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  Lecture Notes 
 
 

Abstract 
 
We expose a real options theory as a tool for quantifying the value of the operating 
flexibility of real assets. Additionally, we have pointed out that this theory is an 
appropriated methodology for determining optimal operating policies, and provide an 
example of successful application of our approach to power industries, specifically to 
valuate the power plant of electricity.   In particular by increasing the volatility of prices 
will eventually lead to higher assets values.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

I. Introduction  

 
As is well known not a long time has passed from the date when Black and Scholes had 
published their breaking paper [1]. But their model has had a significant impact on the 
developments of derivatives market. After that much interest in option pricing has been 
generated from the development of new options markets. The rapid development of 
theory and consequently its diverse application to the option pricing problem occurred 
after that. Since throughout the paper we will deal with the concept of call options, let us   
first say something fundamental about the term “Call Options”. We will need throughout 
the whole paper to use this term in many different modes.  Let us assume that there are 
two parties. These parties need to sign an agreement that is a financial contract between 
them. So, we have the buyer and the seller that have in common an option. It is an option 
to buy shares of stock at a specified time in the future. Often it is simple called an 
“option”. The buyer has the right but not the obligation to buy a given quantity of stock at 
a given price on or before a given date from the seller of the option of a particular 
commodity or financial instrument. The seller or also called as “writer” is obligated to 
sell the commodity or financial instrument should the buyer so decide. The buyer pays 
the fee, named also “premium” for this right. There are markets in call options on stocks, 
commodities, currencies, stock indexes, futures and interest rates. Specific options are 
priced differently but their common features can be restricted to the following definition.  
The given quantity is fixed and is usually either 100 units or 1,000 units. The given price 
is known as the exercise price or strike price (K).  The given date is known as the expiry 
date (T). Often the stock underlying the option is referred to as the underlying with the 
price S(t). The “option” price (value) we denote as C(t). 
 
Exchange traded stock options are listed with three, six and nine months of life and 
various strike prices. According their features of the end transactions we will have the 
following different possibilities.  
In-the-money is an option whose strike price is below the current stock price. 
At-the-money is an option whose strike price is close to the current stock price. 
Out-of-the-money an option whose strike price is above the current stock price. 
Most exchanges continually list options and there are all three types of options for each 
expiry cycle. 
American option is that defined earlier, can be exercised on or before maturity.   
European option can be only exercised on the maturity date. 
Usually their prices only slightly differ. 
Intrinsic value is the difference between the current stock price and the strike price. 
Time value is the difference between the option price and the current stock price and is 
the money the investor has at risk if the stock price stays constant. 
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Trees and Black-Scholes Approach 
Let us discuss now the so-called tree approach to option pricing and its connection to 
continuous Black-Scholes one.  Later on we assume that the interest rates 0r  . 
Due to asymmetry and no-arbitrage one can see that 
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that is presented at the graph. 1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The parameters necessary to calculate the option price C are K, the strike price;  S(0), r 
S(T) = S  dS, (spot price) with no probability needed for jumping up or down. 

 
Black-Scholes pricing formula through Cox, Ross & Rubinstein tree. 

 
For better explaining this approach let us consider a simple example of the binomial tree 
for stock dynamics with 0.08, $120r K  . So, the diagram for obtaining the value of 

called option C is 
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Fig.1  
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Next we can build a portfolio: Long N shares at $100  (current price). Borrow $B amount 
of money at r = 0.25. The net out-of-pocket cost is NS – B. We consider this portfolio as 
a replica of the option C: 
  

( )C NS B   

 
This portfolio gives the same return as the call option at the cycle end. So now we have 
the tree 
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As can be easily calculated the solutions at the end of the cycle are 
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The replica of the call on the cycle is long N = 0.5 shares at S = $100 and borrowing B = 
$24 at r = 0.25, then we have obtained  
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Being a risk-neutral probability (due to no-arbitrage). Denoting  ,S uS S dS    



Then the following relations 1, 1R u R d
     are the returns, while the risk-

neutral evaluation is 
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That is also written as a following relation 
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All are pretending to be in the risk-neutral world and the risk is irrelevant. 
 
 

Multiple periods 

If this is the case, let us subdivide the time to expiry T t    into n equal 

subintervals, /h n  and then the expected terminal option value is 
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The factor [ !/ !( )!] (1 )j n jn j n j p p    is the binomial probability that the stock will take 

j upward jumps in n steps, each with (risk-neutral) probability p. The second factor 

max( ,0)j n ju d S K   gives the call option value at expiry conditional on the stock 

following j ups and n-j downs.  Let C be in-the-money option for m ups then 
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the binomial DF (probability at least m ups out of n steps) and 
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For / 0h n   we have [ ] [ ]N    . Let us denote as usual [3] 
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After some evaluation we finally come to the B-S formula 
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The symbol   that appears here is due to the dynamical continuous rehedging. As is 
known the B-S equation without dividends reads 
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with the terminal condition 
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and the boundary conditions 
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Now let us obtain some conclusion from all these approaches. If a constant continuous 

compound dividend yield is present (
DS Se  ) then we have  
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And consequently  
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Multi-stock description 
Consider a certain derivative security that depends on n state variables and time, t. We 
make the assumption that there a total of at least n+1 traded securities (including the one 
under consideration) whose prices depend on some or all of the n state variables. In 
practice this is not unduly restrictive. The traded securities may be options with different 
strike prices and exercise dates, forward contracts, futures contracts, bonds, stocks, and 
so on. We assume that no dividends or other income is paid by n+1 traded securities.  

1. The short selling of securities with full use of proceeds is permitted. 
2. There are no transactions costs and taxes 
3. All securities are perfectly divisible 
4. There are no riskless arbitrage opportunities 
5. Security trading is continuous 
 

The n state variables are assumed to follow continuous-time Ito diffusion processes. We 

denote the ith state variable by (1 )i i n    and suppose that  

                                   i i i i i id m dt s dz                                                            (2)      

Where dz is a Wiener process and the parameters m and s are the expected growth rate in 

i . The m and s can be functions of any of the n state variables and time. This is not 

restrictive. A non dividend paying security by reinvesting the dividends in the security. 
Other notation used as follows 

ik : Correlation between  idz  and (1 , )kdz i k n                                                   

jf : Price of the j-th traded security (1 , )i k n   

r: Instantaneous (i.e. very short term) risk –free rate 
 

One of the jf is the price of the security under consideration. The short-term risk-free 

rate, r, may be one of the n state variables. 
 

Since the n+1 traded securities are all dependent on the i  it follows from Ito´s lemma in 

Appendix 12A that the jf follow diffusion processes: 
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In these equations j  is the instantaneous mean rate of return provided by jf and ij  is 

the component of the instantaneous standard deviation of the rate of return provided by 

jf , which may be attributed to the i  



Since there are n+1 traded securities and n Wiener processes in Equation (3), it is 

possible to form an instantaneously riskless portfolio, P, using the securities. Define jk  

as the amount of the j th security in the portfolio, so that  
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The jk  must be chosen so that the stochastic components of the returns from the 

securities are eliminated. From Eq. (3) this means that 
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j
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portfolio must earn the risk-free interest rate, so that 
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Eq.(7) and (9) can be regarded as n+1 linear equations in the jk ´s . The jk ´s are not all 

zero. From a well known theorem in linear algebra, th homogeneous equations (7) and (9) 
can be consistent only if  
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For some (1 )i i n   , which are dependent only on the state variables and time. This 

proves the result in Equation (12.13?). 
Substituting from equations (4) and (5) into equation (10) , we obtain 
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Which reduces to  
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(12) 
Dropping the subscripts to f, we deduce that any security whose price , f, is contingent on 

the state variables (1 )i i n   and time ,t, satisfies the second order differential equation 
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Application 

 
Two underlying traded assets V and S. 
When we have this case, the equation (13)  assumes the form 
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This equation has been used by Magrabe [4] to evaluate an option to exchange S by V and 
Myers & Majd [5] for option to abandon with V being a value of the project and S its 
uncertain salvage value. 

 

Option to exchange S by V. 
In this case F(V,S) is a homogeneous of degree 1 function, i.e.  
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Therefore the equation for F now reads 
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and finally we have obtained that  
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Here 
sDSe 

is a future price for the uncertain variable with yield sD .  

One of possible application of the model is considering firm’s operations as a series of 
European options to exchange the uncertain variable production cost (S) for the uncertain 
revenue (V).  
 
 

Real Capital Investment Opportunities as 

Collections of Options on Real Assets 

(real options) 
For this approach let us assume we now have the conventional NPV (net present value) 
technique, i.e. the risk-less world: 
For one period we will have :         
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For T  periods we can calculate : 
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In case that we are in front of a Risk-adverse world, the standard procedure gives 
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The basic inadequacy of this approach and other discount cash flow (DCF) approaches to 
capital budgeting is that they ignore management’s flexibility to adapt and revise later 
decisions, viz. to review its implicit operating strategy. The traditional NPV approach 
makes implicit assumptions concerning an expected scenario of cash flows and presumes 
management’s commitment to a definite operating strategy. In doing this, an expected 
pattern of cash flows over a specified project life is discounted at a risk-adjusted rate to 
arrive at the project’s NPV (what is reflected in the above formulae). This rate is usually 
derived from the prices of a twin traded financial security. Only projects with positive 
NPV are to be accepted.   
In the real world of uncertainty and competition the realization of cash flows would differ 
from what management originally expected. As new information arrives and uncertainty 
about future cash flows is gradually resolved, management may find that existing (or 
created) flexibility to depart from the original project design allows it to revise the initial 
operating strategy. For instance, management may be able to abandon, defer, expand, 
contract, or some other way, alter a project at various stages of its life. This flexibility 
introduces specific elements similar to those of financial options, in particular 
asymmetric distribution. Then the true expected value, or expanded expected NPV 
incorporates managerial operating flexibility and strategic adaptability. It exceeds the 
static or passive expected NPV by an option premium reflecting that flexibility.  

 

Quantifying Flexibility. Real Option Calculus. 

Ability to create a risk-less replicating portfolio – if the underlying asset is traded – or to 
obtain a  “certainty-equivalent” expected growth rate by subtracting an appropriate risk 

premium ( allows one more convenient  valuation in a “risk-neutral world”, where 

the risk-neutral expectation of a future option payoff  (at maturity T), TF , can be 

discounted at the rate, r, i.e.  (European calls) 
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for S traded   r –  and   is the dividend yield.         
       
The triangle 
 

 

generates a sample of trajectories with the error ~ /s n . The major drawback – it is 

limited to European - type options with no early exercise or intermediate decisions.   

                                                     

Finite-Difference Methods 
 
For this method to apply we will use the following Kolmogorov – BS equation 
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Let us consider K-BS equation and derive a finite-diff. approximation. Let    F(s,t) = 
F(ih,jq)    then we have  
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This is a system of (3xN) linear equations such that  and so on all down till  j = 0. 

 

The explicit scheme. 
 
Further, when we use the  andF F

s ss
representations let us make the substitution 

1j j   . After some calculations we have got the next equation    

  
and the coefficients are determined by the next set of relations 

 

for each time step backward (lattice approach). The coefficients 
i

p  and 0
i

p  are the 

risk-neutral probabilities that the state variable, S , being in state i at time j will jump up 
(to state i+1), jump down (to state i-1) or stay in the same state (i) by the next period 
(time j+1) respectively and all of them should be non-negative or otherwise an instability 
may arise. 
So the explicit scheme gives the equation that says that “the current option price is 

obtained from the expected  one   period future option values (using the probabilities in 

a trinomial tree), discounted back at the risk-less rate in a risk-neutral world” 
 

Some simplifications for obtaining solutions 
1. the first simplification we can do is a log-transformation of  S , viz.  X = lnS   that leads 
to the following equation  
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So the  p’s variables are independent of the state and can be chosen always to be non-
negative: 

 
and  X  follows a trinomial jump process  
 

 
 
and 

 

Unfortunately we have obtained Var(DX)  <  
2q  for the  variance of the continuous 

process. 
   
2. The second simplification consists in the following scheme.  Removing the term  rF  
by ( , ) ( , )rf X e F S   and using the implicit diff. scheme (at j) we come to (*) with 

(**). 
 
3. The third one, is done by playing  with the probabilities, considering the finite-
difference equation as a phenomenological one, then we have 
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4. The next simplification will be done by a  more general transformation 
 

 
(log., detrended and normalized transformation) gives 

 
with 

 
now 

 
therefore in the case  h2 = q we have  

 
the binomial tree results (a particular case of the binomial tree). 
 
 

Special binomial approach 
At this stage we can establish the goal: to design method applicable both to the valuation 
of complex financial options and to the valuing of capital budgeting  projects with 
multiple real options. 
 
In our case the underlying asset, V  the gross present value of the expected cash flows 
from immediately undertaking the real project (rather than S). 
 
Assume 

With the following parametric definition  
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the instantaneous expected return on the project, 

the instantaneous standard deviation, q=t  then 
X=lnV  follows an arithmetic Brownian motion.  

If we analyze the case under risk neutrality, for which r, we obtain As it can be easily  

seen, the increments, X, are independent, identically and normally distributed with  
 

 
 

Denote 2q    , then 

 

Consider the discrete process with the same mean and  

Var and 2 /q N   the binomial tree is 
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and there are not  external constraints for stability. 
 

Implementation  
For this aim we will follow the next four main steps:  
1. The standard parameters are specified affecting option values 

 (Any “dividend yield”), set of costs outlays I,s and the number of subintervals N 
The cash flows, CF, and their timing (if discrete) and the type, timing and other 
characteristics of the embedded real options are specified as well.  

2.  Calculations of the algorithm parameters; 

 

       time step  q =  2 T / N ,      

      drift         =  (r - )/  2 –1/2  
 

      value step   h = 
2( )q q              

 probability    
1

(1 / )
2

p q h        

 
3.   Determination of terminal values (at j = N) for each state i,:  
    ( )    and    ( ) ( )

0
X i X ih F i R i     then 

 
4.   Backward iterative process: for each step  j  (j = N,…,1) and every second state  i, 

calculate opportunity values using information from step (j +1) as 
 
• Adjustments for cash flows (dividends): 
At each cash inflow (ex-dividend) time, determine downward extension of triangular path 

and shift () for each state  i:  ( ) ( )R i R i CF    .  At each cash outflow (exercise) 

time: 

( ) ( )R i R i I    

 
• Adjustments for multiple real options: 

The project can be outlined as shown in the picture:  
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Three investment outlays  I1 , I2 , and  I3  during the building stage, then  possible cash 
inflows. The following Options are available : 1) to wait up to T1  years; 2) to abandon 
early by forgoing a preplanned outlay I2 ,  3) to  contract the scale of operations by c% 

thereby saving part I3 of a planned outlay I3 ,  4) to expand production be  e% , making 
an extra outlay I4 , 5) to switch the project from current to its best future alternative use or 
to abandon for  its salvage value (S). 
Switch use (abandon for salvage S):         R’= max(R, S) 
expand by e% by investing additional     : R’= R+max(eV - I4, 0) 

contract by c%, saving       :                    R’= R+max(I3 - cV, 0) 
abandon by defaulting on     :               R’= max(R - I2, 0) 

defer until next period:                        1max( ( ), )r

j jR e E R R
   

 
• Adjustments for exogenous competitive arrivals (jumps) must be made at   
  appropriate times. 
 

Applications. Power Plant 
At this part we will follow the work [10].Valuing a power plant using real option theory 
has two main purposes in competitive markets: 

1. Accurately determine its value. 

2. To facilitate the use of risk management tools   developed for financial markets in 
order to hedge both     asset value and earnings. (For instance, a power plant      

can be hedged using forward electricity contracts. 
 



Ignoring non-fuel costs, the net profit per hour for a power plant is  

 

 
where the involved variables are  

 
  q  is dispatch (output) level       (MW)  

is electricity spot price E
P        ($/MWH)  

is the input fuel spot price F
P    ($/MMBtu) 

H   is the plant heat rate              (MMBtu fuel per    
                                                     MWh electricity)   
 

The quantity ( )E EP HP  is the spark spread  (sp-sp) and 

• If  sp-sp > 0  then q must be maximal 
• If  sp-sp < 0  then shut down 
i.e. the instantaneous plant pay-off per unit capacity is  

an option to exchange one asset 
FHP for another 

EP , or a call option on the asset  

EP with exercise price  
FHP . 

 
There are three types of generating plants (units): 
 
1.   base-load  (low input costs) “in-the –money” option 
                                        with low price enough to work 
2.   mid-load 

 

3.   peakers  (high input costs) “out-of-the-money” option 
                                        with high price needed to work 
 
This is a good-but-not-enough approach (linear option to exchange) for it may misprice 
the plant value and mislead on the optimal operating policy. The following important 
characteristics (restrictions) are not involved: 
 

1. Minimum on (up) and off (down) times. 
2. Minimum ramp (start-up) time (e.g. heating the boiler) 
3. Minimum generation level 
4.  Response rate constraints (time required to effect a discrete change in   the 

dispatch level) 
5. Non-constant heat rate (heat rate H varies with the generation level) 
6.  Variable start-up cost (cost to start-up depends on the time spent off-line) 
 

 E FNP q P HP 

max( ,0) max( , )E F F E FP HP HP P HP   



Stochastic dynamic programming is a tool to solve the problem, viz. to calculate plant 
values and optimal operating policies.  
 
Two tasks  
 
•  Developing a lattice for the underlying stochastic variables 
•  Backward dynamic programming to compute the value & the optimal  
   operating policies. 
 
For a method, see in Hull & White 1993 for “path dependent” option evaluation. Also 
this approach is good for energy pipelines and storage facilities. 
 
Model: evaluation of thermal power units over a short-term horizon (a week).  
 
Time spacing (decision making interval) is 1 hour: 0,1,2,…,T 

                             
 
 
 

  Table 14 
  

  Parameter          description                           units 
          
  ton          minimum up  time                                      hours 
                            
     toff          minimum down time                        hours               
 

         tcold         additional time over  toff                          hours 
                                 with variable cost                              

 
         tramp                  time required to bring a unit                       hours                                
                                  on line         

  qmin            minimum dispatch level                         MW 

    
          qmax                 maximum dispatch level                         MW   
 
         H(q)                 heat rate                                                 MMBtus/ 
                                                                                                            MWh 

     
Operating state constraints 
s  is the operating state of the plant consisting of plant condition and its duration  

N  is the total number of the plant states:   1 s N    with 



          States Plant condition 

 

off cold ramp off cold ramp ont t t s t t t t        

 
On-line 

 

    off cold off cold rampt t s t t t      

Ramp (unable to sell 
power)  

Off-line 1
o f f c o ld

s t t  

Table 15 
  
 
 
 
 
 
 
 
 
 
 
 
State transition diagram 

 
Example: 

 
Condition          Duration (hours)  
 
 
                                     0                      1                   2                   3 
 
 

                                           

Off-line 
 
  
Ramp 
 
 
On-line 

                                                                            Minimum 
 
                                                                             
                                                                 Maximum 
   
State 1: a plant has just gone off-line 

o f f c o l d r a m p o nN t t t t   

2, 2, 1, 2on off ramp coldt t t t   

1 2 43

7 6 

5 

8 



State 2: a plant has been off-line for an hour 
State 3: a plant remains off-line 2 hours 
State 4: off-line for 3 or more hours 
State 5: start up 
State 6: on-line at the minimum dispatch level 
State 7: on-line for one or more hours (2 hours ton) at the minimal dispatch 
             level   
State 8: on-line for one or more hours at the maximum dispatch level 

               
Possible transitions s  s  shown at the diagram mean that   s  A(s). 

 

Price Processes 

Let us assume the prices are discrete: and     E F

jt jtP P  with index j specifying the point in 

the price space.   Assume also that the spot price of electricity follows a   
mean-reverting geometric Brownian motion process: 

where  pE  is a drift parameter, aE  is the mean reversion  rate,  
E

   is the volatility and 

dWE  is the Wiener generator. In the Hull book it’s shown that a trinomial tree may be 
used to represent this process. This tree is determined by the price space and the 
transition probabilities we have discussed. The drift term is assumed time-dependent to 
calibrate to an observed forward price curve. In the simplest model the fuel prices are put 
constant, however this restriction can be removed by considering two-factor model. Some 
more simplification of the model is to assume the plant heat rate to be constant and 
playing with only one stochastic process, the spark spread directly. 

 

Costs and Revenues 
Each operating state has an associated cost or revenue. 
We assume the following form 

 
Here Kfix is the fixed cost in all states. Transition costs (from state s to state s`) may be 
accounted for. 
 
Dispatch and response rate constraints 

 ln lnE E

E E E Ed P p a P dt dW  
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0 1,..., off cold startupq if s t t t

q q q otherwise

   

 



This is denoted as q B(s). These constraints impose no restriction on how fast a plant 
can change its dispatch level: if it is on-line, it can be dispatched at any output level. The 
third dimension to the state descriptor (in addition to plant condition and duration) is two 
discrete levels of the plant dispatch, min and max. There is a restriction for that transition, 
say one hour.  
 

Solution method 
Here we face the optimization problem that may be formulated in a set of time periods. 
An optimal policy with n periods remaining may be determined by selecting the policy 
that maximizes the sum of net revenue in period n plus the expected net revenue in the 
subsequent  n –1 remaining periods. The optimal policy for this problem is to solve             

 
Here  Fjt (s) denotes the value of the power plant over the period t  to T conditional on 

being in energy Price State j at time t and operating state s ;          
j

jtp

  represents the 

probability of moving from price state  j at time t to price state  j  at time t + 1. This 
equation states that the value of the plant over the remaining periods (from time t to T) is 
the sum of the net revenue in period t and the expected value of the power plant from 
time t + 1 to T which is conditional on the  plant operating state at time t + 1. We select 

the operating state s  that results in the maximum plant value (net the state transition 
cost), conditional that it is feasible transition from state s.  
This maximization determines the optimal operating state transition policy for the plant. 

The plant value at time 0, 0,0 ( )F s  is obtained by solving the equation recursively, 

backward from time T for all possible Price States j and operating States s , to time 0 
which has only a single known price state. In addition to plant value, a key result of the 
solution is the optimal operating policy that consists of the optimal plant output in each 
on-line state as a function if price state and time, and the optimal state transition strategy 
as a function of the current operating state, price state, and time. The optimal operating 
policy should be used by the plant operators to maximize the plant value. Usually the 
optimal state transition strategy may be expressed in terms of a set of exercise 
boundaries. For example, if the current state is on-line, the optimal transition in the next 
period will be to remain on-line for all values of the spark spread greater than a certain 
critical value and go off-line for all spark spreads that are less. In general those 
boundaries vary through time. 
 
 

Simple example:   

H = const., Kfix , qmin = 0.5 MW,  qmax= 1. See the diagram (???????) 
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Feasible operating state transitions 

 
 
condition                     duration 
 

          0                    1 
 
Off-line 
 
 
 
On-line 
 
 

 
 
 
Plant value and optimal operating policy: NV + Option 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
State transition decisions should take into account not just immediate net revenue but also 
the opportunity cost in terms of future decision-making flexibility; the simple exchange 
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option approach does not consider this. This phenomenon explains why electricity prices 
have gone to zero or even negative for short time periods in some markets. 

     

Conclusions 
We saw how real options theory may be applied to value power generation assets. In 
particular, the model we develop is capable of handling constraints related to minimum 
on-and off-times, ramp times, minimum dispatch levels and response rates. The optimal 
operating policy also may be very much affected. 
Real options theory supplies a methodology for quantifying the value of the operating 
flexibility of real assets and for determining optimal operating policies.  
It is possible to improve greatly the effectivity of operating options and to reveal 
"hidden" asset value. Understanding the sources of asset value and its sensitivity to fuel 
and electricity prices is also critical for companies seeking to determine a suitable 
hedging policy through either forward sales or other derivatives contracts. Effective 
applications of real options theory demands that managers become familiar with its 
underlying assumptions in order to understand its strengths and weaknesses as well. The 
pay-off for companies is the ability to effectively leverage a company's assets to achieve 
an optimal trade-off between risk and payoff. 
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