt,W

E
t ,W

L
t }t∈[0,∞),

and a collection of individual contingent plans ({cit, l
i
t, k

i
t, b

i
t, w

i
t}t∈[0,∞)) for i ∈ [0, 1], such that the

following conditions hold: (i) given the sequences of prices and policies, the plans are optimal for

the households; (ii) the labor market clears,
∫

i l
i
t = 1, in all t; (iii) the bond market clears,

∫

t b
i
t = 0,

in all t; (iv) the government budget constraint (7) is satisfied in all t; and (v) the aggregates are con-

sistent with individual behavior, Ct =
∫

i c
i
t, Lt =

∫

i l
i
t = 1, Kt =

∫

i k
i
t, Yt =

∫

i F (kit, l
i
t) = F (

∫

i k
i
t, 1),

Wt =
∫

iw
i
t, W

E
t =

∫

i, E w
i
t, and WL

t =
∫

i, Lw
i
t , in all t.

Because individual consumption and investment are linear in individual wealth, aggregates at

any point in time do not depend on the extend of wealth inequality at that time. Therefore here, in

contrast to other incomplete-markets models, it is not the case that the entire wealth distribution

is a relevant state variable for aggregate dynamics. In fact, for the determination of aggregate

dynamics, it suffices to keep track of the mean of aggregate wealth, and of the allocation of total

wealth between the two groups of agents. To that end, let the fraction of total effective wealth held

by entrepreneurs in the economy be:

λt ≡
WE
t

Wt
. (20)

The aggregate equilibrium dynamics can then be described by the following recursive system.

Proposition 2. In equilibrium, the aggregate dynamics satisfy:

Ẇt/Wt = λt(ρt −mE
t ) + (1 − λt)( (1 − τKt )Rt −mL

t ) (21)

λ̇t/λt = (1 − λt)φtµt + (1 − λt)(m
L
t −mE

t ) + pLE(
1

λt
− 1) − pEL (22)

Ḣt = ( (1 − τKt )Rt + v )Ht − (1 − τLt )ωt − ( τLt ωt + τKt (FKt − δ )Kt −Gt ) (23)

Kt =
φt λt

1 − φt λt
Ht , (24)

along with (18) and (19).

Equation (21) shows that the evolution of total effective wealth is a weighted average of two

terms. The first term is positive when the mean net-of-tax return to saving for entrepreneurs

exceeds their marginal propensity to consume, and is weighted by the fraction of total wealth the

entrepreneurs hold in the economy. The second term is positive when the net-of-tax return to

saving for laborers exceeds their marginal propensity to consume, and is weighted by the fraction

of total wealth the laborers hold in the economy. Equation (22) shows the endogenous evolution of

the relative distribution of wealth between the two groups of agents. The evolution of λ depends

on three factors. First, on the differential excess return the entrepreneurs face on their saving,

which is given by φtµt, where φt is the fraction of wealth invested in the risky asset, and µt is the

risk premium. Second, on the difference in the level of saving between entrepreneurs and laborers,

as captured by the difference in the marginal propensities to consume, mL
t −mE

t . Third, on the

11



adjustment made for the transition probabilities. Note here that the evolution of consumption

can be recovered by aggregating across individual optimal policies, so that CEt = mE
t W

E
t and

CLt = mL
t W

L
t , and using (18), (19), (21), and (22). Equation (23) shows the evolution of total

human wealth, using the government budget constraint Tt = τLt ωt + τKt (FKt − δ )Kt −Gt, where

FKt is the marginal product of capital in the aggregate production function F (K, 1), and where

ωt = FLt(Kt, 1) from market clearing. Since Ẇ = K̇ + Ḣ, the resource constraint of the economy

is also satisfied. Equation (24) is the bond market clearing condition. It comes from aggregating

across individual capital and bond choices as given in (16) and (17), adding up, using BE
t +BL

t = 0,

and using (20). From (24) it follows that, for given prices and human wealth, a decrease in λ

decreases K. A fall in λ indicates that the entrepreneurs on average now borrow more from the

laborers, hence their wealth will on average be lower. With decreasing absolute risk aversion, this

will negatively affect their willingness to take risk, and therefore investment and the capital stock

will fall for given prices.

3.3 Steady state: characterization of aggregates

A steady state is a competitive equilibrium as defined in section 3.2, where prices, policies, and

aggregates are time-invariant. For expositional purposes, and to illustrate that the results about

the effects of capital-income taxation on the aggregates are not due to the presence of two types

of agents or to the probability of death, section 3.3 (as well as section 4 later on) will consider the

case with λ = 1 and v = 011. However, section 3.4 will characterize the invariant distributions for

the general case.

The steady state is the fixed point of the dynamic system in Proposition 2. Let government

spending, G, be parameterized as a fraction g of tax revenue. The following proposition character-

izes the steady state.

Proposition 3. (i) The steady state always exists and is unique. (ii) In steady state, the capital

stock, K, and the interest rate, R, are the solution to:

FK(K) − δ = R+

√

2 θ γ σ2

θ + 1
(β − (1 − τK)R ) (25)

K =
φ(K,R)

1 − φ(K,R)

(1 − τL)ω(K) + (1 − g) ( τL ω(K) + τK (FK(K) − δ )K )

(1 − τK)R
, (26)

where FK(K) is the marginal product of capital and ω(K) is the wage rate in the aggregate economy.

From (18) or (19) and (21) in steady state, and using the fact that φµ = (FK − δ − R)2/γσ2,

we get equation (25). This condition gives the combinations of K and R that are consistent with

11The more general case is left for the appendix.
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wealth and consumption stationarity. Using (24) and (23) in steady state yields equation (26).

This condition gives the combinations of K and R that are consistent with stationarity of human

wealth and bond market clearing.

At this point it is useful to briefly compare the steady state to its complete-markets counterpart.

From (25) note that the difference from complete markets, in which case it would be FK(K)− δ =

R, is the presence of the square-root term, which captures the risk premium, i.e. here µ(R) =
√

2 θ γ σ2 (β − (1 − τK)R ) / (θ + 1) 6= 0. In other words, agents here require a (private) risk

premium in order to invest in capital. In addition, combining (18) or (19) with (21), and using the

fact that C = mW , we get Ċ/C = θ (ρ̂t− β) + 1
2 γ φ

2
t σ

2
t (1− τKt )2, from which, in steady state,

we conclude that:

ρ̂ = β −
1

2

γ

θ
φ2 σ2 (1 − τK)2 . (27)

In other words, the risk-adjusted return to saving must be just low enough to offset the precaution-

ary saving motive,12 which is present here because agents face risk in their consumption stream.

Since (1 − τK)R < ρ̂, it follows that (1 − τK)R < β, i.e. the net interest rate is lower than it

would have been under complete markets. This result is also true in Aiyagari (1994) and in other

Bewley-type models, with the difference that in Bewley models it is labor-income that introduces

the risk in the consumption stream. Furthermore here, because FK − δ > R, it could be the case

either that FK − δ > β or FK − δ < β. Hence, capital can be either lower or higher than under

complete markets.13 This is in contrast to the effects of labor-income risk on steady-state capital,

and it is due to the fact that idiosyncratic investment risk introduces a wedge (the risk premium)

between the return to the risky asset and the return to the riskless asset.

3.4 Steady state: characterization of invariant distributions

At each point in time, agents die and are replaced by newborn agents, and the assumption is that

the newborn agents are endowed with the wealth of the exiting agents.14 This force generates mean

reversion and guarantees the existence of an invariant wealth distribution. Let ξit ≡ wit/Wt denote

the distance between individual and aggregate effective wealth. Let ΦL and ΦE be the condi-

tional invariant distributions for laborers and entrepreneurs respectively. The following proposition

characterizes the invariant distributions.

12If the risk-adjusted return were higher than this critical level, consumption (and wealth) would increase over time
without bound, which would be a contradiction of steady state. Conversely, if the risk-adjusted return were lower
than this level, consumption (and wealth) would shrink to zero, which would once again be a contradiction of steady
state.

13Angeletos (2007) gives a condition that determines whether steady-state capital is higher or lower than under
complete markets, and quantifies the effects of idiosyncratic capital-income risk on steady-state aggregates.

14Hence, from a law of large numbers, each agent starts life with the sum of human wealth plus the mean wealth
in the economy.
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Proposition 4. The conditional invariant distributions ΦL and ΦE are characterized by the fol-

lowing second order linear differential system:

0 = κ1 ξ
∂ΦL

∂ξ
+ κ2 ΦL + pEL ΦE ,

0 = κ3 ξ
2 ∂

2ΦE

∂ξ2
+ κ4 ξ

∂ΦE

∂ξ
+ κ5 ΦE + pLE ΦL ,

where κ1, κ2, κ3, κ4, κ5 are constants determined by steady-state aggregates.

The point to note here is that the tractability of the model allows for a very detailed charac-

terization of the invariant distributions. This is particularly useful for the case of entrepreneurs,

since it is reasonable to expect that the distribution of wealth over entrepreneurs will be, to a large

extent, determined by the realization of entrepreneurial returns.15

4 Steady-State Effects of Capital Taxation

This section presents the core of the contribution of this paper, which is the study of the steady-

state effects of capital-income taxation. Again, for illustration purposes, the assumption is that

λ = 1 and v = 0. The main result here is that an increase in the capital-income tax may actually

increase investment and the steady-state capital stock. This possibility arises because of the general-

equilibrium effects of the insurance aspect of capital taxation, which operate mainly through the

endogenous adjustment of the interest rate. In order to illustrate this, the analysis will proceed by

making the distinction between the case where the interest rate is fixed, and the case where the

interest rate is allowed to adjust endogenously.

Note then that equation (25) expresses capital, K, as a function of the tax, τK , and the interest

rate, R. If the interest rate were fixed,16 then the steady-state capital stock would be Ko(τK , R),

as given by (25), and where both τK and R are exogenous. Next, by plugging Ko(τK , R) from (25)

into (26), we can solve for the closed-economy steady-state interest rate, as a function of the capital-

income tax. Let R c(τK) denote the closed-economy solution for the interest rate. It follows then,

that the closed-economy steady-state capital stock will be given by Kc(τK) = Ko(τK , R c(τK)).

Hence, the impact of the capital-income tax on the closed economy steady-state capital stock

can be decomposed in two parts. The first part describes how steady-state capital changes with

the tax when the interest rate is kept constant or exogenously fixed. The second part describes

the general-equilibrium adjustment of the interest rate in the closed economy, and the subsequent

15Whereas the tractability of the aggregates follows from Angeletos (2007), the result about the tractability of the
invariant distributions is novel to the present paper.

16This would be the case, for example, in a (small) open-economy version of the present model. This would be
an economy with the same preferences, technologies, and risks, but which is open to an international market for the
riskless bond, thus facing an exogenously fixed interest rate.
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effects of this adjustment on capital accumulation. Thus, the total effect of the capital-income tax

on the closed-economy steady-state capital stock can be decomposed as follows:

dKc

dτK
=

∂ Ko

∂ τK
+

∂ Ko

∂ R

dR c

d τK
, (28)

where the first term is the effect when the interest rate is fixed, and the second term is the effect

when the interest rate is allowed to adjust, i.e. it is the closed-economy or general-equilibrium

effect.

Let’s first turn to the fixed-interest rate effect. The following corollary characterizes the effect

of capital-income taxation on capital accumulation when the interest rate is held constant.

Corollary 1. When the interest rate is exogenously fixed, an increase in the capital-income tax

unambiguously reduces the steady-state capital stock, i.e. ∂ Ko/∂ τK < 0.

This result follows immediately from (25), for a given R. Hence, when the interest rate is kept

constant, capital falls with the tax, despite a direct insurance aspect of the tax that is still present,

namely that the tax reduces the variance of net returns, σ(1−τK). Clearly then, for a given interest

rate, this channel is not strong enough to outweigh the distortionary effect of capital taxation on

investment. This result stands in contrast to the findings of Ahsan (1974). Ahsan considers the

simultaneous determination of the size and the composition of the optimal portfolio, in a two-period

model with exogenous returns. He shows that the effect of an increase in capital-income taxation

on risk-taking and capital is in general ambiguous.17 The result here indicates that, once Ahsan’s

setting is extended to incorporate endogenous capital return and infinite horizon, the ambiguity

disappears and capital taxation always leads to a fall in the steady-state capital stock. It is then

clear that, in addition to the direct insurance role of the tax, the endogenous adjustment of the

interest rate is also required for the effect of capital taxation on capital to become ambiguous once

again.

Let’s now turn to the general-equilibrium effect, which captures the fact that in the closed

economy the interest rate endogenously adjusts to clear the bond market, according to equation

(26). This effect further consists of two parts.

First, an increase in the capital-income tax reduces the effective volatility of risk for en-

trepreneurs, σ(1 − τK), and this is the direct insurance effect mentioned above. As a result,

the interest rate, which is below the discount rate in steady state, increases, essentially because of

a reduction in the demand for precautionary saving, i.e. dR c/d τK > 0.18 In fact, the increase in

17Ahsan’s result is, in turn, a generalization of Stiglitz (1969), who examines the effects of proportional capital-
income taxation in a two-period model, taking not only returns, but also the level of saving as exogenously given.

18This intuitive result has not been proven in the context of the infinite horizon model, although a proof is available
for the two period version of the closed economy, for small τK . There, it can be shown in closed-form that steady-
state capital is inversely U-shaped with respect to the capital-income tax. Nonetheless, simulations show that in
the infinite-horizon closed-economy model the net interest rate is always increasing in the tax, as section 6.1 will
demonstrate.
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the interest rate is so high, that the net interest rate, R(1 − τK), ends up increasing, despite the

increase in the capital-income tax.

Second, this increase in the (net) interest rate will generate two opposing effects on saving

and wealth accumulation, as can be seen from (25). On the one hand, an increase in the interest

rate increases the opportunity cost of capital, and thus it tends to lower the steady-state capital

stock. On the other hand, an increase in the interest rate tends to increase the return to saving,

and hence the steady-state wealth of entrepreneurs. With decreasing absolute risk aversion, this

increases entrepreneurs’ willingness to take risk, and hence it is a force that tends to increase the

steady-state capital stock. This second effect is due to the fact that here investment is sensitive to

wealth, a mechanism which is absent when markets are complete. In other words, agents require a

(private) risk premium in order to invest in capital, but this premium is lower at higher levels of

wealth.19 Therefore, the overall effect of an increase in R on K is ambiguous, as is summarized in

the following corollary.

Corollary 2. When the interest rate is taken to be exogenous, ∂ Ko/∂ R ⇔ θ > φ/(1 − φ).

The proof for this corollary also follows from equation (25), and is left for the appendix. The

intuition behind this result is a bit convoluted, so it is worth examining step-by-step. Combining

equations (18) or (19) and (21) in steady state, we get:

ρ + (θ − 1) ρ̂ = θβ , (29)

where ρ is the mean return to saving, and ρ̂ is the risk adjusted return, both evaluated at the

steady-state K and for given R. Of course, this condition is equivalent to (25), but it is more useful

for developing intuition.

Note first that an increase in K necessarily reduces ρ+ (θ− 1)ρ̂. This is because an increase in

K reduces f ′ (K), and, for given φ, this reduces ρ and ρ̂ equally, thus also reducing ρ + (θ − 1)ρ̂.

Of course, the optimal φ must also fall, but this only reinforces the negative effect on ρ (since the

portfolio is shifted towards the low-return bond), while it does not affect ρ̂ (because of the envelope

theorem and the fact that φ maximizes ρ̂).

Note next that an increase in R has an ambiguous effect on ρ + (θ − 1)ρ̂. This is because, for

given φ, both ρ and ρ̂ increase with R, but now the decrease in φ works in the opposite direction,

contributing to lower ρ. Intuitively, though, this effect should be small if φ was small to begin with.

Moreover, the impact of ρ̂ is likely to dominate if θ is high enough. Therefore, ρ + (θ − 1)ρ̂ is

expected to increase with R if and only if either φ is low or θ is high.

19To see this wealth effect more clearly, note that we can use (23) and (25) to write steady-state human wealth as
H(R) = H(K(R)). Then, by bond market clearing, steady-state aggregate wealth is W (R) = K(R) + H(R). The
appendix20 shows that W ′(R) > 0 ⇔ µ′(R) < µ < 0. But from (25) it is easy to show that µ′′(R) < 0. Hence,
W ′(R) > 0 ⇔ µ′(R) < µ ⇔ R > R. In other words, when the interest rate is above a certain threshold, then an
increase in the interest rate increases aggregate steady-state wealth.
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Combining these two observations leads to the conclusion that steady-state K increases with R

if and only if θ > φ/(1−φ). As shown in section 3.3, this condition is more likely to be satisfied when

R is sufficiently high, since the steady-state risk premium is a decreasing function of R. Intuitively,

when R is close to β, a marginal increase in R has such a strong positive effect on steady-state

wealth, that the consequent reduction in the risk premium more than offsets the increase in the

opportunity cost of investment, ensuring that K increases with R.

The following proposition now summarizes the discussion above and the main result of this

section.

Proposition 5. If θ > φ/(1 − φ) and dR c/d τK sufficiently high, then dKc/dτK > 0, i.e. the

closed-economy steady-state capital stock is increasing in the capital-income tax.

In order to assess the empirical relevance of the relationship θ > φ/(1 − φ), one can use a

simple back-of-the-envelope calculation that does not require any reference to the degree of market

incompleteness, σ. In particular, take labor income to be 65% of GDP, and take the safe rate to be

2%. Then, steady-state H is about 33 times GDP, or 11 times K, if the steady-state capital-output

ratio is taken to be 3. Hence, φ/(1 − φ) = K/H = 0.1, which, as section 5 will discuss, is lower

than most of the empirical estimates of θ that use micro data for the United States. Hence, in all

likelihood, the condition θ > φ/(1 − φ) is satisfied in the data. At the same time, a high positive

value for dR c/d τK is intuitive, considering the (insurance) effect of the tax on the demand for

precautionary saving.

It is therefore possible that, although ∂ Ko/∂ τK < 0, it could still be that dKc/dτK > 0 over

some region, since ∂ Ko/∂ R · dR c/d τK > 0 is very likely positive. This means that the general-

equilibrium effect of insurance on the adjustment of the interest rate, and the subsequent effect

of this adjustment on wealth accumulation, is crucial for overthrowing the negative effect of the

capital-income tax on capital when the interest rate is fixed. The next sections will demonstrate

how, for empirically plausible parameter values, this general-equilibrium effect will produce the

counter-intuitive result that increases in the capital-income tax will at first increase steady-state

capital, even with the fixed interest-rate effect working in the opposite direction.

5 Calibration and Steady-State Implications

For the quantitative part of the paper, the benchmark model analyzed so far is extended to include

endogenous labor. Preferences are assumed homothetic between consumption, c and leisure, n,

according to the King-Plosser-Rebelo (1988) specification, and they are defined as the limit, for

∆t→ 0, of:

Ut = { (1 − e−β∆t) (c1−ψt nψt )1−1/θ + e−β∆t ( Et[U
1−γ
t+∆t ] )

1−1/θ
1−γ }

1

1−1/θ . (30)
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The appendix presents all proofs for the general case of endogenous labor. Note also that the

calibration will treat the case with two types of agents, i.e. there will be both entrepreneurs and

laborers in the model. This section will present the benchmark calibration, and will examine its

implication for the steady-state aggregates and wealth distributions. The next section will then

focus on the effects of capital-income taxation for aggregates and welfare.

5.1 Simulations

The dynamic system described in Proposition 2, and generalized to the case of endogenous labor,

is highly tractable compared to other incomplete-markets models, where the entire wealth distribu-

tion is a relevant state variable for aggregate equilibrium dynamics. The steady state of the system

is found by setting the dynamics of all equations in Proposition 2 to zero. The algorithm first solves

for the steady-state aggregates, which are deterministic and characterized by Proposition 3. Sub-

sequently, for any historically given (K0, χ0, X
E
0 ), where χ0 is the initial measure of entrepreneurs

in the economy, and XE
0 is the historically given financial wealth of the entrepreneur group, and

using as boundary conditions the steady state values of (H,mE ,mL), it integrates backward until

the path of (Kt, λt, Ht,m
E
t ,m

L
t ) is close enough to its steady-state value.

The method of finite differences is used on the general version of the system in Proposition 4.

The first and second derivatives of the invariant distributions are replaced by their discrete time

approximations. The only conditions imposed are that the probability density functions integrate to

one, and that they do not explode to the right. The emerging functions ΦL and ΦE are well-behaved

and stable.

Subsequently, Monte-Carlo simulations are performed. The processes of dying, of type-switching,

and of the idiosyncratic capital-income shocks, are simulated using random number generators for

series of 200,000 households and 100,000 years. The wealth distributions generated converge to

those produced by the finite-differences method, and their variances are stable as time increases.

Finally, using these distributions, welfare calculations are performed.

5.2 Parameter choice

The economy is parameterized by (α, β, γ, δ, θ, σ, ψ, v, pEL, pLE , τ
K , τL, G). Table 1 presents

the parameter choices for the preferred benchmark model calibration.
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Parameters Values

Preferences

β 0.024

γ 8

θ 1

ψ 0.75

Technology

α 0.40

δ 0.06

Probabilities

v 0.0067

pEL 0.18

pLE 0.025

Government

τK 0.25

τL 0.35

G/GDP 0.20

Risk

σ 0.15

Table 1. Benchmark Calibration Values.

The parameter values chosen refer to annual data from the United States. The discount rate is

β = 0.024. The preference parameter is ψ = 0.75, which is standard in the macro literature21. The

income share of capital is α = 0.40. The depreciation rate is δ = 0.06. The probability of death is

chosen to be v = 1/150, a compromise between having an empirically relevant probability of death

and allowing for some altruism across generations. The probability of exiting entrepreneurship

is pEL = 0.18. The probability of entering entrepreneurship is pLE = 0.025. These two values

were estimated from the PSID and SCF data, and subsequently used for calibrations, by Quadrini

(2000). In Quadrini’s model, as well as here, they imply a fraction of entrepreneurs in the total

population of 12%,22 which is in line with the data, as Quadrini and Cagetti and DeNardi (2006)

document.

The elasticity of intertemporal substitution is chosen to be θ = 1. The empirical estimates of

the EIS vary a lot. Using aggregate British data and correcting for aggregation bias, Attanasio and

Weber (1993) estimate θ to be about 0.7. Although the exact estimates from micro data vary across

studies and specifications, in most cases they are around 1, especially for agents at the top layers

21For example, King, Plosser, and Rebelo (1988), and Christiano and Eichenbaum (1992).
22The proof can be found in Lemma 3 of the appendix.
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of wealth and asset holdings. For example, using data from the Consumer Expenditure Survey

(CEX) and an Epstein-Zin specification, as in the present paper, Vissing-Jørgensen and Attanasio

(2003) report baseline estimates between 1 and 1.4 for stockholders.

The proportional tax on capital income is τK = 0.25. The Congressional Budget Office Back-

ground Paper (December 2006) reports that the average marginal rate at which corporate profits

are taxed is 35%, whereas the average marginal rate at which non-corporate business income is

taxed is around 26% − 27%. The CRS Report for Congress (October 2003) details the capital in-

come tax revisions and effective tax rates due to provisions granted through bonus depreciations of

30% or 50%. If these provisions are taken into account, the average marginal capital income tax is

between 20%− 25% for non-corporate businesses and between 25%− 30% for corporate businesses.

The value of τK = 0.25 is chosen to be in the middle of these estimates.23 The proportional tax on

labor income is τL = 0.35. The Congressional Budget Office Background Paper (December 2006)

reports that the median effective marginal tax rate on labor income is 32%, inclusive of federal,

state and payroll taxes.24 Incorporating the distortionary effect of social security taxes would fur-

ther increase this number, hence the choice made here. The level of government spending, G, is

chosen so that the steady-state government-spending-to-GDP ratio is 20%.

The coefficient of relative risk aversion is chosen to be γ = 8. The empirical estimation of γ is

a complicated task, because, as Vissing-Jørgensen and Attanasio (2003) detail, it requires making

additional assumptions about the covariance of consumption growth with stock returns, the share

of stocks in the financial wealth portfolio, the properties of the expected returns to human capital,

and the share of human capital in overall wealth. Using the Consumer Expenditure Survey (CEX),

Vissing-Jørgensen and Attanasio find estimates of risk aversion for stockholders in the range of

5−10, but with a broader sample and under different assumptions these estimates go up to 20−30.

They also compare their results to Campbell (1996), who estimates γ in the range of 17 − 25,

using data on monthly and annual returns, and assuming that the entire financial portfolio is

held in stocks. Alan and Browning (2008), use the PSID data to structurally estimate the joint

distribution of discount factors and relative risk aversion coefficients. They find that the lower

educated households are less risk averse than the more educated households, and that the medians

of the two relative risk aversion distributions are 6.2 and 8.4 respectively. Guiso and Paiella (2005),

using data from the 1995 Bank of Italy Survey on Household Income and Wealth, estimate direct

measures of risk aversion based on the maximum price a consumer is willing to pay to buy a risky

asset. They find that the median relative risk aversion is 6, if consumers have a one-year horizon, and

it is 16, if they have a lifetime horizon. Dohmen et el. (2005) present evidence on the distribution

of risk attitudes in the population, using survey questions and a representative sample of 22, 000

individuals living in Germany. The behavioral relevance of their survey is tested by conducting a

23Altig et al. (2001) report a proportional capital income tax of 20% at the federal level, but they also subject
capital income to a 3.7% state tax.

24This number is also reported by Jokisch and Kotlikoff (2006).
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complementary field experiment, based on a representative sample, and the conclusion is that the

survey measure is a good predictor of actual risk-taking behavior. They find that the bulk of the

mass in the γ-distribution is located between 1 − 10. There is, however, a non-negligible mass of

estimates in the range of higher values, up to 20. Barsky et al. (1997) measure risk aversion based

on survey responses by participants in the Health and Retirement Study to hypothetical situations.

They find that most individuals fall in the category that has mean relative risk aversion of 15.8.

Cohen and Einav (2005) use a data set of 100,000 individuals’ deductible choices in auto insurance

contracts, to estimate the distribution of risk preferences. They find that the 82nd percentile in

the distribution of the coefficient of relative risk aversion is about 13 − 15.25

The volatility coefficient is chosen to be σ = 0.15. The empirical estimation of the standard

deviation of idiosyncratic entrepreneurial returns is a very difficult task, and has not as yet received

much attention in the literature. So far, the most thorough attempt to measure idiosyncratic risk

is by Moskowitz and Vissing-Jørgensen (2002) and is at the cross-sectional level. Using the Survey

of Consumer Finances (SCF) data, they document poor diversification and extreme concentration

of entrepreneurial investment, significant heterogeneity in individual investment choices, and high

risk at the individual level due to high bankruptcy rates. However, because of the problems arising

when imputing labor income, and because of the lack of sufficient time dimension in the data, they

cannot provide an accurate estimate of the volatility of entrepreneurial returns for unincorporated

businesses. In the end, they conjecture that the volatility of returns for private firms cannot be lower

than the corresponding volatility of publicly traded firms, which the find to be about 0.5 per annum.

This number is also used in calibrations by Bitler et al. (2005), and by Roussanov (2009). On the

other hand, Benhabib and Zhu (2008) use a value of 0.26.26 The point to note here is that, because

of the lack of an accurate measure, the finance literature attempting to quantify entrepreneurial

risk has used plausible but arbitrary magnitudes for the private rate-of-return volatility.

An indirect estimate for the private-sector volatility could be motivated by the work of Davis

et al. (2006), who use the Longitudinal Business Database (LBD), containing annual observations

on employment and payroll for all establishments and firms in the private sector, to estimate the

volatility of employment growth rates. They find that, in 2001, the ratio of private to public

volatility was in the range 1.43−1.75. Given that the average annual standard deviation for public

firms over 1990− 1997 was 0.11,27 and that there is, at least in the context of the present model, a

close relationship between volatility of profits and volatility of labor demand, the choice of σ = 0.15

could also be justified from this perspective.

25Attanasio et al. (2002) also provide evidence of considerable heterogeneity in the point estimates of the relative
risk aversion coefficient, using data from the UK Family Expenditure Survey over 1978-1995. Estimates of relative
risk aversion in the range of 10 have also been reported by Pálsson (1999), who uses Swedish cross-sectional data
from tax returns in 1985.

26This choice gives a volatility of the return to the risky asset three times as large as the (exogenous) mean return
to the risky asset.

27As reported in Campbell et al. (2001).
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As additional support for the choice of σ = 0.15, it is noted that this magnitude generates an

annual variance for steady-state consumption growth in the range indicated by the micro data,

once consumer heterogeneity is taken into account.28

29

Parameters γ and σ are especially important for the calibrated model, for two reasons. First,

they directly influence λ, the fraction of wealth held by entrepreneurs in the economy. And then, for

example, as mentioned in section 3.2, when λ falls, i.e. when the entrepreneurs borrow more from

the laborers, then, for given prices, K falls as well.30 Given this importance of λ, the calibrated

model’s implications about λ are a good criterion of model performance. As will be shown in

section 5.3, the choices γ = 8 and σ = 0.15, which seem empirically relevant given the discussion

above, produce, without an attempt to match it, a value for λ that is reasonably close to the values

documented in the data. Second, parameters γ and σ relate to the interpretation of the capital-

income tax as providing insurance. For this reason, comparative statics will also be performed,

in section 6, to show how the tax that maximizes the steady-state capital stock varies with risk

aversion and the volatility of risk. The main result, that steady-state capital is inversely U-shaped

with respect to the capital-income tax, is preserved qualitatively for σ ∈ (0, 1) and for γ ∈ (2, 20].

5.3 Implications for steady-state aggregates and distributions

This section undertakes the examination of the quantitative performance of the model in terms

of aggregates and wealth distributions, for three reasons. First, to show how wealth inequality is

influenced by the random-walk component introduced in wealth by the idiosyncratic investment risk.

Second, to demonstrate how wealth inequality depends on the excess returns to entrepreneurship,

which is an important question in its own right, but also in view of the impact of agent heterogeneity

on capital accumulation. Third, to provide some additional confidence in the main quantitative

results presented in the next section (section 6) about the effects of capital-income taxation on

capital accumulation, by showing that the model performs well in matching aspects of the US

aggregate and welfare data.

Table 2 presents the implications of the model for steady-state aggregates, and compares them

to the data from the US economy. The model’s capital-output ratio is 2.8. Investment is 17% of

GDP. The safe rate is 2.5%. The steady-state fraction of entrepreneurs, χss, is 12%, and it matches

the data by choice of the transition probabilities, as explained in section 5.2. Entrepreneurs hold

28For example, Aı̈t-Sahalia et al. (2001), and Malloy et al. (2006).
29It is to be noted though, that their analysis focuses on the differences in the cross-sectional volatility facing

private entrepreneurs. But what really matters in the present model is the investment volatility an entrepreneur faces
over time, since the time dimension is the one relevant for capital accumulation. For this time dimension, Panousi and
Papanikolaou (2008) find that the mean annual idiosyncratic investment volatility is approximately 0.4 for publicly
traded firms in the US.

30This result also carries over to the steady-state analysis. For example, when λ 6= 1, then, for θ = 1, equation
(25) takes the form FK(K)− δ = R +

√

λ(R)−1 γ σ2 ( β − (1 − τK) R ), where λ = (β − (1− τK) R + pLE)/(β − (1−
τK) R + pLE + pEL). From this it is clear that, for given R, an increase in λ leads to a fall in steady-state K.

22



30% of total wealth in the economy, where the equivalent of λ in the data is the ratio XE/X31.

The share of total wealth held by entrepreneurs in the data ranges between 35% − 55%. The

model-generated value for λ is an indication that the model performs reasonably well, especially

given the low value of σ used in the calibration, and also since the rest of the aggregates could

have been matched by a standard neoclassical growth model. The fraction of entrepreneurs in the

top 10% of the population is 18% in the model, whereas in the data this number ranges between

32% − 54%.32

K/Y I/Y G/Y R χss XE/X χss in top 10%

US Data 2.7 17% 20% 2% 10 − 19% 35 − 55% 32 − 54%

Model 2.8 17% 20% 2.5% 12% 30% 18%

Table 2. Steady-State Aggregates.

Next, Table 3 examines the wealth distribution generated by the model. The first two rows

present the percentiles for wealth computed by Quadrini (2000), using the PSID and SCF samples

for 1994 and 1992, respectively. The last row is the conditional wealth distribution of the benchmark

calibrated model.33

Top Percentiles

30% 20% 10% 5% 1%

SCF 87.6 79.5 66.1 53.5 29.5

PSID 85.9 75.9 59.1 44.8 22.6

Model 76.25 63.68 44.44 29.80 10.53

Table 3. Distribution of Wealth in the US and in the Model.

Aiyagari’s (1994) benchmark calibration predictions for the wealth holdings of the top 5%

and the top 1% of the population are 13.1% and 3.2%, respectively. Hence, the present model

demonstrates how the random-walk component introduced in wealth by entrepreneurial risk helps

generate a fatter right tail in the wealth distribution.34

31This is because, in the data, wealth is defined as total net worth, i.e. it is financial wealth, X, as defined in the
present model, plus housing.

32The data on entrepreneurs and wealth concentration is as reported in Cagetti and De Nardi (2006).
33Compared to the data, the model’s unconditional wealth distribution has a larger fraction of agents at negative

levels of wealth, most likely because of the absence of borrowing constraints.
34A tractable extension that could improve the model’s prediction about wealth concentration at the top would be

to introduce a third state, in which an agent gets to be an entrepreneur operating a very high return or very low risk
production function. Then, the transition probabilities between the three states can be freely chosen to match desired
moments of the wealth distribution. In particular, making the good entrepreneurial state the least persistent and the
most likely to transition to the state of being a laborer would increase the precautionary saving, and therefore the
wealth concentration, of the very rich agents.
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Next, Figure 1 plots the Lorenz curves for the model’s aggregate wealth and consumption

distributions. The model produces results in the right direction, in that the distribution of wealth

over the population is much more unequal than the distribution of consumption. The model’s Gini

coefficient for wealth, conditional on wealth being positive, is 0.62. The model’s Gini coefficient

for consumption is 0.15.35 In the data, the Gini coefficient for total net worth is 0.8, and the Gini

coefficient for consumption is 0.32.
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Figure 1: Lorenz Curves for Wealth and Consumption

Finally, Figure 2 presents the model’s conditional wealth distributions over entrepreneurs and

laborers. On the horizontal axis is wealth normalized by mean annual income in the economy. On

the vertical axis are frequencies. The solid line represents entrepreneurs, and the dashed line labor-

ers. Consistent with the data, the distribution of wealth for the population of entrepreneurs displays

a fatter tail than the one for laborers. This is due to the random-walk component that the unin-

surable investment risk introduces into entrepreneurial wealth. Furthermore, the entrepreneurial

wealth distribution is shifted to the right, and it has lower frequencies at lower levels of wealth. This

is due to the higher mean return of the total entrepreneurial portfolio. Finally, the distributions

of wealth for both groups have significant mass of people with wealth higher than fifty times mean

35The differences in the Gini coefficients are due to the presence of human wealth: since poorer agents have higher
human-to-financial-wealth ratios, they can sustain relatively high consumption. This would not be the case in the
presence of borrowing constraints.
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income. In the model, the laborers at the right tail of the wealth distribution are former successful

entrepreneurs.
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Figure 2: Wealth Distribution for Entrepreneurs and Laborers

6 Macroeconomic Effects of Capital-Income Taxation

This section now proceeds to study the macroeconomic effects of capital-income taxation under

the benchmark calibration, where the relevant parameters are those of Table 1. Section 6.1 exam-

ines the steady-state effects of capital-income taxation. Section 6.2 examines the implications for

macroeconomic aggregates of eliminating the capital-income tax.

6.1 Steady state

This section quantifies the main theoretical result of the paper, which is that an increase in the

capital-income tax increases the steady-state capital stock, when the tax is low enough. As already

explained, this result is due to the general-equilibrium effect of the insurance aspect of the capital-

income tax, and it operates mainly through the endogenous adjustment of the interest rate.
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Figure 3: Steady State and Capital-Income Taxation

Figure 3 shows the behavior of the steady-state aggregates with respect to the capital-income

tax. Capital (panel (a)) and output (panel (b)) are inversely-U shaped with respect to the capital-

income tax, and they reach a maximum when τK = 0.4. The same is true for employment, the

capital-labor (capital per work-hour) ratio, and output per work-hour. At τK = 0.4, steady-state

capital per work-hour is 6.75% higher than when τK = 0, and output per work-hour is 2.65%
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higher.

Figure 3(c) shows that the net interest rate increases with the tax, and that it tends to the

discount rate, β = 0.024, as τK → 1. This is the demonstration of the precautionary saving

motive mentioned in section 4: when the capital-income tax increases, the effective volatility of risk

facing an entrepreneur decreases, which reduces the demand for precautionary saving, and therefore

increases the interest rate. Figure 3(d) reinforces this interpretation of the capital-income tax as

providing insurance: when the tax increases, the precautionary saving motive becomes weaker, and

therefore entrepreneurs are satisfied with a lower risk premium. Figure 3(e) shows that the fraction

of wealth held by entrepreneurs in the economy is decreasing in the capital-income tax. This results

from the combination of the weaker precautionary saving motive, and the fall in the risk premium.

At this point, it is useful to compare the effects of capital-income taxation in the present model

to those under complete markets, where there is no scope for insurance (assuming that agents are

homogeneous), as well as to those in the open economy version of the model, where only the direct

insurance aspect of the tax is present. As already mentioned, here, at τK = 0.4, steady-state

capital per work-hour and output per work-hour are 6.75% and 2.65%, respectively, higher than

when τK = 0. By contrast, under complete markets,36 at τK = 0.4, steady-state capital per work-

hour and output per work-hour are 25% and 11% lower than when τK = 0. And finally, in the

open-economy version of the model the aggregates fall all the way with the tax, but less so than

under complete markets. In particular, at τK = 0.4, steady-state capital per work-hour and output

per work-hour are 14% and 6% lower than when τK = 0.

Finally, in order to reinforce the insurance interpretation of the tax system, Figure 4 presents

robustness checks with respect to volatility, σ, and risk aversion, γ. On the vertical axis is the

tax that maximizes the steady-state capital stock. When either the volatility of risk increases or

risk aversion increases, the tax that maximizes the steady-state capital stock increases. These

comparative statics also indicate that the main result of the paper is robust to the wide range of

empirically plausible values of σ ∈ (0, 1) and of γ ∈ (2, 20]. In particular, for the low value of

σ = 0.15, the capital-income tax that maximizes the steady-state capital stock is positive for all

γ > 2, and it is actually zero when γ = 2.

36The complete-markets calibration uses the relevant parameter values from the benchmark Table 1.
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Figure 4: Robustness Checks

6.2 Aggregate dynamics of eliminating the capital-income tax

This section presents the immediate and long-run responses of the aggregate variables to the policy

reform that eliminates the capital-income tax, taking into account the entire transitional path of

the economy towards the new steady state with the zero tax. In the standard representative-

agent complete-markets neoclassical model, the optimal capital-income tax is zero in the long run,

as well as in most of the short run for an interesting class of preferences. These findings have

initiated an extensive debate as to the possible benefits of eliminating the tax on capital income.

By contrast, the main result of the present paper is that an increase in the capital-income tax may

actually increase the steady-state capital stock. In light of this result, it is worthwhile to revisit

the discussion on the implications of setting the capital-income tax to zero.

The present model can in fact examine the dynamic implications of policy reforms, because it is

very tractable, compared to other incomplete-markets models, where the entire wealth distribution

is a relevant state variable. Here, only the mean of the wealth distribution is relevant for aggregate

dynamics, which constitutes a significant gain in tractability, and allows for the entire dynamic

response of the economy, after a policy change, to be considered. This is important, since it has by

now been recognized that the immediate effects of a policy change may well be very different from

its long-run effects.

Here, the economy starts from the steady state described by the benchmark calibration pa-

rameters in Table 1, where the capital-income tax is τK = 0.25. Subsequently, the tax is set to
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zero, ceteris paribus. Table 4 shows the response of the aggregates on the impact of the policy

reform (denoted by Current), as well as at the new steady state (denoted by Long Run), under

both complete markets and the present model of incomplete markets. The effects on the interest

rate, R, the risk premium, µ, and the investment-output ratio, I/Y , are in percentage units. The

rest of the numbers denote percentage changes.

Current Long Run

Incomplete Complete Incomplete Complete

L −2.98 8.94 −0.0477 1.43

Y −1.80 5.27 −2.12 7.77

C 2.48 −5.52 −2.06 5.87

Y/L 1.22 −3.37 −2.08 6.25

I/Y −3.16 6.44 −0.52 2.48

Rnet −1.21 1.29 −0.13 0

Table 4. Dynamics of Eliminating the Capital-Income Tax.

Under complete markets, a permanent (unanticipated) tax cut leads to an immediate negative

jump in consumption and an immediate positive jump in investment. Capital slowly increases

and converges to a higher steady-state value, while consumption is initially lower and increases

over time. In other words, the long-run increase in investment requires an initial period of lower

consumption, which in turn allows for an immediate increase in investment as well. By contrast,

under incomplete markets, the exact opposite is the case. In light of the main mechanism of the

paper, investment decreases in the long run. This allows for an immediate increase in consumption,

and therefore necessitates a fall in current investment. In particular, the investment-output ratio

falls by more than 3 percentage units. These effects are also illustrated in Figure 5, which plots

the impulse responses of the variables when the capital-income tax is eliminated.
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(f) Net Interest Rate

Figure 5: Dynamics of Incomplete vs. Complete Markets: Eliminating the Capital-Income Tax

7 Welfare Effects of Capital-Income Taxation

This section studies the welfare effects of capital-income taxation under the benchmark calibration,

where again the relevant parameters are those of Table 1. Note that, under complete markets,

steady-state welfare is decreasing in the level of the capital-income tax. However, this result will be

upset here due the insurance aspect (both direct and indirect) of capital-income taxation. Section

30



7.1 examines the steady-state welfare effects of the capital-income tax. Section 7.2 examines the

dynamic welfare effects of eliminating the capital-income tax. These welfare effects will be examined

from two perspectives. On the one hand, one might be interested in examining the welfare of the

current generation immediately after the policy reform, taking into account the entire transitional

dynamics of the economy towards the new steady state with the zero tax. On the other hand, one

might be interested in examining the welfare of the generations that will be alive in the distant

future, i.e. at the new steady state in the long run. In the latter case, for example, an interpretation

of aggregate welfare is that it is the ex ante utility of the agents who are going to be assigned to

the stationary wealth distribution.37

7.1 Steady state

In steady state, as shown in Figure 3(f), aggregate welfare is maximized at τK = 0.7, whether for

entrepreneurs (solid line), laborers (dashed line), or the economy as a whole (dotted line).38 This

is because of the combined direct insurance effect of the tax, through the reduction in σ(1 − τK),

and the effect of the tax on aggregates. It is worth noting that in the open-economy version of the

model steady-state welfare is maximized when τK = 0.4, which reflects solely the direct insurance

aspect of the tax.

7.2 Welfare dynamics of eliminating the capital-income tax

The welfare implications of eliminating the capital-income tax are represented here in terms of a

compensating differential for each level of wealth and each type of agent, whether entrepreneur or

laborer. In particular, starting from the old regime with τK = 0.25, the question is what fraction

of his financial wealth would an agent be willing to give up in order to avoid the impact of the new

regime initiated by the policy change, either immediately or in the long run.

Figure 6 presents the welfare implications of abolishing the capital-income tax for entrepreneurs

(solid line) and laborers (dashed line). Panel (a) shows the welfare implications for the current

generation, taking into account the entire transitional dynamics of the economy towards the new

steady-state, and panel (b) shows the welfare implications for the generations alive at the new

steady state. Financial wealth normalized by annual mean income is on the horizontal axis, and

the compensating differentials are on the vertical axis. A negative number on the vertical axis

indicates an agent who benefits from the reform: the agent would have to be paid to be indifferent

37The welfare effects are more likely to be sensitive to the assumption that the insurance possibilities are exogenously
fixed. For example, in a richer model, there might be important welfare implications coming from the interaction
between the insurance effects of capital taxation and the insurance endogenously provided by private markets. Still,
the welfare implications of capital taxation are worth exploring here, especially since they will reveal how general
equilibrium mechanisms in particular can affect different types of agents differently.

38Naturally, entrepreneur welfare is higher than laborer welfare for all tax levels. In addition, entrepreneur welfare
is higher than laborer welfare for all levels of wealth, since entrepreneurs are unconstrained in their investment choices.
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between the old regime and the regime initiated by the impact of the policy change, hence the

agent prefers the new regime with the zero capital-income tax.
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(b) Long-Run Welfare Implications

Figure 6: Welfare Implications of Eliminating the Capital-Income Tax

Figure 6(a) shows that current-generation poor agents, whether entrepreneurs or laborers, prefer

the zero capital-income tax regime. As wealth increases, both entrepreneurs and laborers prefer

the positive capital-income tax regime. Finally, the mean cost of eliminating the tax is higher for

the middle-class agents than for the very rich. Figure 6(b) shows that, in the long run, both types

of agents and at all wealth levels prefer the steady state with the positive tax, the rich less so than

the poor, and the entrepreneurs less so than the laborers. Table 5 presents these welfare benefits (if

negative) and costs (if positive) of τK = 0, where V SR
E denotes the implications for entrepreneurs

of the current generation, V LR
L denotes the implications for laborers of the future generations, etc.

Here b1 and b5 denote the bottom 1% and the bottom 5% of the distributions, respectively; t10, t5,

and t1 denote the top 10%, 5%, and 1%, respectively; and pi, i = 1, 2, 3, 4, 5 denotes quintiles.39

b1 b5 b10 p1 p2 p3 p4 p5 t10 t5 t1

V SR
E −1.6 −2.1 0.7 9.4 21 22.6 23.3 23.7 11.9 5.9 1.2

V SR
L −0.8 0.1 3.6 12.7 20.7 21.8 22.3 22.5 12.3 5.6 1.1

V LR
E 0.8 3.8 7.6 15.2 15.6 16.2 17.6 35.4 24.9 17.9 7.9

V LR
L 0.9 4.4 8.8 17.6 17.8 18.1 18.8 27.6 17.3 11.4 4.4

Table 5. Welfare Implications of Eliminating the Capital-Income Tax.

39Under complete markets, and starting from the steady state with τK = 0.25, the average long-run welfare gain
(in terms of consumption equivalent) of eliminating the capital-income tax is 1.7%, whereas the average short-run
welfare gain is 0.6%.

32



These cross-sectional differences can be explained by referring to Figure 7, which plots, in the

top row for the current generation, and in the bottom row for the long-run generation, the response

of human wealth and of the (risk-adjusted) returns to saving for laborers and entrepreneurs, against

the tax rate of the policy reform. Let’s first turn to the immediate implications. The decrease in

the capital-income tax from τK = 0.25 to τK = 0 increases the demand for precautionary saving,

and therefore leads to a fall in the interest rate.40 Roughly speaking, since the capital stock is

historically given and cannot change, the fall in the interest rate increases human wealth. For

poor agents, whether entrepreneurs or laborers, human wealth constitutes a significant part of

total wealth, and hence they benefit from the elimination of the tax. Furthermore, poor agents

do not benefit much from insurance directly, since they invest little or nothing in the risky asset.

Therefore, in the short run, poor agents prefer the zero capital-income tax regime, mainly because

the elimination of the tax increases their safe income, and safe income is a big part of their total

wealth. Turning to the long run, the elimination of the capital-income tax increases the demand

for precautionary saving, and it therefore leads to a fall in the interest rate. But now, the general-

equilibrium implications of the interest rate adjustment for capital accumulation become relevant.

In particular, the fall in the interest rate reduces steady-state wealth and capital accumulation. It

turns out that the fall in the steady-state capital stock dominates the fall in the interest rate, so

that in the end steady-state human wealth falls. This adversely affects poor agents of all types,

since human wealth represents a big part of their total wealth. Because the risk-adjusted return for

entrepreneurs, ρ̂, increases when the capital-income tax is eliminated, the cost of the policy change

is not as high for an entrepreneur as it is for a laborer at any given level of wealth.

40Immediately after a reform that reduces the capital tax from a very high level, the net interest rate may actually
increase. This possibility, which does not emerge in the long run, is due to the usual distortionary effect of big tax
increases on investment.
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Figure 7. Immediate (SR) vs Long Run (LR): Human Wealth and Saving Returns

In conclusion, the elimination of the capital-income tax has welfare implications that differ

across time and in the cross-section of the population. These differences are due to the general-

equilibrium effects of the interest rate adjustment on capital accumulation. In particular, they

operate mainly through the different response of human wealth: immediately after the elimination

of the tax, when the capital stock cannot adjust, human wealth increases, whereas in the long

run, when capital accumulation changes endogenously, human wealth falls. Therefore, current-

generation poor agents prefer a zero capital-income tax in the short run, whereas future-generation

poor agents prefer a positive capital-income tax. Rich agents always prefer a positive tax, but less

forcefully in the long-run, because in the long run the elimination of the tax increases the mean

entrepreneurial portfolio return.

8 Conclusions

This paper studies the aggregate and welfare effects of capital-income taxation in an environment

where agents face uninsurable idiosyncratic entrepreneurial risk. The counter-intuitive result emerg-

ing is that an increase in the capital-income tax may actually, due to its general-equilibrium insur-

ance aspect, stimulate capital accumulation. This result stands in stark contrast to the effects of

capital-income taxation in either complete-markets models, or in Bewley-type incomplete-markets
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models, since in those models capital-income taxation necessarily discourages capital accumulation.

Furthermore, the result is quantitatively significant: for the preferred calibration of the model, the

steady-state levels of the capital stock, output, and employment are all maximized for a positive

value of the capital-income tax, at which point output per work-hour is 2.65% higher than it would

have been had the tax rate been zero.41

Although the present paper provides some useful guidance about the direction of optimal policy,

it does not solve for the fully optimal policy. An interesting direction for future research is the

formal study of optimal policy, either in the Ramsey tradition (though allowing for lump-sum

taxes, as in the present model), or in the Mirrlees tradition of endogenizing the source of market

incompleteness and having no ad hoc restrictions placed on the set of available instruments.

This paper focuses on the effects of uninsurable entrepreneurial risk, and abstracts from labor-

income risk, borrowing constraints, and decreasing returns to scale at the individual level. Ex-

tending the model to include these relevant aspects of the data and revisiting the effects of capital

taxation in this richer setting is important, not only to get a better quantitative evaluation of

the implications of capital taxation, but also to examine whether the general-equilibrium effects

identified here might interact with other sources of market incompleteness in an interesting way.

For example, after an increase in the capital-income tax, the increase in steady-state wealth doc-

umented here could make borrowing constraints less binding. At the same time, the increase in

the steady-state interest rate could also increase the cost of borrowing. Further investigating these

rich general-equilibrium interactions will greatly facilitate a better theoretical and quantitative

assessment of the implications of fiscal policy in dynamic heterogeneous-agent environments.

41Under complete markets, and starting from a steady state with τK = 0.25, the capital-income tax would have to
be reduced to approximately τK = 0.15, in order for output per work-hour to increase by 2.65%.
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9 Appendix: Proofs

Lemma 1. Let preferences be described by:

Jt = {(1 − e−β∆t)(c1−ψt nψt )1−1/θ + e−β∆t(Et[J
1−γ
t+∆t])

1−1/θ
1−γ }

1

1−1/θ ,

where c is consumption and n is leisure. Then, given the processes for c and n, the utility process

is defined as the solution to the following integral equation:

Ut = Et

∫

∞

t
z(cs, Us) ds , (31)

where

z(c, U) ≡
β

1 − 1/θ





(c1−ψt nψt )1−1/θ

((1 − γ)U)
−1/θ+γ

1−γ

− (1 − γ)U



 . (32)

Proof of Lemma 1. Define the functions:

g(x) =
((1 − γ)x)

1−1/θ
1−γ

1 − 1/θ
,

Ut =
J1−γ

t

1 − γ
.

Then:

g(Ut) =
J

1−1/θ
t

1 − 1/θ
= (1 − e−β∆t)

(c1−ψt nψt )1−1/θ

1 − 1/θ
+ e−β∆tg(Et[Ut+∆t]) .

Take a first order Taylor expansion in ∆t :

g(Ut) = g(Ut) + β
(c1−ψt nψt )1−1/θ

1 − 1/θ
∆t− βg(Ut)∆t+ g′(Ut)Et[∆Ut] .

Then:

Et[∆Ut] = −
β

(c1−ψt nψt )1−1/θ

1−1/θ − βg(Ut)

g′(Ut)
∆t ,

where:
g(Ut)

g′(Ut)
=

(1 − γ)Ut
(1 − 1/θ)

.

Hence:

Et[∆Ut] = −z(ct, nt, Ut)∆t ,

where:

z(ct, nt, Ut) ≡
β

1 − 1/θ
[

(c1−ψt nψt )1−1/θ

((1 − γ)Ut)
−1/θ+γ

1−γ

− (1 − γ)Ut] .
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For a more general proof of the above and for a proof of existence and uniqueness of the solution

to the integral equation (31) see Duffie and Epstein (1992).

Proof of Proposition 1. Because of the CRRA/CEIS specification of preferences, guess that

the value function for an entrepreneur is:

J(wE , t) = BE
t

wE 1−γ

1 − γ
,

where the term BE
t captures the time dimension. The Bellman equation for an entrepreneur is:

0 = max
cE , nE , φ

z(cE , n
E
, JE(wE , t)) +

∂JE

∂wE
(wE , t)[(φ(1−τKt )rt+(1−φ)(1−τKt )Rt)w

E−cE−(1−τLt )ωtn
E ]

+
∂JE

∂t
(wE , t) +

1

2

∂2JE

∂wE 2
(wE , t)σ2(1 − τKt )2φ2w2 + pEL[J(wL, t) − J(wE , t)] ,

where the function z is given by (32), and where the last term shows that the entrepreneur might

switch into being a worker with probability pEL. Because of the homogeneity of JE in wE , the

marginal propensity to consume and the portfolio choice will be the same for all entrepreneurs.

The first order condition for the optimal portfolio allocation gives the condition for φt in (16).

Combining the first order conditions for consumption and leisure we get the optimal leisure choice:

nit =
ψ

1 − ψ

1

(1 − τLt )ωt
cit . (33)

From the envelope condition we get:

mE ≡ B
E 1−θ

1−γ (
ψ

1 − ψ

1

(1 − τL)ω
)−ψ(1−θ)(1 − ψ)θβθ .

Similarly, guess that the value function for a laborer is:

J(wL, t) = BL
t

wL 1−γ

1 − γ
,

The Bellman equation for a laborer is:

0 = max
cL,nL

z(cL, nL, JL(wL, t)) +
∂JL

∂wL
(wL, t)[Rtw

L − cL − (1 − τLt )ωtn
L]

+
∂JL

∂t
(wL, t) + pLE [J(wE , t) − J(wL, t)] .
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Following similar steps, we get from the envelope condition that:

mL ≡ B
L 1−θ

1−γ (
ψ

1 − ψ

1

(1 − τL)ω
)−ψ(1−θ)(1 − ψ)θβθ .

It follows that:
BE

BL
= (

mE

mL
)

1−γ
1−θ .

Using this, the first order conditions, the envelope conditions, and plugging back into the Bellman

equation we get (18) and (19).

Proof of Proposition 2. Let R̃t be the effective risk-free rate. The human wealth for each

individual i = E,L in the economy is hit =
∫

∞

t e−
∫ s
t R̃jdj((1− τLs )ωs+Ts)ds. The human wealth of

the measure-χt group of entrepreneurs is HE
t = χt

∫

∞

t e−
∫ s
t R̃jdj((1−τLs )ωs+Ts)ds, and the human

wealth of the measure-(1−χt) group of laborers is HL
t = (1−χt)

∫

∞

t e−
∫ s
t R̃jdj((1− τLs )ωs + Ts)ds.

Hence total human wealth is Ht = HE
t + HL

t =
∫

∞

t e−
∫ s
t R̃jdj((1 − τLs )ωs + Ts)ds = hit. Using

the Leibniz rule, and substituting in from the government budget constraint (7), we get that the

evolution of total human wealth is described by (23). Since only entrepreneurs invest in capital,

the aggregate capital stock in the economy is given by Kt = φtW
E
t . For an agent in the E and L

group respectively, bEt + hEt = (1 − φt)w
E
t and bLt + hLt = wLt . Aggregating over each group, we

get BE
t + χtHt = (1 − φt)W

E
t and BL

t + (1 − χt)Ht = WL. Adding up and using the fact that

BE
t + BL

t = 0, we get Ht = (1 − φt)W
E
t + WL

t . Now using Wt = WE
t + WL

t and Kt = φtW
E
t ,

we get Wt = Kt +Ht. Combining Ht = (1 − φt)W
E
t +WL

t , Kt = φtW
E
t , and λt = WE

t /Wt, we

get (24). Aggregating across leisure choices we get (ψ/(1 − ψ))(1/((1 − τLt )ωt))Ct + Lt = 1, where

Ct = mE
t W

E
t +mL

t W
L
t , WL

t = Wt −WE
t , and Wt = Kt +Ht. Aggregating across (12) and (13),

and adding up, using BE
t +BL

t = 0, Ht = HE
t +HL

t , and labor market clearing, we get:

Wt = [(1 − τKt )rtKt + (1 − τKt )RtHt −
1

1 − ψ
Ct]dt .

UsingHt = (1−φt)W
E
t +WL

t , Kt = φtW
E
t , µt = (1−τKt )rt−(1−τKt )Rt, and Ct = mE

t W
E
t +mL

t W
L
t ,

and dividing through with Wt we get:

Ẇt

Wt
= (1 − τKt )rtφtµt + (1 − τKt )Rt −

1

1 − ψ
(λtm

E
t + (1 − λt)m

L
t ) ,

which gives (21) when we use ρt = φtµt + (1 − τKt )Rt. Aggregating across (12), and subtracting

from (21), we get (22).

Proof of Proposition 3. Consider first the case with λ = 1 and v = 0 (and labor is exogenous,

so ψ = 0). Combining (18) or (19) in steady state, with (21) in steady state, and using the definitions

of ρ and ρ̂, we get equation (25). Combining (24) with (23) in steady state , we get equation (26).
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Now, let µ(R) and φ (R) denote, respectively, the risk premium and the fraction of effective

wealth held in capital, when K is given by (25):

µ(R) ≡

√

2θγσ2

1 + θ
(β − (1 − τK)R) and φ(R) ≡

√

2θ

γσ2(1 + θ)
(β − (1 − τK)R) . (34)

Note that µ′(R) < 0 and φ′(R) < 0. Next, let K (R) denote the solution to (25), or equivalently:

K(R) =

[

µ(R) + δ +R

α

] 1

α−1

. (35)

Finally, for τK ≃ 0, τL ≃ 0, δ ≃ 0, G = gY , and Y = f(K) = Kα, we can write equation (26) as:

D(R; g) ≡ (1 − α− g)
K(R)α−1

R
−

1 − φ (R)

φ(R)
, (36)

where α+g < 1. To establish existence and uniqueness of the steady state , it suffices to show that

there exists a unique R that solves D(R; g) = 0. For a given g, consider the limits of D as R→ 0+

and R → β−. Note that µ(0) = (2θγσ2

1+θ β)1/2 is finite and hence both φ(0) and K(0) are finite. It

follows that:

lim
R→0+

D(R; g) = (1 − α− g)K(0)α−1 lim
R→0+

1

R
−

1

φ(0)
+ 1 = +∞ .

Furthermore, µ(β) = 0, implying φ (β) = 0 and K(β) = Kcompl ≡ (f ′)−1 (β) is finite. Hence:

lim
R→β−

D(R; g) = (1 − α− g)K(β)α−1 1

β
− lim
R→β−

1

φ(R)
+ 1 = −∞ .

These properties, together with the continuity of D (R) in R, ensure the existence of an R ∈ (0, β)

such that D (R) = 0. If D (R; g) is strictly decreasing in R, then we also have uniqueness. To show

this, note that, from (36):

∂D

∂R
= (1 − α− g)

K(R)α−1

R2

[

(α− 1)R
K ′(R)

K (R)
− 1

]

+
φ′(R)

φ (R)2
. (37)

In addition:

Kα−1 =
f ′ (K)

α
,

K ′

K
=

1

α− 1

µ′ + 1

f ′ (K)
, and

φ′

φ2
=
γσ2µ′

µ2
,

39



where the dependence of K, µ, and φ on R has been dropped for notational simplicity. Hence:

∂D

∂R
=

1 − α− g

α

f ′ (K)

R2

[

R
µ′ + 1

f ′ (K)
− 1

]

+
γσ2µ′

µ2
=

=
1 − α− g

α

Rµ′ +R− f ′ (K)

R2
+
γσ2µ′

µ2
.

Since µ′ (R) < 0 and R < f ′ (K (R)) for all R ∈ (0, β), it follows that ∂D/∂R < 0 for all R ∈ (0, β),

which completes the argument. When v > 0, an extension of the proof above shows that there is a

unique R solving D(R) = 0, where R ∈ (−v, β), and where:

D(R) ≡
(1 − gτL)(1 − α)K(R)α−1 + (1 − g)τKfK(R)

((1 − τK)R+ v)
−

1

φ(R)λ(R)
+ 1 .

However, in that case, uniqueness has not been proved, although simulations suggest that the

steady state is always unique.

In order to see how the existence of two types of agents modifies the characterization of the

steady state, consider next the case where λ 6= 1, and take θ = 1 for simplicity. Then, the marginal

propensity to consume is always constant and equal to β, for both types of agents. Equation (21)

in steady state yields λ = (β − (1 − τK)R)/(φµ). Combining this with (22) in steady state gives:

λ =
β − (1 − τK)R+ pLE

β − (1 − τK)R+ pLE + pEL
, (38)

which verifies that λ < 1. Plugging this back into (21) in steady state, we get:

φµ =
(β − (1 − τK)R)(β − (1 − τK)R+ pLE + pEL)

(β − (1 − τK)R+ pLE)
,

from which, if we use the definition of µ, we get:

FK(K) − δ = R+

√

1

λ(R)
γ σ2 (β − (1 − τK)R) , (39)

as the relevant version of (25). Finally, combining (23) in steady state with (24), we get:

K =
φ(K,R) λ(R)

1 − φ(K,R) λ(R)

(1 − τL)ω(K) + (1 − g) ( τL ω(K) + τK (FK(K) − δ )K )

(1 − τK)R+ v
, (40)

which is the relevant version of (26). Hence, the steady state is characterized by equations (38),

(39), and (40). So, (38) expresses λ as a function of R, (39) expresses K as a function of R, and

(40) solves for the equilibrium R, using K(R) and λ(R).

When labor is endogenous and θ = 1, then mE = mL = (1 − ψ)β, and the proofs above carry

through the same way, only now with fK(K/L) and ω(K/L). So for characterization of the steady
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state we need to add the labor market clearing condition, and the steady state system will be in

K,L,R. In particular, labor market clearing, combined with C = (1 − ψ)βW , λ = WE/W , and

WE = K/φ gives:

L = (
ψβ

(1 − τL)ω(K,L)

1

λ(R)

K/L

φ(K,L,R)
+ 1)−1 .

Finally, when labor is endogenous and θ 6= 1 then:

λ =

1
1−ψm

L − (1 − τK)R+ pLE
1

1−ψm
L − (1 − τK)R+ pLE + pEL

,

and

µ =

√

γσ2(1 − τ)2

λ
(

1

1 − ψ
(mEλ+mL(1 − λ)) − (1 − τK)R) .

Here we need to add two more equations to characterize the steady state, namely the Euler con-

ditions for the marginal propensities to consume. This will be a system of two equations in two

unknowns to be solved as a function of steady state prices.42

Lemma 2. When the interest rate is exogenous, W ′(R) > 0 ⇔ R > R.

Proof of Lemma 2. Let v = 0, λ = 1, τK ≃ 0, τL ≃ 0, G = gY , and Y = Kα. Then, from

(23) in steady state, we have that H(R) = (1 − α − g)K(R)α/R, while K as a function of R is

given by (35). Hence, we can write W (R) = K(R) +H(R). Differentiating with respect to R, we

get that:

W ′(R) > 0 ⇔ µ′(R) < (α− 1)
α K2(α−1)

R2

φ

φ+ α(1 − φ)
− 1 ,

which means that the interest rate has to be higher than a given threshold, i.e. R > R, since from

(34) it is easy to show that µ′′(R) < 0.

Proof of Proposition 4. Let the newborn household receive a weighted average aWt+(1−a)wit,

where 0 < a < 1, upon birth.43 Let dt be the indicator function, where dt = 1 for entrepreneurs

and dt = 0 for laborers. The dynamic system for the state vector (ξit, dt), where , ξit ≡ wit/Wt as

in the text, is:

ξ̇it = µ(ξit, dt) + σ(ξit, dt) dz
i
t − (ξit − 1)dN1

t

ḋt = s(dt) dN
2
t ,

42The conditions needed for establishing that λ > 0 are satisfied in simulations.
43One could rationalize this through the existence of an estate tax on the agent: if the agent dies, the government

takes away a(wit − Wt) from his descendants. The idea is to keep the aggregate wealth unaffected. Here, expected
wealth for the agent at any point in time is v · (aWt + (1 − a)wit) + (1 − v) · wit, and aggregating across agents yields
the desired result. The special case a = 1 implies that each newborn agent enters the economy endowed with the
sum of the mean economy wealth plus his human wealth.
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where dN1
t is the Poisson process denoting death with arrival rate vdt, and where dN2

t is the Poisson

switching process with arrival intensity p(I) dt:

p(d) = pLE if d = 0

p(d) = pEL if d = 1 ,

where:

s(d) = 1 if d = 0

s(d) = −1 if d = 1 ,

and:

µ(ξt, 1) = [
1 − λ

1 − ψ
(mL

t −mE
t ) + φt(1 − λt)(1 − τKt )(rt −Rt)]ξt

µ(ξt, 0) = [
λ

1 − ψ
(mE

t −mL
t ) − φtλt(1 − τKt )(rt −Rt)]ξt

σ(ξt, 1) = φtσt(1 − τKt )ξt

σ(ξt, 0) = 0 .

Let ΦE ≡ Φ(ξ, 1) and ΦL ≡ Φ(ξ, 0) be the conditional distributions for entrepreneurs and labor-

ers respectively. In steady state the conditional distribution ΦL satisfies the forward Kolmogorov

equation:

0 = −
∂(µ(ξ, 0) ΦL)

∂ξ
− p(0) ΦL + (pΦL)(ξ, 0 − η(0)) − vΦL +

v

1 − a
ΦL(

ξ − a

1 − a
) ,

and the conditional distribution ΦE satisfies the forward Kolmogorov equation:

0 =
1

2

∂2(σ(ξ, d)2ΦE)

∂ξ2
−
∂(µ(ξ, 1) ΦE)

∂ξ
− p(1) ΦE + (pΦE)(ξ, 1 − η(1)) − vΦE +

v

1 − a
ΦE(

ξ − a

1 − a
) .

In the two equations above we need to calculate:

(pΦ)(ξ, d− η(d)) = p(d− η(d))Φ(ξ, d− η(d)) .

To that end, let the old state be d, and the new state be d′. They are related through d′ = d+s(d),

and we need to compute η(d′) = s(d). For d = 0, we have d′ = 0 + s(0) = 0 + 1 = 1, and

η(d′) = η(1) = s(0) = 1, hence η(1) = 1. For d = 1, we have d′ = 1 + s(1) = 1 − 1 = 0, and

η(d′) = η(0) = s(1) = −1, hence η(0) = −1. Therefore:

p(0 − η(0))Φ(ξ, 0 − η(0)) = p(1)Φ(ξ, 1) = pELΦE ,
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and:

p(1 − η(1))Φ(ξ, 1 − η(1)) = p(0)Φ(ξ, 0) = pLEΦL .

Substituting for µ(ξt, 0), µ(ξt, 1), σ(ξt, 0), σ(ξt, 1) and using the above, we can write the system of

the two Kolmogorov equations as:

0 = c1ξ
2∂

2ΦE

∂ξ2
+ c2ξ

∂ΦE

∂ξ
+ c3ΦE + pLE ΦL +

v

1 − α
ΦE(

ξ − a

1 − a
)

0 = c4ξ
∂ΦL

∂ξ
+ c5ΦL + pEL ΦE +

v

1 − a
ΦL(

ξ − a

1 − a
) ,

where:

c1 =
φ2σ2(1 − τ)2

2

c2 = 2φ2σ2(1 − τ)2 − [
1

1 − ψ
(m−mE) + φµ(1 − λ)]

c3 = φ2σ2(1 − τ)2 − [
1

1 − ψ
(m−mE) + φµ(1 − λ)] − pEL − v

c4 = λφµ−
1

1 − ψ
(m̄−mL)

c5 = λφµ−
1

1 − ψ
(m̄−mL) − pLE − v

Now, the Laplace transform for any variable y is defined as:

Y (s) =

∫

∞

0
e−sty(t)dt ,

and therefore:

Y ′(s) = −

∫

∞

0
e−stty(t)dt = −L[ty(t)] ⇒ L[ty] = −

d

ds
Y (s) ,

and:

Y ′(s) = −

∫

∞

0
e−stty(t)dt ⇒ Y ′′(s) =

∫

∞

0
e−stt2y(t)dt = L[t2y(t)] .

Hence, we have that:

L[ty′] =

∫

∞

0
e−stty′dt = −sY ′(s) − Y (s) ,

and:

L[t2y′′] =

∫

∞

0
e−stt2y′′dt = s2Y ′′(s) + 4sY ′(s) + 2Y (s) .

Let c = 1
1−a , k = a

1−a , and τ = ct− k, then dτ = cdt and t = τ+k
c . So we have:

L[y(
t− a

1 − a
)] =

∫

∞

k/c
e−sty(ct− k)dt =

1

c
e−s

k
cL[y(t)]s→s/c = (1 − a)e−k(1−a)L[y(t)]s→s(1−a) .
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Therefore, when a = 1:

L[y(
t− a

1 − a
)] = (1 − 1)e−k(1−1)

∫

∞

0
y(t)dt = 0 · 1 · 1 ,

if y is a probability density function. Hence, the last term in both Kolmogorov equations will drop

out when a = 1. After changing variables to ξ = ex, and defining ∂ΦE/∂x ≡ Φ2 we get:









Φ′

L

Φ′

E

Φ′

2









=









0 c5/c4 − 1 pEL/c4

1 0 0

c2/c1 − 3c1 −pLE/c1 −2 + c2/c1 − c3/c1

















ΦL

ΦE

Φ2









Since all coefficients are constant, and ξ is bounded, a Lipschitz condition is satisfied, hence the

solution to the system exists and is unique.44 The conditional densities can be recovered by inverting

the Laplace transforms.

Proof of Corollary 2. Consider the case with λ = 1 and v = 0. Then, using (18) or (19) and

(21) in steady state, using the definition of ρ̂, and taking the total differential with respect to K

and R, gives:
∂K

∂R
=
φ− θ(1 − φ)

φ(θ + 1)

1

FKK
,

which proves that:
∂K

∂R
> 0 ⇔ θ >

φ

1 − φ
.

Lemma 3. The steady state measure of entrepreneurs is given by pLE/(pLE + pEL).

Proof of Lemma 3. Call χ the measure of entrepreneurs today, and χ′ their measure tomorrow.

Then χ′ = χ(1 − pEL) + (1 − χ)pLE . But in steady state χ = χ′ hence χ = pLE/(pLE + pEL).

44For proper (and non-restrictive) initial conditions, the solution is also stable.
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