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'~ Abstract

With most of the available software packages, estimates of the parameter
covariance matrix in 8 GARCH model are usually obtained {rom the outer
products of the first derivatives of the log-likeliboods (BHHH estimator).
However, other estimators could be defined and used, analogous to the
covariance matrix estimators in maximum likelihood studies described in
the literature for other types of models (linear regression model, ligear
and nonlinear simultaneous equations, Probit and Tobit models). These
alternative estimators can be derived from: (1) the Hessian (observed
information), (2) the estimated information (expected Hessian), (3) a
mixture of Hessian and outer products matrix (White’s QML covariance
matrix). Signifacant differences among these estimates can be jnterpreted
as an indication of misspecification, or can be due to systematic inequal-
ities between alternative estirnators ia small samples. Unlike other types
of models, frormm our Monte Carlo study we do not encounter very large dif-
ferences, presumably becanse GARCH estimation is usually applied when
the sample size is rather large. However, analogously to other types of
models we find in this Monte Carlo study that, even in abseace of mis-
specification, the sign of the differences betweer some estimators is almost
systematic. This suggests that, as for other types of models, the choice
of the covariance estimator is not neutral, but the results of hypotheses
testing are not strongly affected by such a choice. (1)

(DFor presentation at the European Mecting of the Econometric Soctety, Upp-
sala, 22-26 August 1993. The authors are indebted to Lucia Buzzigoli, Giampiero
M. Callo and Barbara Pacini for discussions and comments. Financial support
from MURST 60% and CNR funda iz gratefully acknowledged.
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1 Introduction

The number of theoretical and applied works on Autoregressive Con-
ditional Heteroskedasticity (ARCH) has rapidly grown after Engle
(1982).

The most popular among all processes derived from ARCH seems
to be the Generalized Autoregressive Conditional Heteroskedastic
process (GARCH) proposed by Bollerslev (1986) and discussed in
Eagle and Bollerslev (1986). It was introduced maialy ¢o allow for a
more flexible Jag structure with respect to the ARCH specification.
As Bollerslev (1986, p.308} points out, the "extension of the ARCH
process to the GARCH process bears much resemblance to the ex-
tension of the standard time series AR process to the general ARMA
process and (....) permits a more parsimonious description”.

Engle (1982) proposed an efficient two-step procedure for estima-
tion of ARCH models. However, GARCH estimation is usually per-
formed with maximum likelihood, assuming a conditional normal or
a conditiopal Student-t distribution of the error terms. In this con-
text, maximum likehhood estimation is usually performed by iterat-
ing to convergence a Newton-like algoritbm where the Hessian matrix
is replaced by the (asymptotically equivalent) matrix of outer prod-
ucts of the first order derivatives of the log-likelihoods. The method
became popular in the econometric literature afier it was proposed -
for systems of simultaneous equations in the well known paper by
Berndt, Hall, Hall and Hausman {1974) and is usually referred to
as the BHHH method. Application of this procedure is widely ex-
emplified in the recent literature on conditional heteroskedasticity.
Examples are the papers by Thomas {1991, p.10), Lamoureaux and
Lastrapes (1990, p.227), Baillie and Myera (1991, p.116), Bollerslev,
Engle and Wooldridge (1988), Engle, Lilien and Robins (1987), Nel-
son (1991), Baillie and De Gennaro (1990, p.208), Bollerslev (1987,
p.544), Chou (1988, p.291), Baillie and Bollerslev (1989, p.300), De
Santis and Sbordone (1990, p.6), Buzzigoli (1992); see also the pa-
pers in Engle and Rothschild (1992).

Many of the above and other applications have been performed
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using the excellent software developed by Tim Bollerslev and Ken
Kroner, based on the BHHH algonthm with numerical computation
of the first order derivatives. The main reason for using an algerithm
like BHHH is that it does not require computation of derivatives be-
yond the first order, and the main reason for calculating derivatives
pumerically is the complexity of analytical derivatives in the GARCH
context (see Engle and Bollerslev, 1986, p.25).

A natural consequence is that in hypotheses testing the inverse of
the outer products matrix is used o estimate variances and covasi-
ances of the equation and GARCH errors parameters.

Calzolari and Fiorentin (1992) calculate analytical second order
derivatives and investigate the computational benefits of the analyt-
ical Hessian in the maximization procedure. They also derive formu-
lae for the estimated information matnx (expected Hessian). Their
formulae will be used in this paper to estimaie parameter variances
and covariances in several different but asymptotically equivalent
ways. Equivalence rests upon the property that, under correct spec-
ification of the model and suitable regularity conditions, all these
covaniance estimators asymptotically give the inverse of Fisher’s in-
formation matrix.

The inverse of the matrix of second order derivatives of the log-
likelihood (observed Hessian}), with minus sign, is an estimator of the
asymptotic covariance matrix of all parameters of the model (equa-
tion coefficients as well as a’s and #’s parameters of the GARCH
error process). It would be natural to use this covariance estimator
if some Newton-like maximization method were employed to calcu-
late maximum likelihood estimates.

The first derivatives of the log-likelihood can be used to build a
matrix of outer products, (OP matrix, as in Berndt, Hall, Hall and
Hausman, BHHH, 1974), and its inverse can be used to estimate
variapces and covanances. o most applications of the literature
it is customary to take advantage of the block-diagonal structure
of the information matrix, and therefore the off-diagonal blocks of
the malrix are set to zero. Of course we may also calculate the
full matrix of outer products, including the two off-diagonal blocks.
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Both matrices will be computed and used in this Monte Carlo study.

Calzolari and Ficrentini (1892) also perform maxicoum likelihood
estimation using the method of scoring, thus employing the inverse
of the estimated information matox (expected Hessian). Also this
matnx (which is block-diagonal) can be used to estimate variances
and covariances of the parameters of the model.

Not associated with a particular maximizatios algorithm is the
quasi maximum likelihood (QML) covariance matrix estimator, the
use of which has become more and more popular in the last few
years, after White (1982,1983) and Gourieroux et al. (1984). It gives
the covariance matirix of the parameters when the error distribution
process is nol correctly specified (russpecification consistent}. Its
computation requires both matrices of second order derivatives and
of outer products of first derivatives. As the block-diagonality of the
information matrix depends on some particular features of the error
process (like, for instance, zero third order moment), it seemed more
sensible to use Hesstan and QP matrices in full form, to construct
this QML estimator. Of course, under correct specification, also this
estimator is equivalent to the others, as it gives asymptotically the
inverse of the Fisher's information mabrx {thus, block-diagonal).

Although perfectly aware that these covariance estimators are
equivalent only for large samples, we would probably expect that
even for a small sample all groups of results had to be sufficiently
close 10 one another, specially because all the matrices would in any
case be computed at the same parameters values. In large sam-
ples, significant differences could be interpreted as an indication of
misspecification (e.g. White 1982). For small samples, this is not
necessarily true, as several Monte Carlo studies have shown for other
types of models: the Probit model (Griffiths et al. 1987), linear and
nonlinear simultaneous equations (Calzolari and Papattoni 1988a,
1988b), the linear regression model (Parks and Savin, 1990}, the
Tobit modet (Calzolari and Fiorentini, 1993).

In this paper we first summarize the analytical formulae for the
first and second order derivatives of the GARCH log-likelihood with
respect to all paramelers, presented in Calzolari and Fiorentini (1992)
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(first derivatives are also given in Bollerslev, 1986). We then use
these derivatives to build the Hessian matrix, the outer products
matrices, the estimated information matrix and the QML matrix.
Fizally, with a wide set of Monte Carlo experiments on three mod-
els, we compare these different estimators of the covariance matrix.

2 The GARCH (p,q) model, log-likelihood, first and

second dertvatives

In this section we summarize the formulae derived in Bollerslev
(1986) for the first order, and in Calzolari and Fiorentini (1992)
for the second order derivatives of the log-likelihood. We represent
the GARCH (p,q) model as

1] ye = b+ ¢,

(2] €| Zeey ~ N(O; hy)
q P

(3] hy=00+ Y oiet_i+ Y Bihej = zw
=1 =1

where

y. is the endogenous variable;

z, is a k x 1 vector of weakly exogenous variables in the sense of
Engle, Hendry and Richard (1983);

b isa k x 1 vector of unknown coefficients;

€, is a conditionally normal disturbance;

T, is the information set;

2= (L gy gy Bty o iy

w = (@, 0y, .y gy P, -y By) 18 the (1 + ¢+ p) X 1 vector of
unknown variance parameters.

9 =(¥,w') isthe (k+14 ¢+ p)x1 vector of all unknown
parameters.
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Applying Schweppe’s (1965) prediction error decomposition form of
the likelihood function, the log-likelihood is, apart from some con-
stant

T
) £2(6) = S 4(0)
5) (o) = ~3 log b~ 53

For the pre-sample values of #, and ¢ we take an estimate of the
unconditional expectation, so il ¢ <0

2 1 a 2
[6] h'=ct=T§61

where é? are consistently estimated residuals.
Differentiating with respect to the variance parameters w we get

7] = t oAt

e _ 110k 10k 110h[4
dw  2h 0w  20wh? 2k, 8w |k

where

oh, P, Ok
8] et g bz~
moreover

1 X,
g > (f zcz) 0
therefore if t <0

Oh,
[10] o

and this allows to calculate recursively derivatives of equation (8).
Differentiating with respect to coefficients we get

=0

31g l l ah¢ €T, lahg 63 . [ 1) ]. l 5h¢ |:C!2 1:|

11 = —_—— 4 2 Pl S A A I Il S
=22 " h T2 a = h T2k 3 |n
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recalling that for ¢ <0

= R’L A T ¢ == -2 s = — 1 2ty
[12] =5 = 3o T‘XT_;:, TZ; €. TECI
while for ¢t > 0 52
]
[13] b
Apart from missprints, the equations above are the same as in
Bollerslev (1986). Note that the expression given in equation (12)
vanishes only asymptotically in a GARCH estimation (while it would
be identically zero in OLS), so we have included its value in our com-
putations.

= —26;34

a q9
[14] -2 E oz, Ty~ .C(-. I‘_
=1

(1-Te-s)
Ze :r.]

Eﬁah,. Iiei=1 i t—:>0
J Ig_l‘=0 1ft—z§0

which is slightly different {from Bollerslev (1986, p.316, eq.24), the
difference being confined to the first ¢ time periods. This makes
our computations exactly comparable with those based on numer-
ical first order differentiation, which automatically accounts for a
non-zero value in equation (12). Equation (2) allows us to com-
pute recursively derivatives with respect to coefficients recalling that
pre-sample values of Ay, ¢? and their derivatives are given in equa-
tions (6) and (12). Further differentiation gives the terms to build
the Hessian matrix. Note that, although the information matrix is
known to be block diagonal, the efficient implementation of Newton
or Newton-like algorithms requires the full Hessian matrix, which is
not block-diagonal in small samples. Differentiating with respect to
the variance parameters we get

o, [e? } G, [1 1 ah.] 1 1 Oh, Ok, ¢?

18] zae = | Y 5w 280w | T 2R 0w sk,
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b 2 h et T 2R 0w B | T 242 Bw B ke

Differentiating with respect to the coefficients we get

3 [e,’ ] [1 1 ke 11 ahlah.] 11 Ohy Bk

8%, TeT, 1 Ok b 0 |11 dh,
RN A Wl v A [h, 1] oY [ih—ﬂ]
1 Oh , 110k 0he
“Ob"tT 2h2 9b O hy
where
URC A (RS AR (RN %,
oY |2h, 36| 2h, 0¥  2h? 8b OF

The second order mixed derivatives are

0%, Ok 1 10k 8k 1 [6_3_1]

1 — e, — — tZt
18] B o hE 2 0b ol B2 | By

11 6%k, [el ] 1¢? 8h, Bhy 1

2 h, b3’ | . " 2h 3b G R}

All the expressions involved in the above equations have been given
before, with the exception of the second order derivatives of h¢, which
are now derived. The blocks of the Hessian matrix are given in
equations (2-2). The second order derivatives of h; to be inserted
into such equations have the following expressions

%ahg _ 621 Bht N aﬂ. 6 ht_.,
[19] B B Y 5 o 2P Gt

i=1

P P
=A+ZB.'+ZC;

=1 =1

Ais the (1 4+ ¢+ p) x (1 + ¢+ p) matrix

d [1,63_1,..-,}1:—1,--v>ht—p]'

20 =
[ ] A 6[a0,01,-'-,ﬂ1»---1ﬂp]
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0 0 @ 0 0o : 0
T | 8hisy By i Bk By 1 Bhiy
dag O *  Bag 8B - 0B,
Bhicp Bhicp 1 Bhi—p Bhip : Ship
. Pa0 Box & Bag 86 4G,

the number of zero rows being 1 + ¢.
B; is the (1 + ¢+ p) x (1 + ¢ + p) matrix

Oh,_, 0B 6ﬂi__ '
21] B = =22 a—u/.—(O,O,O,...,Tl,...,O)
(1+g+1)th element
0 0 i o |
, 0 0 0
[22] Bi= 1 onei ohei ¢ b
dop 3o ) 3By
i 0 0 0 |
so that
p
(23] B =
i=1

The matrices C; can simply be calculated recursively from the

same equation (2) recalling that for the pre-sample values 6%k, /fwdw’ =

0 for t < 0. Also recalling how the pre-sample values for ¢ and A,
were computed for t < 0, we have

h, 2L i
(24] FIY: 7 7:?;%% (for t <0
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so we can calculate recursively

(1—1-i)

[25] O he —220(: o, _ )l Za:
960Y i(zt-iz-s) H'
8711,, Li=1 ift—-i>0
+ZB’ aboy [ Li=0 ift—i<0
and
(92]1( 82! a2ht—;
2
[26] 8wl ~ Y Zﬂ‘a ay
where
0
—€&-17y_,
Oz T,
[27] 6_b: = —fé_i_zjt“q
b
iy
2

These last formulae can be inserted into equations (2), (2) and (2)
to produce diagonal and off-diagonal blocks of the Hessian matrix.

The information matrix is block diagonal (see Bollerslev, 1986,
p-316), and the two diagonal blocks are estimated by the sample
analogues of

2, 11 Bk, Bk

(28] E[@w@w’l *} " 2h? fw O’
3211 _ .I(.'I:I! 1 1 ahg ah,
[29] E[abab' % ] = TTh 2R GhOW.

The matrix of outer products of the first derivatives used in the
BHHH algorithm on GARCH models is usually taken block-diagonal,
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the first block being (k x &)

“ oo,
o 9b oy

while the last (1 + ¢+ p) x (1 + ¢ + p) block is
T 8l a1,

[31] t=1 a_wél':;

where derivatives are given in equations (7) and {11) Of course, the
same derivatives can be used to build a full matrix, including the
off-diagonal blocks that would vanish only asymptotically. Even if
this matrix is usually taken in block-diagonat form in the literature,
experiments in this paper have been performed with both types of
matrices.

The last matrix used to estimate the variances and covariances of
coefficients and GARCH parameters is the Whyte-type or QML ma-
trix (quasi maximum likelihood, White, 1982; see also Gourieroux,

Monfort and Trognon, 1984)
[32) ¥ = (H™)(OPYH™)

. For the experiments of this paper the two matrices needed to build
¥ have been used in their full form, including the off-diagonal blocks.

3 Models, simulation ezperiments, results

Here we describe the settings of the simulation experiments and the
models employed. We ther report and comment our findings.

8.1 Design of the Monte Carlo experiments

A wide set of Monte Carlo experiments have been performed on
several models. For each model we start from a given vector of
true parameters held fixed over all replications, and fix a sample pe-
riod lenght. Explanatory exogenous variables have been kept fixed
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at their historical values and for longer samples have been repeated
consecutively. Only model 3 has exogenous variables (apart from the
constant term). We have also performed experiments with randomly
generated exogenous variables, in particular with large kurtosis. In
similar studies for other types of models (e.g. Calzolari and Panat-
toni 1988b, Parks and Savin 1990) a strong leptokurtic design of the
regressors has in fact been identified as a critical condition and it
bas been found to seriously affect the small sample performances of
the alternative covariances estimators. Analogous critical condition
has been identified by Chesher (1989) in the unbalanced design of
the regression matrix.

Independently of the explanatory exogenous variables, we then
generate the normal (0,1) random deviates that, using the true GARCH
a’s and B’s parameters, provide the disturbance terms, ¢, over the
sample period. Values of the endogenous variable are finally com-
puted with simulation. The generation of the random error terrus
with the assumed GARCH structure gets rid of misspecification
problems. With the generated data we now estimate the coeflicients
of the equation and GARCH parameters by maxamum likelibood.
For the pre-sample values of ¢? and 4, we take their unconditional
mean computed using in-sample residuals. Finally we compute, at
the values that maximize the likelihood, the five estimates of the co-
variance matrix: estimated information, Hessian, full outer products
matrix, block-diagonal outer products matrix, QML matrix.

8.2 The Models

The first mode} experimented with is the simple random-waik with
drift model for the exchange rate Deutsche mark - U.S. dollar with
weekly data discussed jn Baillie and Bollerslev (1989, table 3).

MODEL 1

[33] 100A log 8y = bl + €

where an ARCH(1) and a GARCH (1,1) specification have been
adopted for the error process. In tables 1-4 results are related to
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experiments with sample periods varying from 100 to 400 observa-
tions.

Also the second model has a very simple specification (Buzzigoli,
1992)

MODEL 2

[34] 100A log y; = 5,100A log -1 + €

Data are daily observations of prices for the Olivetti equities at the
Milan Stock Exchange. In tables § and 6 results are related to exper-
- iments with samples of 100 and 400 observations respectively, and an
ARCH(1) error process. In tables 7 and 8 the sample period lengths
are 150 and 500, and a GARCH(1,1) process js adopted.

The third model experimented with is the monthly model of long
term interest rates used in Bianchi, Calzolari and Sterbenz (1991).
In this model the U.S. interest rate depends upon the money supply,
the inflation rate as measured by the consumer price index, and the
unemployment rate. The specification i3 given as

MODEL 3

[35] Rt=bl+b2Mt+b31t+b4Ut+f:

where R, is the long term interest rate, M, is the real money supply,
1, is the inflation rate, U, is the unemployment rate, and ¢, is the error
term. Also for this model we first adopt an ARCH(1) specification
of the error process, then a GARCH(1,1). Results are summarized
in tables 9-12.

8.3 Results on alternative variance estimators

In each case we perform 1000 replications of the Monte Carlo process.
Each table displays the true value of the parameter, the mean esti-
mates, the Monte Carlo variance and the mean variance estimated
with the five methods. The last two columns display the number of
times that we found an outer product estimated variance (full OP or
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block-diagonal OP matrix) greater than the correspondieg Hessian
estimate. These are the inequalities that occur more often in our
experiments, and are also displayed in graphical form in the final
figures of this paper. Figures 3-4, in fact, display for the parameters
of the second model the two forms of the outer product estimated
variances vis-a-vis the corresponding Hessian estimates.

The results we find are quite surprising since we conducted the
experiment bearing in mind the evidence of former studies on other
types of models. The five alternative estimators give quite similar
standard errors estimnates On the contrary, similar studies on Probit,
Tobit, simultaneous equations and linear regression models showed
that especially the estimators based on the variance of the score (OP)
diverged substantially from the other alternative, yet asymptotically
equivalent, estimators. This seems not to be the case for GARCH
models.

The estimates computed with the observed Hessian and the es-
timated information are quite the same. The first is on average a
little bigger than the second. Griffiths et al. (1987) for the Pro-
bit models case and Calzolari and Fiorentin: (1993) for the Tobit
found that these two estimators were practically undistinguishable.
Oun the contrary, Calzolari and Panattoni (1988a) found significant
differences, presumably due to the shortness of the sample periods
typically used for macro-systems of simultaneous equations.

The estimates based on the outer products of the first derivatives
of the log-likelihoods are on average bigger than the others and this
agrees with the previous literature. However, differences are usu-
ally not very big especially for what it concerns the block-diagonal
version of the outer products.

The standaxd errors of the coefficients based on the block-diagonal
form of the outer products are usually greater than the corresponding
Hessian estimates half of the times. This is the percentage one would
expect having in mind the standard OLS case. This percentage
becomes much bigger for those models where the fourth moment of
the errors process does not exist. See tables 5, 6, 9 and 10.

Parks and Savin (1990) and Calzolari and Fiorentini (1993) found
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that the White-type QML standard errors were on average the small-
est. We find that in the GARCH case these estimators take on av-
erage an intermediate value.

The Monte Carlo MSE is also quite similar to the mean of the five
different variance estimators. In a few cases it is smaller than the
Monte Carlo average of all the other variance estimators. Calzolari
and Fiorentini (1993) found the Monte Carlo MSE to be regularly
in between the average of the Hessian based and the outer products
based estimators.

3.4 Wald slatistic: a summary figure

The results displayed in the tables and discussed in the previous
section concerned only the estimators of the variances or standard
errors of the parameters. We may now wish to consider also the
bebaviour of the alternative estimators of the covariances. This can
be done in a synihetic way combining some or all the parameters
errors into a single random variable, like the Wald statistic. Let 1o
be a vector containing some of the true parameters of the model (for
example, the equation coeflicients only, or a’s and f’s pararmeters of
the GARCH process), or even containing all the true parameters of
the model, 85- Under the null hypothesis Hy: 7 = 40 the Wald test
statistic (¥ — 'yo)'(\ih,)'l (% ~ o) is asymptotically distributed as a x?
with a pumber of degrees of freedom equal to the number of elements
in 4; for example, k if 4 is the vector of estimated coefficients b, 1 +
g+ p if ¥ contains the estimates of the GARCH variance parameters
W, k + 1.4 ¢ + p if 7 contains the estimates of all parameters of the
model 8.

[t is worth to point out here that with our null hypothesis the
parameters are well in the interior of the feasible parameter space
so that the usual regularity conditions are satisfied. On the other
hand we recall that when testing for zero restrictions on the GARCH
parameters the one-sided nature of the test should be taken into
account as discussed in Demos and Sentana (1991).

In each Monte Carlo replication (¥ — 7o) 15 the same and what
change are only the different estimates of ¥. Since it is the inverse

Alternative Covariance in GARCH 18

of the estimated ¥ that eaters the Wald statistic, we should expect a
value of the outer products based Wald systematically smaller than
the corresponding value computed with the Hessian. Therefore, if
we display the c.d.f. of these statistics, the curve related to the outer
product matrices should be lefi-shifted with respect to the Hessian.

As far as the distribution of the QML Wald statistic (misspecifi-
cation consistent} is concerned, we must recall how the covariance
estimator ¥ is computed jn this case

[36] b= () OPYHT)

If the Hesstan estimated covariance matrix {H™') is smaller than
the corresponding outer product estimate (OP~'), the product of
madtrices resulting from (36) should be even smaller (and therefore
its inverse should be larger, and the distribution of the Wald test
rightmost shifted). This consideration certainly holds for the diago-
pal terms of the matrix estimators, as shown in the tables, but does
not hold for the whole matrices, as Parks and Savin (1990) showed
on a simple linear regression model. Also for linear regression model
Calzolari and Panattoni (1988b) showed that the QML estimator of
the covanance matrix is in any case downward biased, bias becoming
targer and larger as the fourth order moment increases.

These eflects are evidenced in figures 1 and 2. These figures are
related to model 3, and the Wald test statistics are displayed first
for all the model’s parameters, then for the coefficients and for the
a's and s parameters separately. In the first part of figures 1 and 2
exogenous regressors are kept at their historical value (as in tables 9
and 10). In the second part of the figures exogenous regressors have
been randomly geverated with same means and variances as the
bistorical values, but with a very large fourth moment. Of course,
the distance among the curves would become completely negligible
when the sample period becomes very long. I[n fact, coasistency of
the estimators for the asymptotic covariance matrices ensures that,
increasing the sample period lenght, the cumulative distribution of
the four Wald statistics coltapse over the x? c.d.f. (For the OP case
we use the full matrix and we display only the curve related to it.)
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However, in this movement toward the x? curve, the four sampling
distributions maintain their relative positions.

The relative positions of the curves are exactly the same as those
found in the previous similar studies. In our case they are much
closer than they were found to be for example in Calzolari and Panat-
toni {(1988a, 1988b). Especially the behaviour of the Wald statistic
computed with the White-type (QML) matrix is remarkably good
(for the historical regressors case) compared with what was found
for other models when, in small samples, this curve was much more
downward and rightward shifted.

The curves related to the Hessian and estimated information are
very close to one-another. The Hessian curve is very slightly left-
shifted with respect to the other, and therefore slightly closer to the
theoretical x? curve. It is clear, however, that the inequalities with
respect to the outer product and White-type (QML) estimators are
more relevant in practical applications.

4 Conclusion

We find that on average the Hessian and the estimated information
matrix give rather similar results.

On the other hand variances estimated from the full outer prod-
uct matrix are in most cases slightly larger than variances computed
with the Hessian or with the estimated information. When the block-
diagonal form of the outer products matrix is used, this inequality
still remains in most cases for the «’s and #'s parameters, but is
less evident or even absent for the equation coeficients. The in-
equality becomes much more evident when exogenous regressors are
generated with a large fourth order moment.

The systematic inequalities clearly observed in the experiments
have the same sign as for other types of models already analyzed in
the literature, showing that the choice of the covariance estimator is
not neutral and that hypotheses testing may be affected by such a
choice for a great variety of models used in econometric applications.
In the GARCH case however the choice of the variance estimatar
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seerns not to have a great impact on hypothesis testing. This results
are quite reassuring, mainly because most of the empirical studies
with ARCH and GARCH were conducted, at an early stage, using
the BHHH estimators for the parameters variance. This estimator
had shown to behave quite wildly in many cases for other types of
models. It seems not to be so for the type of models we have analyzed
in this paper.

Table 1: Model 1: mean estim. param, mean estim. var.x100.
ARCH(1) T=100.

par.| True| Est.[Var.| Inf.|Hes.| OP|b-d.OP|QML|OP>H|b-d.OP>H
b [-.294-.297(.330.356(.367(.401| .371| .365| 77.4% 54.6%
ap | .286( .293|.436(.468|.514|.621|  .596| .485| 70.0% 64.0%
oy | .600| .572|4.11|4.28|4.77|5.63| 5.44| 4.60| 75.6% 70.0%

Table 2: Model 1: mean estim. param, mean estim. var.x100.
ARCH(1) T=300.

par.| True| Est.|Var.| Iuf.[Hes.| OP|b-d.OP|QML|OP>H|b-d.OP>H
by [.294]-.296|.116[.118(.119(.125] .121| .118| 69.5% 54.8%
ap | .286| .289|.151].154|.157(.170|  .167| .153| 65.3% 60.8%
ay | .650| .599|1.56(1.57|1.62(1.74|  1.71| 1.59| 75.6% 64.3%

Table 3: Model 1: mean estim. param, mean estim. var.x100.
GARCH(1,1) T=150.

par.| True| Est.|Var.| Inf.|Hes.| OP|b-d.OP|QML|OP>H|b-d.OP>H
by |-.294[-.300(.779(.734|.754|.807| .748| .761| T4.8% 49.6%
oo | 286/ .353(3.56|5.32(5.04(7.74|  7.58| 5.15| 84.0% 83.4%
o | .350] .351|1.79(1.85|1.99(2.51| 2.46| 1.96| 80.4% 78.2%
By | .500| .459(2.81(4.25|3.68(6.23| 6.11| 3.62| 82.0% 81.4%
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. Table 7: Model 2: mean estim. param, mean estim. var.x100.
Table 4: Model 1: mean estim param, mean estin, var.x100. GARCH(1,1) T=150.

GARCH(1,1) T=400. par | True|Est [Var | Inf|Hes| OP[o-d.OP|QML]OP>H[b-d.0P>H]

par.| True| bst.|Var | Inf. [Hes.| OP|b-d OPJQMLIOP>H|b-d.OP>H -. 5, | .2031.203].682/.696].717.774| 718 .734| 72.2%|  51.6%
b -294-295|.259) 282|.286).294) 285 285 T2.3%)  43.3% a0 | 200].247|1.77/2.96(2.50(4.13)  4.01| 2.33| 82.8%|  81.2%
g | .286] 317|1.28(1.31|1.38/1.55| 1.53| 1.54| 7T1.7% 70.7% o |.350].344|1.79(1.83{1.97l2.51| 2.43 1.95| 81.0% 78.2%
o | .350) .353).700).639\.656\.730)  .722| .670) 69.7%  69.1% B, 500].4642.72/4.67|3.75 6.53]  6.36 3.47 80.8%|  79.4%

By | .500( .481[1.11|1.10(1.13{1.31| 1.30] 1.26| 71.3%|  70.8%

Table B: Model 2: mean estim. param, mean estim. var.x100.
GARCH(1,1) T=300.

Table 5: Model 2! mean estim. param, mean estim. var.x100. | par.|True|Est.[Var.| Iof.[Hes.! OP[b-d OP/QML|OP>H|[b-d.OP>H
ARCH(1) T=100. b, |.203].205(.226].222] .224).230)  .224| .225] 64.8% 50.1%
par.| True|Est.|Var.| Inf.|Hes.| OP|b-d.OP|QML|OP>H|b-d. OP>H g | -200(.218].451|.444|.453.506|  501| 470| 71.7% 69.6%
by | .203[.196(.914(.749|.793{.952|  .B86| .811| 74.0% 66.4% o, |.350|.353(.556.545(.557|.611]  603| .538| 69.3% 66.0%
ap | .200/.207(.219|.232(.255/.296|  .290| .253| 62.6% 60.6% By |.500].484|.931|.832|.838/.961  .951| .870| 63.4% 68.2%

ery | 600[.564|4.33|14.23|4.73|5.64| 5.64| 4.73| 74.0% 68.4%

Table 8: Model 3: mean estim. param, mean estim. var.x100.
ARCH(3) T=100.
par.| True| Est.|Var.| Inf.[Hes.| OP[b-d.OP|QML|OP>H|b-d.OP>H

Table 6: Model 2: mean estim. param, mean estim. var.x100.

ARCH(1) T=400. b, | 3.19| 3.24[141.(104./110.133.| 126.| 117. 775%|  69.3%
par.| True|Est.|Var.] Iof. Hes.] OP[b-d.OP[QML/OP>H|b-d.0P>H : by |-.204[-.199|3.80(2.81 2.793.56|  3.37 3.10 77.6% 68.4%
b, | 203204 233[.210( 215220 .223| .217| 67.0%|  62.3% by | .419| .404/3.29|2.66/2.853.47|  3.28) 3.01 77.6%  70.0%
oo | .200.202|.050|.056|.057.057| .059| 055 64.0%| 61.5% N by | 775 .771|.1491.120.129/.154| 145 .143) 70.83%|  63.4%
(o, | .600].597[1.19]1.10/1.14[1.22]  1.19] 1.12| 68.8% 63.5% ag | 100 .098|.053(.050 .058/.073|  .063| .063) 78.6% 59.6%

o | 600| .584|4.23]4.25[5.155.97]  5.27) 6.19 74.5%|  60.3%
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Table 10: Model 3: mean estim. param, mean estim. var.x100.
ARCH(1) T=400.

Table 11: Model 3: mean estim. param, mean estim. var.x100.

GARCH(1,1) T=150.

par. True| Est.|Var.| Inf. [Hes, OPb-d.OP|QML|OP>H|[b-d.OP>H
b | 3.19] 3.20).871].746/.763|.805| .790| 171 69.4% 61.6%
b, |-.204)-.203/.039/.036/.037/.040|  .039| .037| 65.4% 61.7%
b; | .419] .421).391/.380 .385/.420| .4i2| .383) 66.7% 62.8%
by | .T75| .776/.015/.014|.015..016| .015| .015) 64.5% 60.5%
ag | .100) .099/.012/.014|.014/.015 .015| .014| 70.9% 57.1%
o | .650].604 1.211.19(1.23/1.33| 1.28| 1.22| 69.8% 61.7%
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par.| True Est.m.r. Inf.[Hes.] OP|b-d.0P[QML|OP>H[b-d.OP>H
b, | 3.19] 3.18/182.1162.'168./190.|  179. 181.] 72.5% 61.7%
by |-.204]-.201|3.06|2.74/2.86(3.20|  3.00| 3.07| 71.1% 59.9%
by | .419] .437/6.22(5.97/6.12(7.21| 6.77| 6.29] 74.5% 64.9%
by | .775|.779).378|.319).332].375]  .353| .365 67.2% 58.5%
ag | .100| .120|.371|.554|.545(.847| .769| .658| 85.6% 79.5%
ay | .350] .358/2.04|1.88/2.11|2.64| 2.43| 2.26| 80.7% 72.4%
B | .500| .454|2.90/3.88|3.63|6.02| 5.53 4.32| 83.3% 78.7%

2
- X
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Figure 1: Model 3, ARCH(1), T=100. Cumulated distribution of
the Wald Statistic.
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Table 12: Model 3: mean estim. param, mean estim. var.x100.

GARCH(1,1) T=500.

par.| True| Est.[Var.| Inf.|Hes.| OP|b-d.OP|QML|OP>H[b-d.OP>H
b | 3.19] 3.18(2.39(2.21(2.23]2.32| 2.26| 2.29( 61.6% 54.6%
by |-.204|-.205|.099].095(.096/.096 .098| .099| 58.3% 51.6%
by | .419| .420(.766(.748(.757[.757| .775] .773| 62.4% 56.4%
by | -775| .725.035[.031|.033/.032| .032| .033| 60.9% 53.1%
ap | .100| .108[.100/.099].103].103| .112| .105| 69.2% 64.2%
o | .350| .357(.598.548|.570|.570| .605| .588| 67.0% 61.0%
TBT .500| .482|.864(.796/.819/.819| .905| .859| 66.4% 62.7%
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