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1. Introduction

When vlaning this work on the econometric model developed by the
University of Bonn, it seemed that a suitable title could be
"Stochastic Simulation and Dynamic Properties of Model 5",

However, after most of the preparatory computational work had been
done, it clearly appeared that the model was unable to undergo the
long simulation runs which are required by dynamic analysis; in
other words, even in its last version (Model 5.5 [20]) the model
is probably instable, as already its previous version seemed to be
(14].

It was therefore decided tco concentrate the experiments on the
stochastic properties of the one-period (static) and short-multi-
period (dynamic) simulations and, in particular, on the problen

of the distribution of the disturbances of the reduced form equation
It is purpose of this paper to present on one side, the numerical
results obtained on Model 5 and, on the other side, to give some
details (or at least some bibliographical references)} on the algo-
rithms which have been used.

The algorithms briefly discussed will be mainly presented "by analogy
with the case ¢f lirnear models. This, of course, leawes oren any
kind of doubts about the methodological consistency of the methods,
but has, at the same time, the advantage ¢f making the algorithms
themselves immediately comprehensible to the"empirical econcme-
trician"and of showing a simple computatioconal method of solution.
It must be pointed out that the disturbahce terms which are taken
into account in these experiments are only the random disturbances
of the structural form equations; no attemnt is done to take into
account the other possible sources of errors (briefly summarized

in section 6) which inveolve problems considerably more complex.

The basic method to deal with the problem of the reduced form distur-
bances in nonlinear models is the stochastic simulation (Monte Carlo)
In scme sense, according te the standard hypotheses underlying an

econcmetric model, it should reproduce the process which has genera-

ted the time series of the endogenous variables. It has, however,



the disadvantage of involving a sampling variability due to the
generation of pseudo-random numbers and, even more, of involving

always a great deal of computational resources (time and storage).

Accurate substitutes of stochastic simulation can be, in some cases,
obtained with a mixed use of numerical simulation and analytical
methods; even if used for different purposes, it seems convenient

to adopty for these methods, the definition of "analytic simulation”
proposed by Bowrey and Klein[ 13] . These methods are based on
linearisations of the model in the neighbourhood of the solution
points (changing year by year); they invelve, therefore, an approxi-
mation, but seem to be, in practice, mecre accurate than the stochastic
simulation which only asymptctically would be able to lead to the

correct results.

Most of the experiments here described have been performed either

with stochastic cor with analytic simulaticn.

2. Standard errors of the reduced form eguations

Let

(2.1) Ayt + th = u, t=1,2,...,n

be a linear econcmetric model in its structural form, where Yeor 24

and Uy are,respectively, the vectors of the endogenous and prede-

termined variables and of the structural stochastic disturbances at

time t, while A and B are matrices of structural coefficjients

(A is a nonsingular square matrix). Furthermore let a, be distributed
as

(2.2) utAJN (O,Z) cov (ut ut.) = att.z H

in other werds the wvectors u, are supposed to be independent and

identically distributed, with a multivariate normal distribution,

zero means and covariance matrix constant over time.

The estimated structural model is

-~ A~

(2.3) Ayt + th = ut




-~

where u, are the regression residuals and

n A~ o~ -~
I g, u! =1L

(2.4)
=1 t 't

g

is an estimate of the covariance matrix of the structural form dis-—

turbances (or, which is the same, of the structural feorm equations).

The restricted reduced form (i.e. the reduced form derived from the
structural form, thus taking into acccunt all the restrictions on

coefficients) is:

(2.5) y, = -A Bz _+ v,
where )
(2.6) = a7

. vy = U

is the vector of the reduced form disturbances at time t.

It is clearly

Al'l

Veah

(2.7) Vi~ N(O,A"

5o that an estimate of the reduced form covariance matrix is immediately

available as

~_q Ao

(2.8) A ' TA

~

provided the estimated A is nonsingular.

If the model is nonlinear, obviocusly the above procedure cannot be
applied. Let

(2-9} f (Ytrztra) = ut

be the representation ©of a nonlinear structural model where, this
time, a is a vector including all the structural cecefficients (it
is no more possible a clear distinction between coefficients of Yy
and coefficients of zt). Even if no explicit reduced form can be
derived, it is generally assumed that, for any set of values of Zyr
a and u, . a unique vector y, satisfies equation (2.9) [8, p.172].
This is equivalent to assume the existence of a reduced form, impli-

citly defined by the structural form. If we enter into equation (2.9)



with the "true" values of the coefficients a, with the historical
(or forecasted,but assumed exact) wvalues of the predetermined variables
7z, and with a vector of random disturbances with the same distribu-

t
tion of u, and solve the model for Yo the result is a random vector

with the zame statistical preoperties as the unknown reduced form of
the mecdel. TIf this process is repeated several times, the sample
moments of the computed values of the endogenous variables should
converge to the corresponding distribution moments. Nothing can be
said, in general, about the existence of finite moments of the distri-
bution of Yo While in case of linear models no problem arises, in
case of nonlinear models the transformations of the normally distri-

buted ut can lead to distributions without finite moments.

From a purely empirical point of view, fortunately, this generally
creates no trouble. The cause, in fact, of the possible non-existence
of finite moments lays, generally, in one of the tails of the distri-
bution of the structural disturbances, but so far from the central
region that no generator of pseudo-random numbers will ayver be able

to generate numbers in that area. A simple example can better illustra-

te this problem.

A price variable (endogencous) appears on the left hand side of a
linear equation, involving only exogenous regressors; for example:

P, = a +_bxt + U,

This price variable is used as deflator of another endcgencus variable
of the medel yt/pt. If Pt has values in the range 132, and the stan-—
dard deviation of uy is o¢=0.01, Py will not assume values less

than or equal to zero, unless u,_ assumes negative values besides

-100 ¢ and no "reasonable" genezator of normal deviates can generate
values in such a tail of the distribution ({(as well as no model builder
would hypetize for his price variable, negative values with nonzero
probability! Quite similar would be the case of logaritlims of possibly

negative numbers).

The number of replications of stochastic simulations can be pre-fixed
on the basis of the xZ/df distributibn[g] : for example 1000 repli-
cations assufe that the computed sample

standard deviations differ from the "true" reduced form standard

errors no more than 5% with probability greater than 0.96




(provided a finite reduced form variance exists).

Alternative to stochastic simulation could be the use of analytic
simulation procedures. These are based on a nonexplicit lineariza-
tion of the model in the neighbourhood of the solution point corres-—
ponding to the year under examination. It is clear from equations
(2.5) and (2.6) that the elements of the matrix A_1 (such that A_1u{“%,

reduced form disturbances) are the partial derivatives of the
endogenous variables with respect to the structural disturbances at
time t {elements of the vector ut). These derivatives can be compu-
ted via numerical simulation, stored into a matrix Dt (=A-‘I for
linear models, but time-varying in case of nonlinearity) and the re-
duced form covariance matrix at time t can be computed as:

A A

(2.10) DtEDt

Table 1 displays the results on Model 5 for the year 1978 (the first
of the "example forecast" in [20]). For the main endogenous variables
of the model, the computed values are displayed (they have been ob-
tained with a one-period static simulation) together with the corres-
ponding reduced form standard errors computed with 10, 50, 5300 and
2000 replications of stochastic simulation and with analytic simu-
lation. The last column displays the coefficients of variation,

which are the ratiocs ¢f each standard error with the computed value

of the variable, in percentage form.

From Table 1 one could get the strong impression that the stochastic
simulation results converge to those of analytic simulation as the
numpber of replications goes to infinity. This is of course not exact
due to the nonlinearity of the model, but clearly gives an idea of

the great accuracy of the analytic simulation method.



Table 1

One-~step simulation at 1978

. Variable . Camputed Reduced Form Coefficlent of
value - - standard errors variation

10 50 500 2000 Analytic

Repl. Repl. Repl. Repl. simulation
YO 3)=vpPin0 | 1298, 20,9 22.4 232 21.3 21.3 L. 64
Y{ 4)=YDP '652-9‘ 8.68 11.7 11.4 10.9 10.9 1.67
YO Tr=veiPP . 21743 131 13.4 13.5  13.9 14.0 5.03
YU 91=Y'4G ., 149.0 2.71 2.50 2.57 2.68 2.72 1.3
Y{ 14)=C'PNO . 714-.9 9.70 8.83 9.99 9.64 39.53 1.33
veLer=ren 238.7 17.1 15.7 16.1 14.7 14,3 6.01
Y{ 27)=7 ‘ “08.7 15.8 15.2 14.5  14.1 14,2 2.79
Y( 35)=6S'GDh  168.1 1.85 1.91 2.03  1.95 1.97 .17
Y{ 36)=p 189.0 4.22 3.54 3,38 3.18 3,16 .67
YU 59)=Hw | 45.03 .807 .706 .706  .667 L 673 1.49
Y 65)=FW | 2.013 .203 210 .218 211 L2113 10,8
Y( B2)=ETa 14.49 365 .293 .275 .277 .249 1.85
Y{ 83)=U | 1.100j . 151 169 .173 174 L1774 15.3
Y{10T)=M'GSND| 326.2 8.88 8.65 8.62 8.16 8. 34 2. 56
Y(123)=X1GSND  344.5 6.05 5.39 5.09 5.27 5,30 1.564

Y(126)=R8P1GS  18.25 12.2 11.1 10.3 10.0  10.2 56.0




2.1 Algorithms and computational note

The computation of the reduced form standard errors via stochastic
simulation has been performed by means of a modified version of
the program announced in [2], developed at the IBM Scientific Center

of Pisa.

The generation of the pseudo~random disturbances to be inserted,
during the solution phase, into the structural equations, has bkeen

performed in threemain stens (see [7] for details):

1)  Generation of independent pseudo-random variables with uniform
distribution, using the power residue method [15] and a final
shuffling.

2} Transformaticn of the uniform numbers into . independent stan-
dard normal deviates, using the algorithm by Box and Muller [6].

3) Transformation of the standard normal deviates into pseudo-ran-
dom disturbances with zero means and c¢ovariance matrix equal to
the sample covariance matrix of the regression residuals (co-
variances are between equations at the same period of time,
while zero covariances are assumed between disturbances in
different time mericds, as in assumption (2.2)). The algorithm
by McCarthy [16] has been used.

The computation of the Bt matrix (partial derivatives of the endo-
genous variables, with respect to the structural disturbances, in
the solution point at time t) regquired by the analytic simulation
method, has been performed using finite increments on the struc-
tural disturbances. More exactly, first a deterministic control
solution has been computed, at time t, with all the u, set to zero.
Then a value € is assigned tc the disturbance of the first egquation,
all the other having still zere, and the model is solved again. The
same 1is then remeated for all the structural stochastic equations
and the differences between the disturbed solutiorns and the control
solution, divided by the values adopted for e, supply the numeri-
cal valwuesof the vartial derivatives. Variations of £ from

0.0010n to 0.000001on, for each stochastic equation, did not modify



the results in the first 3 decimal significant digits, thus showing
a good stability of the algorithms in the avplication to Model 5.

Of course, to appreciate the small differences between the disturbed
solutions and the control solution, a guite small tolerance had to
be fixed for the convergence of the Gauss-Seidel scoluticn algo-
rithm; a relative tolerance 10_13 has been chosen in these experi-

ments.

3. Heteroschedasticity of the reduced form

When a model is linear, an alternative method can be used instead
of equation (2.8) (or(2.10}, or stochastic simulatiocn) to compute

the standard errors of the reduced form equaticns. It follows,

in fact, from equations (2.4), (2.8) and (2.8) that
n n ~ -
-125-1¢ 1 e =1 ! 1T o~
= — |5} 1 = — !
(3.1 A "ZIA o t§1 {5 t)(A t) o t£1vtvt

>

where the values of v as it is clear from eguation (2.5), are

tl
simply the differences between the historical values of Yy and

the values of the endogenous variables computed as -A th all
over the sample period. Therefore the diagonal elements of the
matrix in (3.1) are simply the mean squared errors of the one-
step (static) simulation over all the sample period. And this
is, probably, the simplest computational approach to the problem

of the variances of the reduced form equations.

Unfortunately this method cannot be applied to nonlinear models.

A simple example will make this clear.

If Yy is an endogenecus variable which appears on the left hand

£ where z, 1is

a time varying predetermined variable, and i#f the structual form

side of a structural equation in the form yt/z

equation is supnosed to be homoschedastic, clearly Vi will be
heteroschedastic in the reduced form, with a variance c¢hanging
over time with the square of 2z . Therefore the mean sgquared

t
error of Y, over the sample period will be simply an average
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estimate of goodness of fit, but will not be egual to the

reduced form variance, as this chances with time. Moreover, since
the economic time series generally increase with time, for some
variables it can happen that the reduced form variance in the
last years of the sample(or in the forecast periods) is greater
than the mean sguared error computed over the sample period.

This means that the use of the mean squared errcrs as approxXimate
measurements of the variances of forecasts will probably lead to
an underestimate of the magnitude of the forecast errors of

several variables.

Table 2 exemplifies this problem. For some of the main variables
of Model 5 the root mean squared errors over the pericd 1960-1975

and the reduced form standard errors in some years are displayed.

Table 2

Variable Root Mean Squared Reduced form standard error:

Error 1960-1975 1960 1970 1975 1978
Y( 3)=YDP'NO 13,1148 14,5 16.8 17.7 21.3
Y( 4)=YDP 14.5708 11.2 11.9 9.78 10.9
Y( 7)=Y'PP 10.0924 7.24 9.86 10,7 14.0
Y( 9)=Y'WG 2.01722 .821 1.38 2.20 2.72
Y{ 14)=C'PNO 7.55442 7.74 7.88 7.98 9.53
Y( 18)=I'PN 9.76139 8.33 12.1 12.3 14.3
Y( 27)=T 6.63770 4.47 7.66 11.4 14,2
Y( 35)=GS'GD 1.96941 1.97 1.97 1.97 1.97
Y( 36)=P 2.95902 3.15 3.05 2.99 3.16
Y{ 59)=HW 1.27758 1.69 .914 .684 .673
Y( 65)=FW .347212 .424 .306 .229 .213
Y( 82)=ETA . 135602 .57CD-01 .143 .199 .269
Y({ 83)=U .202692 .210 .145 L 165 .174
Y (107)=M'GSNO 4.28544 3.05  4.61 6.52  8.34
Y (123)=X'GSNO 2.69351 1.85 2.80  4.46 5.30

Y(126)=BP'GS 5.64082 3.06 5.72 8.17 10.2
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4. Reduced form in dynamic models

A model is dynamic if, among the predetermined variables C
of eguation (2.1), some are lagged endogenous variables. In
these cases a convenient representation of the structural form
of the model can be:

{(4.1) A Ye + B Xy + C Yelq = Y

where no loss of generality is caused by the explicit presence
of only lag-one endogenous variables as also higher order lags
can be reconducted to lag-one by the prorer insertion of addi-
tional definitional (nonstochastic) equations [25]. If the model
is dynamic, the simulation at time t can be performed in several
different ways. The one-step (or one-period, or static) simulation
considers Ye_q S predetermined variables, and assigns to them
the historical values; this 1s the case already discussed in
secticn 2. The dynamic {or multiperiod dynamic) simulatiocn
starting from the period t-1 uses for Yo the values computed
in a one-step solution (therefore considering Yi.p as given) ;

in formula:

1 a1l =1 _
th A Cyt_1+A u, =

(4.2.) Yy, = A .

1 =1 =1 ~
Bx +A" CA” Bx +A

1., T 1 -1

Cy._,=A CA ‘u__,+A" 'u

- ca » .

It

Equation (4.2) can be clearly extended to the case of simulations
starting from the period t-2, t-3,...,t-s. It is clear from
equation (4.2) that the reduced form errar depends either on
u, or on u

(in general u k=0,1,2,...,5 if the dynamic

t t-1 -k’

simulation starts from the period t-s). Under the assumptions
{2.2) the covariance matrix of Yy in eguation (4.2), given Yi_ov
is the sum of two components, respectively due to Uy g and uy
4.3y A 'ea hr@alea™)r + a7z a7l

If the model is nonlinear, resort can be done to stochastic
simulation Or to an analytic simulation procedure. The latter

computes scmething similar to equation (4.3), considering that
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A tea™t s nothing but the matrix of the partial derivatives

of Yy with respect to u as it is clear from (4.2); in case

=17
of dynamic simulation from t-s to t, the reduced form covariance

matrix at time t will be:

where the elements of the matrix D, ., are the partial deriva-.
r
tives of the endogenous variables at time t with respect to

the structural disturbances at time t-k.

Table 3 displays, for some of the main variables of Model 5,
the standard errors of the reduced form in the dynamic simula-
tiong from 1978 to 1980. As already in secticn 2, the results
have been obtained either by means of stochastic simulation,
with various numbers of replications, or by means of analytic
simulation; only those obtained by means of analytic simulation

are displayed, as they seemed to be more accurate.



Y NAGTIC ST aTIan 1978-19480

~EQUCED FORM STANDARD FERRORS

vARTABLE

Y 3)=Y0P NO
Y &)=y R
Yt 7l=y'pPP
Y{  9)1=Y'WG
Y{ 14 )=C'PNU
Y{ 18)=["'PN
y{ 271}1=]

Y{ 35)}=GS'GD
Y{ 36)=p

Y{ 59)=Hw

Y{ 65 )=FW

Y{ B2)=E1A
Y{ 83)=U

YL107)r=MPGSAND
Y123 )=X"'GSNU
Y{L26)=8P'GS

Yo
Y
Y (.
Y (
Y (
Y (
Y {
Y
Y[
Y
Y (
Y
Yl

3Y=YDP ' ND
4)=YQ0P
7)=Y PP
9 I=¥Y TG
14)=C'"PNU
18 )=1"PN
271=T
35)=GS'GD
36)=P
59 ) =HwW
65)=fw
BZ2)=ETA
831=U

Y107 )=m'GSND

Y(123)=X'GSig

Y{126}=8P'GS

Y
Yt
Y
¥
Y
Y[
Y
Y (
Y[
Y
Y
YA
Y (

3)=yYDP'NO
4)=YDP
Ty=Y'PP
Fr=¥Y'WG
14)=C'PNO
18)=1"'PN
271=T0
35)=6G5'GD
36)=P
59 ) =HuW
65 ) =FW
82)=ETA
831=U

Y(107}=M'GSNO
Y(123)=X"'GSND
Y{126)=BP'GS
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Table 3

VAILUE

1298. 70
652 .938
27T7.397
149.009
T14.977
238.704
508.744
1684145
189.051
45,0360
2.01355
14.4981
1.10054
326.261
344,521
15.2598

1401.88
678.633
291.738
165.588
T6l.494
251.036
564.741
185.191
195.412
Lbg.6246
1.59543
15.2076
.898125
359,547
3587 .488
27.9416

1534.535
7G9.0R8
306,982
186.728
Bl4.,497
280.242
6224350
202.480
203.647
44,5801
1.42006
15.9053
« 590272
394,443
433.353
38.9100

STOLERR,

21.3
10.9
14.0
2.72
G.573
14.3
14.2
1.97
3.1¢
WHT3
.213
« 259
174
.34
5.30
10,2

28.1
l4.6
18.8
4,11
12.7
19.2
16.7
463
3.88
. 805
s 24l
. 304
2064
G.82
6.07
1.7

3642
18.5
23.6
5.A07
16.0
26.2
20.5
5.64
4,36
961
. 366
. 339
.235
l11.4
6.78
13.4

CFF, VAQ,

l.h4
l.67
5.03
1.83
1.33
.01
2.79
l.17
1.67
1.49
10.6
1.85
15,18
2.54
1.54
56.0

2.01
2.16
6. 44
2.4R
L.56
7.63
3,02
2.50
1.3R
1.80
15.1
2.00
22.7
2.73
.57
41, R

2.36
2.61
7.75
3,04
1.97
9.34
3.729
Z2.TR
2.14
2.18
2548
2.13
39.8
2.89
1.66
34,5

la7R

1679

1980



4.1 Comnutational note

No special problem arises if stochastic simulation is used to
compute the reduced form variances in dynamic simulation. The
simulatiocns to be performed must be, at the same time, stochastic
and dynamic. Of course, if the model is not stable, convergence
problems will arise as soon as the simulation period becomes
sufficiently long. For this reason the experiments on Model 5

were confined to simulation runs of 3 years: from 1978 to 1980.

The use of analytic simulation involves some problems which
were not present in the case of one-period simulaticn and are

also not present in the dynamic simulation of linear models.

Since simulation is always rerformed foreward, it would ke much

simpler to compute the elements of D of ecuation (4.4) as

g
partial derivatives, with respect totatd?sturbance at the origin
of simulation (time t-s), . cof the endogenocus variables "after"

XK simulation periods. This would lead to carrect results on linear
models, but, unfortunately, not on nonlinear models, whose bekavi-
.our is not-symmetric cver time and, morecver, heteroschedastic.

Therefore, to compute numerically the elements of D some-—

£, t-XK'
thing like a set of "backwards" simulations must be performed;

all of them must finish at time t, one must start at time t, one
must start at time t-1 and so on,untill the last one, that must

start at time t-s.

The procedure is rather laborious and time consuming, so that the
advantages with respect to the stochastic simulation method are
no more so clearly evident as in the case of one-period simu-

laticn.

5. Deterministic Simulation Bias

It is a well known statement that, in nonlinear medels, the deter-

ministic simulation values "can be expected to diverge systemati-

cally from the corresponding" historical values [12,p.309]. In fact



the nonlinear transformations of the random disturbances, when pas-
sing from the structural form to the reduced form, do not maintain
zero means, so that the conditional éxpeCtation (given coefficients
and values of the predetermined variables) of the solution error
(computed minus observed value cf each endogenous variable) will

be generally non-zero.

As already observed in section 2 , the existence of a finite

value for this conditional expectation must be assumed. More exactly,
it must be assumed.that the distribution of the structural disturban-
ces is truncated in such a way as to quarantee the existence of a finite conditico~
nal expectaticn of the endogencus variables (and, therefore , of the solution
error); a very strong assumption, in theory, but not particularly

troublesome in practice, as already pointed ocut.

To check the existence of a bias for some variables, the number

of replications of stochastic simulaticn must be generally very high.
A convenient stopping rule could be the following: increase the
number of replications until the difference between the deterministic
and the mean stochastic solution for the examined variable is grea-
ter than the standard deviation, computed across the replications,

of the mean stochastic sclution (which decreases and goes to zero

as the number of trials increases) or, even bhetter, greater than

double the standard deviation.

As far as the practical experience of the IBM Scientific. Center

of Pisa is concerned, no experiment of this kind (on models of
practical interest)has been found successful with less than several
thousands replications.

As also on Model 5 an experiment with 2000 replications was not
enough to get, for most of the variables, an "estimated bias”
sufficiently larger (in absolute value) than its estimated stan-

dard deviation, an alternative method has been experimented.



5.1. Accurate measurement using antithetic variate sampling

The stochastic simulation experiments previously performed are
based on repeated solutions of the model, each time inserting a
new vector of disturbances, independently generated at each new
solution; they could be called Monte Carlo experiments with simple
(or independent) random sampling. In the case of experiments to
measure the deterministic simulation bias, the variance which is
associated to the estimate o©f such a bias is too high, when compa-
red with the value of the bias itself. It would be,therefore, con-
venient to use a method which strongly reduces the variance asso-—
ciated with a single simulation run.

The method which has been experimented is based on antithetic va-
riate sampling [18]. In case of one-step simulation at time t, it

can be applied in the following way.

1) The model is solved deterministically at time t.
2} A vector of additive pseudc¢—random structural disturbances u, is

t
inserted and the model soclved.

3) The same vector, with the opposite sign &Gt), is inserted, the
model again solved and the computed values ¢of the endogenous
variables are averaged with those obtained at step 2.

4) The so obtained means of the endogenous variables, subtracted
from the deterministic simulation values, supply an estimate of
the bias with a variance which is, in this case, much smaller
than in the case of a couple of replications with simple random
sampling (for example, the variance is exactly zero for all the
nonsimultaneous endogenous variables of any model with additive
disturbances and it would be zero for all the wvariables of a

linear model).

The nrocess from step 2 to 4 can be replicated several times,
thus further reducing the variance and allowing, at the same time,

to compute the sample standard deviation of the mean.

Table 4 first displays the results related to the simulation
of Model 5 at 1978. The estimated bias is the difference between

the deterministic simulation value and the mean of the stochastic



solutions; therefore a positive value (if significantly posi tive,
i.e. with a small standard deviation and a large T value) means
that deterministic simulation systematically will overestimate

the conditional expectation ¢of the endogenous variables.

This 1n principle; in practice the estimated bias of all the variab-

les is so small, when ccmpared with the values of the variables
(in table 1) to be probably of no usefulness to the model's user

(the largest bias 1s for the variable BP'GS and does not exceed

12 of the value of the wvariable). As an analogous conclusion has

been drawn in all the previcus experiences of the author, it could

be possible to conclude that the problem of the deterministic simu-
lation bias in nonlinear econometric modeis, though ©of extremely

high theoretical interest, is of guite poor practical usefulness.

A quite similar conclusion can be derived from the results of the
computation of the bias in case of dynamic simulation, which are dis-

played always in table 4.
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Table 4

DYwAMIC SIMULATIUN 1978-1980, DFTRERMINMISTIC ST#H_ATION

BIAS CUOMPUTENS o« TH

ValdlABLE

Y 3)=YDP ND
Y1 L) =Y[P

Y ( TI=Y*PP
Yo 9)=Y'"WG
Y{ 14)1=01'PND

y{ 18)}=1"'"PN
Y{ 271=7

Y({ 351=GS'GD
Y{ 36)=P

Y{ 59)=HwW

Y{ 65])=F4

Y({ 82)=£TA
y( 83)=U

YILOT7)Y=M*GSND
Y{1231=X"*GSNO
Y{126)=BP'GS

Y 3)=YOP ' NG
Y[ 4 )=YDP

Y(. T)=Y'PP
Yi 9)=Y'WG
Y{ La)=C'PNO
Y{ 18}=1'PN
YL 271=7

Y{ 3251=GS*'GD
Y{ 36)=pP

Y[ 59 )=HW

Y{ 65)=FW

Y{ B2)=ETA

Y{ 83)=U
Y1107 )=M'"GSNO
"Y(123)=X'GSND
Y{126)=BP'GS

Y 3)=YDP N
Yt &) =YDP

Yy TI=y'PP
Y 9)=Y'WG
Y{ le}=CHfPND

Y{ 18)=I'PN
Yt 271=1

Yl 35)=GS'GD
Yl 36)=P

Y{ 59)=HwW

Y{ ASI=FW

Y{ 82)=ET74A
Y{ 83)=U

Y(L107)=MIGSNO
Y123 =X GSND
Y{1l26)=Br'GS

500

RTAS

.11£’
- 154
-.8790-01
+H230-02
. 103
~+158
. 467001
«3550-14
~.596D-01
« 1870601
«4220-02
—«460D-07
-.3010-02
—+320
-« 157
=163

—. 147

+ 133
—«170
-« 398D0-01

+ 7154D-01
-. 351
-.171
-+133D-01
-.399D-01

«2140-01

«590D-07
-« 619D-02
-+ 506D-02
e 399
—.217

. 182

-.328
»283
-.125
—e127
s114D~01
-«375
-« 7298
—«522D-01
-.175
«3310-01
.1430-01
-.6060=-02
-« 603D~-02
— 4813
~. 265
2218

CoUPLES

STD.DEVIAT,

« FEID-0L
«2420-01
2 34205-01
£ 2708-0G2
£ 2740-01
«3920-01
.2070-01
-0

«510D-02
«1470-02
«3380-03
«371L0D=-03
«2410-03
«13806-01
«£29D-02
«1350=-01

«804D=-01
«335D0-01
«&070-01
«4920D=02
-« 330D0-01
+5460-01
«2980-01
«5930-02
«6740D-02
«1760-02
«4360-03
«450D-03
«3390-03
«2270=-01
«B87HN=02
.219D-01

<113

« 564001
«6100-01
«968D-02
+4750-01
-8070-01
«56220-01
»3130-02
«105D-C1
«2910-02
-9550-03
«5110~-03
«576D-03
«3120-01
«106D~01
»2970-01

T

1.71
6,37
—2.5%
Z2.30
3.75
-4,02
-2.25
.0
-l1.A
12.7
12,4
-12.4
-l2.4
-23,1
-25.4
12.0

-1.83
3.99
-4,17
-8.09
2.28
-6.42
~5.73
~2.25
-14,8
12.1
13.5
-13.7
-14,9
-17.6
-24.7
8. 30

-2.950
5.02
=2.05
-13.1
L 240
4,64
-7.06
-5.6R
~16.5
11,3
14.9
-11.8
-10.4
-15.5
-Z24.8
T.34

OF ANTITHFETIC SAMPLFS

1978

1979

1980
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6. A Short Note on the Forecast Errors

Unadjusted forecasts of an econometric model are affected by errors

whose sources c¢an be sumnmarized as follows:

6.1 Models's structure

Some or all the eguations may be not correctly  specified, Generally
one deals with the problem of the forecast errors "conditional on
the model's structure". Nevertheless some attempts have been done
to get some empirical evidence of the errors due to incorrect spve-

cification of a model [10] .

6.2 Exogenous variables

Specially in ex—ante forecasts, the values of some exogenous va-
riables may be wrong. This problem can be empirically solved by ad-
ding to the model some stochastic equations, where the "suspicious"
exogenous variables are endcocgenized and explained in terms of a
"sure" exogenous component plus a random term with pre-assigned
distribution. This method is rather simple, but, of course, in-
volves a good degree of arbitrariness. Some theoretical works on

this topic are available [24].

6.3 Random structural disturbances

It is exactly the problem of passing from the structural form; dig-
turbances to the reduced form disturbances, discussed in the previous

sections.

6,4 Errors in the coefficient estimates

Without any difference for linear and nonlinear models, this problem
can be faced at least in 4 different ways, 3 of which are based

on Monte Carlo methods, while one could be called "analytic simula-
tion" (and can be even completely analytical if the model is linear,
but the completely analytical method is not recomandable in prac-
tice, due to computational complexity also for small models). These

four methods are bhriefly discussed below.



6.4.1. Monte Carloc on cocefficients [10] , [23].

A vector of pseudo-random numbers with multivariate normal distri-
bution c¢an be added to the structural coefficients several times,
and each time a new solution is computed. This method has some
strong thegretical drawbacks also for linear models, as it sheould

be clear from the following example.

C
Y

a + b¥ + u
C + I

Let the estimate of the coefficient b and of its standard error be,
for example:

-~

b = 0.8; Ty = 0.2 (so to have a "good" T = 4)

If we solve the model several times, after adding to 0.8 a random
number with zero mean and standard deviation 0.2, we get meaningless

results, since in the reduced form,

_ a b 0
C=apti3 2 tip

the denominator 1-b can guite easily assume values close to zero
{the truncation, which sheould be done to avoid it,should be too narrow,
when compared with the nonlinear example of section 2). More

exactiy, if b has a normal distribution

~

—Er has a distribution with no finite moments, so that it is com-
1=-b

pletely meaningless to compute sample means and sample variances

of the results ¢f simulation (in any case g has not a normal distri-
bution, and the same hclds, in general, for the ccefficients of a
structural model properly estimated by means of some method for

simultaneous eguations systems [8, p.182]).

6.4.2. Stochastic simulation and re-estimate [22]

This method is of quite difficult practical implementation and also
has some theoretical drawbacks, but it gives interesting indica-
tions on the "small sample" properties of the estimaticon methods

{and, therefore, of the forecasts produced by the model).



Vectors of pseudo structural disturbances are added to the model's
equations and the model is solved over all the sample period. The
computed values of the endogenous variables are treated "as if
they were a new set 0f historical values" and a re-estimation of
the structural coefficients is performed. The "new'" set of estima-

ted coefficients leads to a new forecast, and so on.

This method allows a good insight into the "small sample” proper-
ties of estimation and forecast errors. It has a strong practical
drawback, as it is of difficult implementation even for small
models. It also involves several theoretical problems {(even if
not so big as in case 6.4.1) since, under assumption cf normality
of the structural disturbances, the reduced form coefficients and

the forecasts may have no finite moments [17],[21].

6.4.3. Monte Carlo to derive asymntotic variances

This method starts from the consideration that the estimation
metheds for simultaneous equations systems (2S5LS , 3s515., FIML,
etc.)} produce neither unbiased estimates of the coefficients,

nor estimates of the variances of the coefficients, but just pro-
duce consistent and asymptotically normally distributed estimates
of the coefficients. More exactlyi with reference to the small
two equations model, they produce a , g and E/n, such that

(8,p. 199].

-~ -~

a a a - a

p lim = Vi distrib. N (0,5
S S

A Monte Carlo method, which takes into accocunt this starting
assumption, is described in [5]. It seems (so I hope!) theoretically

correct, but is not really more than an exercise.

6.4,4. Analytic simulation

This method takes nroperly into account the asymptotic properties
of the estimation methods, as the algorithm of section 6.4.3., but

has the advantage of avoiding the Monte Carlo sampling errors.



In case of linear models this methed can be completely analyvtical
[11]; however the comnletely analytical computation, even for a
small medel, is so complicated that computational errors have been
quite freguent in the literature [4]. The mixed analytical and nu-
merical method (therefore called "analytic simulation") is consi-
derably simpler and faster and has the advantage of being appli-

cable also to nonlinear models. It is described in details in [1].

It must be pointed out that the metheds 6.4.1., 6.4.3. and 6.4.4.
require, among the input data, an estimate of the complete asymp-
totic covariance matrix of all the structural estimated coefficients
of the model. This is a standard coutcome, for small models, of
system estimation methods, such as 3S5LS or FIML, but it is not
produced by single equation methods, such as 2SLS or LIML; in the
last cases, therefore, some additiconal preliminary computations

must be performed.

7. The program installed at Bonn University

The program for stochastic and analvtic simulation of econometric
models, installed by the author of the Computer Center of Bonn
University, is a modified version of the program announced in (2],

whose installation and user's procedures are described in [3].

Data, programs and procedures are contained in 5 partiticned data

sets on direct access device, under the code 'UJW411°'.

UJW411.UJW.PISA.FORTRAN; this data set contains the

source modules of all the programs and models (Model 5, Klein-I
and Klein-Goldberger). All the programs are written in FORTRAN-G,
excepted one ASSEMBLER subroutime (UNIFOR).

UJW411.03W.PISA.LIBRARY; this data set contains the load modules of
all the "standard" subroutimes of the program (which must be linked
when no special option is specified); each member name is eqgual

to the subroutine's entry name.

UJW41%.UIJW.PISA.DATA; this data set contains, in three members, the
data for the three available models; the format of the data is

described in [3].



UJW. 411 .UJW.PISA.TEXT; this data set contains the cbhject modules
of the main program, of the three models and of all the subroutines
whose entry name is different from the member name, bhut is equal
to a member name of the LIBRARY data set. The member name is the

same of the corresponding source medule in the FORTRAN data set.

UJW411.UJW.PISA.EXEC; this data set contains only one member,

which is the execution procedure.

TSO execution command (with 512 Kj):
EX 'UJW411.UJW.PISA.EXEC(STOCSIM)f

4 parameters are required; the last 3 can be chosen among the

following:

DUMMY; the standard stochastic simulation is performed, as described
in [3];

INVERSE; the generation of the univariate standard normal deviates
is performed by the inverse algorithm [7] rather than by

the algorithm of Box and Muller.

NAGAR; the generation of the multivariate normal deviates is per-—
formed by the algorithm wnroposed bv Wagar [19],[7), rather
than by the algorithm of Mc Carthy [167; Nagar's algorithm
cannot be used for Model 5, since the rmumber of stochastic

eguations is greater than the sample period lergth.

MCSERIAL; the generation of the nultivariate normal deviates is
performed by the algorithm of Mc Carthy [16] which takes

into account serial correlation.

ANTIBIAS; the deterministic simulation bias is comnuted by means

of the antithetic variate sampling technique,

REDVAR; the reduced form variances are computed by means of the

analytic simulation procedure.

BONNGS; a special version of Gauss-Seidel is loaded; its execution
speed is generally smaller than the standard, but the pro-

babilities to get convergence are higher.



VERIFY; equations check with residuals is performed.

The first of the 4 parameters must be the name of the model:

MODELS

KLEIN2 (is the Klein-I model estimated by 2SLS, as in [11]).
KLEINFML (is the Xlein-I model estimated by FIML).

KLEINGOL (is the revised Klein-Goldberger model, estimated by

25LS with 4 principal components, as in [(11]).

When the execution begins, 5 integer numbeéers are printed at the

terminal. With reference to [3] they are:

NREP : number of replications of stochastic simulation to be per-

formed.

NPRINT : a submultiple ¢f NREP for intermediate ocutputs correspon-
ding to a number of replications less than or equal to
NREP.

IFROM : initial vear of simulation.
ITO : final vear of simulation

IDYNAM: £flag O if one-step simulation must be performed, 1 if the

simulation must be dynamic.

These 5 numbers are read by the program at the beginning of the
model's data set (a. member of DATA) and can be either left unchanged
by entering at the terminal & /*, or can be overwritten (with the

same format).

The standard output is on the printer, but some results are, in

some cases, also displayed at the terminal.
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