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THE ASYMPTOTIC DISTRIBUTION OF IMPACT MULTIPLIERS
FOR A NON-LINEAR STRUCTURAL ECONOMETRIC MODEL

ABSTRACT

The problem of deriving asymptotic statistical properties of im-
pact multipliers from a consistent estimate of a structural non-linear
econometric model is discussed. The theoretical aspects, which genera-
lize the results derived by Goldberger, Nagar and Odeh {9} for 1linear
models, are analyzed in detail, as well as the numerical (computation-
al) aspects. Numerical results are finally displayed for an econome-
tric model well known in the literature.
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1. INTRODUCTION

In 1961 Goldberger, Nagar and Odeh [9] proposed a method for de-
riving the statistical properties of the reduced form coefficients of
a structural linear econometric model in terms of asymptotic distribu~
tion theory.

Even if with substantial modifications in the approach, Dhrymes in
1973 [5] confirmed the validity of those results, still for linear
models.

The main reason for deriving asymptotic statistical properties was
that, also when the model is linear, the computation of reduced form
coefficients involves non-linear transformations of the structural co-
efficients, thus making in general impossible the computation of fi-
nite sample moments, while it is well known that an dsymptotic normal
distribution can be maintained also through non-linear transformations
provided they are continuous and differentiable [1S, p. 374]. As these
conditions are, usually, largely satisfied by the functions involved
also in non-linear econometric models, it should be possible to extend
the method of analysis to a quite general class of non-linear models.
This is the subject of the paper.

A general structural econometric model(l) , linear or non-linear in
the variables as well as in the coefficients, can be represented as:

(1.1)  F(Yy, X, A, U) =0

(1) As impact multipliers analysis deals with instantaneous re-
sponse of a system [4, p. 518}, exogenous and lagged endogenous do not
need, in this context, to be distinguished and can be simply treated
as predetermined variables. The locution impact multiplier ishere pre-
ferred to that of reduced form coefficient only because it seems to be
of more current use when dealing with non-linear models; the validity
of the results is, however, also for the lagged endogenous variables.

3
where:
1
FZ is a vector of functional oper-
F = : ators
_Fm_
1,t X,t
Y2.¢ Xy ¢ are the vectors of observed
Y, = ’ 3 X = ’ endogenous and predetermined
: : variables at time t=1, 2,..,T
m,t| *n, |
2] is the vector of all the struc-
a tural stochastic coefficients
A = z of the model (all the other co-
. efficients being excluded from
a this vector and . included in
L 8 the functional operators)
[u; 4] is the vector of structural
’
stochastic disturbances at time
U = Y2,t t, assumed to be with zero
t . means, independent from all the
predetermined variablesand with
u .. . .
| m,t] finite covariance matrix.

Following Dhrymes [4] and Goldberger [7] the generic impact multi-
plier is defined as the partial derivative of the conditional expecta-
tion of a current endogenous variable with respect to an exogenous va-
riable, with all other variables held constant, after all contempora-.
neous feedbacks due to simultaneity of the system have been allowed



In linear stochastic models, the conditional expectation can be
easily derived through the reduced form. As the reduced form involves
only linear transformations of the structural disturbances, the condi-
tional expectation can be derived setting these random temms a-priori
to their expected value (Ut =-0). Therefore, the impact multipliers,
in this case, can be practically defined without involving the concept
of conditional expectation, but simply as the coefficients of the cur-
rent exogenous variables in the reduced form equations.

Also when dealing with non-linear stochastic models, the deriva-
tion of the impact multipliers moves, at least in principle, from the
reduced from equations. The teduced form, however, involves in thisca-
se non-linear transformations of the structural disturbances, so that
they should not be set a-priori to zero for a correct derivation of
the conditional expectation of the current endogenous variables (see,
for example, the analysis in (11], even if there the approach is
dynamic) .

"In spite of the correct theoretical definition, however, empirical
multiplier .analysis is very often carried out without taking inro
account the structural disturbances also when the model is non-linear.
This consideration has suggested to develop two different theoretical
approaches to the problem of the statistical properties of impact mul-
tipliers in the general framework of non-linear models.

The first should be properly called the derivation of the a-
symptotic distribution of impact multipliers when the reduced form is
drawn disregarding the existence of the disturbances in the structural
form. Once the theory has been developed, the simplest way to derive
in practice numerical results is simulation, so that we shall simply
speak of impact multipliers in non-stochastic simlation (using the
terminology of {11]; of course, cne-step or static simulation).This
first approach will be dealt with in chapter (2.).

The second approach should be properly called the derivation of the
asymptotic distribution of impact multipliers when the reduced form
takes into account the structural disturbances. Once the theory has

been developed, simulation is, in this case, the only practical method
toget numerical results, so that we shall speak, stillusing the termi-
nology in [11], of impact multipliers in stochastic simulation. This
approach will be described in chapter (3.).

[n chapter (4.) numerical results are drawn for the non-linear

Klein-Goldberger revised model.

2. ASYMPTQOTIC DISTRIBUTION OF 1MPACT MULTIPLIERS
IN NON-STOCHASTIC SIMULATION

2.1. Statement of the problem and major assumptions

The definition of impact multipliers in the theoretical framework
that disregards the presence of the structural disturbances is well
known in the econometric literature, as well Inown are the methods of
empirical computation via non-stochastic simulation [6], [8].

Subject of this section will be the study of the statistical
asymptotic properties of the impact multipliers, when they are computed
via non-stochastic simulation on the basis of estimated coefficients.
The conditions under which the procedures that will be described can
be applied are very wide and general; nevertheless, for methodological
correctness, they are listed hereunder. Refervence is made to the sys-
tem (1.1}.

&) Assumpiian

Setting Ut to its expected value'(Ut = Q) the system can be solved
ar time ¢ (non-stochastic solution); let Y: be the solution vector (or
one of the solution vectors, the one in which we are gojng to compute
the multipliers).

b) Assumption

Setting Ut to its expected value (Ut = Q) Fl’ Fz, N Fmare con
tinuous and differentiable functions, with respect to the ¢lements of
Yt’ )(L and A, in a domain of the (m = n * s) diJnensionalISpaCe, incXud-
ing the point (Y7, Xt, A), with continuous derivatives of the first
order.




a] Assumpfion

The Jacobian matrix of Fl’ FZ’ i Fm is non-singular in some
neighborhood of the solution point (Y;, Xt’ A) (m+n+s dimensional
space) .

d) Assumption

Pl, Fz, v, F have continuous second order mixed derivatives,
with respect to the elements of A and Y or A and X
borhood of the po1_nt (Yt' . A).

Under these assumptions the well known implicit functions theorem
{see, for example, [12, p. 389]) can be applied, showing that Y, can
be made explicit as a vector of m functions of Xy and A in some nmgh—

borhood of the solution point (Yt, , A) of the (m+n+s) dimen-
(2)
f

£ in some neigh-

sional space; the m functions £ 1 are, in this case, the

'
reduced form equations. Z

The £, functions are defined in some nelghborhood of the point
(Xt’ A) of the (n + s) dimensional space, wheTre they are also continu~
ous and have continuous partial detivatives of the first order with
respéct to all the elements of X, and A.

The same theorem states that each of these derivatives is equal

to the ratio of two Jacobian determinants (the dememinator being dif-’

ferent from zero, for assumption {c}). In particular

a(Fl, Fz, veny Fm]
afi(x; A} . 3()’]_: )’2; ey Yl l’ j? yl“l’ seey Yl'll}

axj 3(F1s Fpy weny E)

(2.1.1)

a{yl, YZ’ R | me

(2) These functions are such that ¥ _ = fj (X¢, A)jweprefer this
notation to the more used y = yi(xt,A): to avoid confusion in  the

use of the symbol y. ot

in some neighborhood of the {n + s) space point (X, A).

In this context, the 1i,j-th. impact multiplier is the value as-
sumed by the function afi/axi at the point (X, A}; it will be called,
hereurnder, 1° it where the superscript "1t recalls that it disregards
the presence of the disturbances U in the medel. In formula:

. afi(}(, Ay

@.1.2)  n}, .= (T) o
]

where the domazin of the function fi is, for the implicit functions

theorem, an {n + s) dimensional interval containing the point (Xt, A).

Observing now that, for assumption (d), every partial derivative
in equation {2.1.1) in the two Jacobian determinants is again continuous
and differentiable with respect to the elements of A, with continucus
derivatives, it is clear thgt also af.l/axj is continuous and differen-
tiable with respect to the elements of A, with continucus derlivatives.

All the impact rultipliers at time t can be arranged into a (mmn)
colum vector n;. The order within the vector is net really important;
for example, we could ‘arrange :the multipliers by reduced form equations
as in [9], so that the subscripts 1i,j for the elements should be
abandoned and veplaced by a single subscript h, where

h=n@i-1) + j.

When passing to the structural model with estimated coefficients,
the following further assumpticns are required.

e) Assumption

The model's coefficients can be estimated by means of a  consis-
tent estimation method; let ;\ be the vector of all the structural coef
ficients estimated using a sample of length T. The corresponding solu-
tion vector of system (1.1) at time t is indicated as 9‘1’:

§) Assumption

No matter of what are the 'small sample" properties of R, let
V(A - A) converge in distribution to the multivariate normal N(O, £)



(for ZSLS, 35LS, FIML and LIML see, for example, Dhrymes [4, pp. 191, 216,
323 and 351]); let f be a consistent estimator of &, covariance matrix
of the asymptotic distribution of the structural stochastic coeffi-
cients.

The next subsections (from 2.2. to 2.10.) will deal first of all
with scme asymptotic propertiés of the estimated non-stochastic solu-
tion vector ?;; then the definition of estimated impact multipliers
will be introduced, and the related asymptotic distribution analyzed;
finally the ‘computational procedures will be displayed.

2.2. Lemma

(2.2.1) plim Y =Y
Te

rt

Proof:

We have observed in section (2.1.) that, for every i, y;’t is the
value of the continuous fimction f at the point (X;» A), being this
function defined in some ne1ahborhood of that point. As soon as A fal-
ls within the domain of £ yi ¢ can be regarded as the value of the
function f£; at the point (X, k).

As pllm,A = A, and the functions f are continuous, the desired
T

result follows irmediately from Slutsky theorem.(sj.

2.3. Definition

Observ1ng that y t is the value of the function f at the point
( A), it is clear that the estimated 1,j-th nnpact mulciplier at
tlme t is the value of the function (afi/axj) at the point {Xt, A). In

(3 "if plilﬁ x =x* and g(x) 1is a continuous function, then
plim g(x) = g{x*)" [7, p. 118]; for a proof see Wilks [16, p. 102].

formuia:

I, (X, A)
(2.3.1) Gt c (

_ax——) )

]

ERY
-

E: is the (rm) colum vector of the estimated impact multipliers.

2.4. Theorem

{2.4.1) %i:? g = ﬂ;

Proof:

As we have proved in section (2.1.) the contimuity of the deriva-
tives of the functions fl, f2’ ceey Em, the above result follows from
a straightforward application of Slutsky theorem.

Theorem (2.4.) states that, in a non-stochastic simulation frame-
work, the impact multipliers derived from the consistently estimated

structural model are consistent estimates of ﬂ;.

2.5. Lemma

(Mote that the symbols in this lemma should mot be identified
with the same symbols elsewhere in this paper).

"Let T be a k-dimensional statistic (Tl YRS Tk,n) such that
the asymptotic distribution of 1/_tT1 no 1), . "/HtTk,n - ek) 1s
k-variate normal with mean zero and dlspersion matrix i". ‘Let g,

s By be q functions of X variables and each g; is totally differen-
tiable. Then the asymptotic distribution of .

“/;[gi(‘rl.n’ Tty Tk’n) - gl(el’ L | ek)} 1= ]‘l 2: peey q

is g-variate normal ‘with. zero means and dispersion matrix GIG', where
G = [agi/aej]. The rank of the distribution is equal to R{GiG')".
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The complete proof can be found in {14, p. 322] (see also [15, p.
383]).

2.6. Theorem

The asymptotic distribution of
(2.6.1) VT - %) | (as T+ =)
is mn-variate normal with zero means and covariance matrix
(2.6.2) ﬂ: = G;zG;‘

where £ is the covariance matrix of thé asymptotic distribution of
VT(A - A), and_G: is the ‘(mm xs). matrix whose genmeral element is

2 ) i=1,2, ..., m

(2.6.3) 8kt = (E__fiffi;ﬁl) g = 1,(?, -ij, n
3y :n 1..v +J

a;j 2ay (Xir A K-1,2, .1

Proof:

The proof immediately follows from lemma (2.5.) and from the
consideration that the mn functions (afi/axjj, computed for Xt fixed
at its historical value, are continuous and differentizble functions
with respect to the elements of A. 7

This theorem states the existence and the properties of the
asymptotic distribution of the derived estimated impact multipliers
for non-linear econometric models in a2 non-stochastic simulation ap-
proach,

2.7. Remarks

The rank of the above distribution, as observed in lemma (2.5.},
is that of the matrix GEEG;'. The distribution will be, therefore,
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generally singular (as soon as mn is greater than s), thus making it
impossible to determine explicitly the demsity function. This,however
does not create any difficulty in theory, as well pointed out by Rao
(14, pp. 445 - 446].

2.8. Corollary

As proved'in section (2.1.}, the second order mixed derivative in
equation (2.6.3) is still a continuous fumction of the structural co-
efficients.‘lf we define ag,k,t as the value of that derivative at the
point (X, A),

Bzfi(X, A)
) o

axj aak

G F- |
o A

Slutsky theorem can be applied once again, leading to:

2 ~a _ ®
(2:8:2)  pln gy 40 ™ Bkt

and, in matrix notation:

s 0 _ O
(2.8.3) %&i? Gt = Gt

Furthermore, being £ a consistent estimator of the covariance
matrix of the asymptotic distribution of the coefficients (assumption
{§), section (2.1.)):

{2.8.4) plim I = ¢

T-+eo

Defining now ﬂ; as:

(2.8,3) @
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the application of Slutsky theorem to this last equation leads, final-
ly, to the desired result:

(2.8.0) %aET ﬁt =0,

=

that is: 5t is a consistent estimate of ﬂ;.

2.9. Computational procedures

The problem to be empirically solved is that of developing a sim-
ple and reliable technique to compute the matrix ﬁ; above defined, the

computation of ﬁ: being no more a problem for econcmetricians {6].

2.9.1. The analytical approach

In the case of linear models, where n; 1s costant over time, the
expression of the elements of G; can be further developed, leading to
the formula [9, eq. (4.6)] (in the approach by Goldberger, Nagar and
Odeh, however, the dimensions of the matrices I and G are much larger
than in this approach, because the vector of the coefficients is com-
posed not only of the structural estimzted ones, but of all the coef-
ficients of the model, including zeroes).

In the case of non-linear models, one should proceed as follows,

1) Find a solution vector ?; for a given year by means of a nume-
rical simulation technique.

2) For any i and j, compute the analytical expression of the func-
tion (afi/axj) (in its domain), as the ratio of two Jacobian detemmi-
nants (implicit functions theorem), without making explicit the ele-
ments of Y.

3) Compute the partial derivatives of the function (afi/axj) with
respect to a), for any k; in this case, only the mumerical :value in
the solution point (?:'Xt’ A), and not the full analytical expression,
is required. :
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4) With the obtained values, build the matrix ﬁ; and complte
zo _ AO»AM
a GtEGt . -

The above method, though possible, is dreadfully complicated,even
for small medels.

An alternative and much simpler numerical method is suggested.

2.9.2. The numerical approach

The mumerical method is a dirvect application of equations (2.8.1)
and (2.8.5)}. It is simply based on numerical computation of the second
order mixed derivatives (eq. 2.8.1), obtained via simulaticn as:

573 ¢
o )
Ax.t
B g ——
hk,t™ Lz
k

(2.9, 2.1)

with carefully assigned values of ij t
,
that the values of ij T do not influence the results in linear models
El
but they do in the case of non-linear models, so that in these cases

and Aak. [t must be recalled

they must be chosen as small. as possible, being the definition of de-
rivative a limit as & + 0. The values of Aﬁk, on the contrary, do in-
fluence the results beth in linear and in non-linear models (the solu-
tion, in fact, always involves non-linear transfomations of the coef-
ficients, such as inversion of matrix of coefficients): for the same
reason they must be, therefore, chosen always as .small as possible.

2.10. Remarks

Numerical differencing methods, especially of second and higher
order, are notoriously poor substitutes for analytic differentiation.
To overcome, in practice, this difficulty, it is recommended to repeat
the computation severaltimes, using different values of ij;t and Aﬁk,
for example reducing them more and more, until results do not change
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any more up to a convenient number of significant digits.

3.THE ASYMPTOTIC DISTRIBUTION OF IMPACT MULTIPLIERS IR STOCHASTIC
SIMULATION

Subject of this section will be first of all the definition of
impact multipliers in the framework of models with stochastic  struc-
tural disturbances; then a careful definition of impact multipliers
estimated on the basis of the estimated structural coefficients will
be introduced, and the related statistical asymptotic properties analy-
zed; finally the computational procedures will be described.

3.1 Further assumptions

As we have to take into account the presence of the disturbances
U in the model (1.1), the basic assumptions described in section (2.1)
must be modified, becoming slightly morerestrictive (but still remaining
very wide and general to allow empirical application).More precisely,
all the assumptions, from (a) to (§), are maintained, with the diffe-
rence that the structural form functions Fl’ Fz, N Fm must be con-
sidered defined in the (m + n + s + m) dimensional space (for the inclu-
sion of the m-dimensional U within the arguments).

Furthermore, we assume that:

g} Assumption

Once the system (1.1) has been solved for Yt’ according to the
implicit functions theorem, making expljcit the functions fl’ fz,...,
fm of the arguments Xt’ A and Ut (reduced form equations), the m-di-
mensional projection of the domain of these functions, into the sub-
space of Ut’ must include any possiblé value of Ut (in other words,the
reduced form equations must be defined for the whole set of values of
U, for which the structural form is defined). This assumption, though
strong, is implicitly adopted by econometricians when dealing with the
reduced form of non-linear models including disturbances [11].
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h) Assumption

The distribution function of U is known, and is such. that the
conditional expectation of Yt’ given Xt and A, exists and is finite.
The necessity of this condition, not only here,but in the more general
context of stochastic properties of non-linear models, should be clear
when considering that non-linear transformations of random variables
(for example normally distributed) can lead tovariables whose iexpectation
does not exist (see, for example, {15, pp. 376-377]). The distribution of
thestructuraldisturbances,therefore,shouldberegardedwithgréatcare.
This is not the case here; what we need is the normality of the asymptotic
distribution of the coefficients. and this, generally,does not depend
on a particular form of the distribution of U {4, p. 191]. Without any
loss of gemerality we can, therefore, simply suppose structural dis-
turbances to have a distribution that satisfies assumption (h).

3.2. Definitions

Making use of the reduced form equations,with the properties as-
sumed in section (3.1.), we can now put in formula the definition of
the i,j-th impact multiplier at time t already anticipated in the
introduction:

BE[£; (X, A, V)[X,, A]

(3.2.1) s o=
1,),¢ axj

that is:

3
(3.2.2) "3t T [ . jfi(x’ A, Ue (W) dU:| N
) t
being ¢(U) the joint density fumction of the disturbances and being
the integration performed over the m-dimensional domain of ¢(U).Recal-
ling that the disturbances are supposed to be uncorrelated with the
predetermined variables and that integration is performed with respect
to elements of U, while derivation is with respect to X {12, .p. 251],
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{14, p. 81], then the integral is a continuous and differentiable fune-
tion of X and A with continuous second order mixed derivatives in the
(n + s} dimensional projection of the domzin of f,, that is aninterval
around (Xt, A). Two consequences originate from the previous _considera—
tions: first the partial derivative can be moved within the integral,
obtaining:

A (X, A, U)
(3.2.3) Tt U— (W) du]

ax.
5

AL (X, A, U)
= E [1— X, A}

X,
]

(Xes &)

t?

that is thepartial derivative, with respect to xj, of theconditicnal expec-
tation 1isequal to the conditional expectation of the partial derivative.

The second consequence is that if the set of estimated structural
coefficients A is used instead of A, for large sample size (see the
remarks in section (2.3.)) the "estimated" impact multiplier at time t
(in words the partial derivative of the conditional expectation,given
Kt and A) can be simply defined as the value assumed by the function ''par-
tial derivative of the integral” in equation (3.2.2) (or the function
in equation (3.2.3)) at point (X, A). That is:

3
(3.2.4)  Fy .- [;—Jf.l(x, A, U)o (1) dU] R
j |

Also here the partial derivative can be moved within the integral,
obtalning:

R 3 (X, A, U)
(3.2.5) W 5, =[ S T 1) dU]

X .
]

(X, )
All the "i,j,t and "i,j,t’ as in sections (2.1.) and (2.3.), will

be arranged in two column vectors of mn elements 1, and ﬁt‘
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3.3, The asymptotic distribution of \/T(ﬁt - 1)

The function 'partial derivative of the integral® in  equation
(3.2.2) (or that in equation (3.2.3)) is continucus and differenltiable
with respect to the elements of A, with continuous partial derivatives.
The theorems aiready mentioned in sectioms (Z.2.) (Slutsky) and (2.5.)
can be applied in the same way leading to:

(3.3.1) %ﬁn M= M,

(3.3.2) VT, - 1,) _in distribution_ N(0, f, = 6,16})

Teo
(3.3.3)  a, = G,f6!

(3.3.4) plim Qt = ﬂt
T-om

Some comments are necessary for the matrices Gt and Ct', the gene-
ral element of Gt is:

g (U} dU]

ax, (Xer )

3 faf_i(x, A, U)

(3:3.5) By ™ [——
aak

As in section {3.2.) it is possible ta move the derivative under
the integral, obtaining:

225, (X, A, U} W @
(3.3.6) 8¢ " [ —— oW }
Kt ax; Ay (K¢ A)

azfi(x, A, U)
NEELLLINN

axj aak

The general element of G_ is:
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- £ oratE X, A, U
(3.3.7) Bk, Lj_l_— 9(U) le]

axj day (Xt, A)

in perfect analogy with equations (2.6.3) and (2.8.1), with the diffe-

rence that the conditional expectation replaces the computation of the -

derivative at the point (Xt, A} or (Xt, ﬁ].

3.4, Computational procedures

In the case of linear models, as already mentioned in the intro-
duction, it is well known [11] that the conditiomal expectation of Y,
is equal to the non-stochastic solution of the model (given the exact
coefficients A} that has been called Y° in section (2 1. An imme-
diate consequence is that, for linear models also I° = m, G° = G,
r[° n, G° =G - {the subscript t can be dropped, as they are con-
stant over time); the proof follows from equations (3.2.3), (3.2.5)
(3.3.6) and (3.3.7) as scon as f is replaced by its analytical ex-
pr3551on(4)

If the model is non-linear, the Monte Carlo method (stochastic
similation [11] ) seems to be the only approach at the same time cor-
rect and practical, to get the values for IIt and G

Equations (3.2.5) and (3.3.7) supply the elements of H and G
as conditional expectations of partlal derivatives, given X and A
therefore as usual in Monte Carlo met_hods they can be computed by
means of replicated simulations; in each simulation, £irst of all a
pseudo-random vector of disturbances W, with the same statistical
properties of U, is introduced;then (Aff /Ax ) and A(Ayl t/ax t)/
/Aak are computed at the solution point, at t:l.me t; the sa:m.ple means

(4) A linear model, using the notationm of (7, p. 279],can be rep-
résented in its structural form as: Y[ + XB + U = 0; the reduced form
is: Y = XN+ Vwhere T = = B[ and v = —ur~l. vy disappears afteyx
derivation, and the integral of ¢{U) is equal to 1.
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of these statistics are finally computed.As the distribution function
of U (assumption (h), section (3.1.)} is supposed to be known a-priori
and a “perfect" rahdom numbers generator is supposed to be avgilable,
the computed sample means converge to the elements of L and Gy when
the mumber of replicated solutions increases.

3.5. Remarks

If the parameters of the distribution of U, instead of " known as
hypothesized in (k) , were simply estimated, other problems would arise.
Roughly speaking, the approach to the problem should take into account
the uncertamty derwmg from the estimate of these parameters, be-
sides that related to A. The development of the theory in this case
is beyond the purposes of this paper. Nevertheless, the authors are
aware of the fact that, in most cases, the parameters of the distri-
bution of U are estimated, so that the theoretical approach and the
empirical applications here developed should be considered, in some
sense, conditional on these estimates.

4. APPLICATION

When passing to empirical applications, it is worth  recalling
that the covariance matrix of the structural coefficients estimated
by any consistent estimation methed is not the £ introduced insection
(2.1.), assumption (4): in fact, as well pointed out by Christ (3, p.
379) and Theil [15, p. 497], what is of practical interest is not the
covariance matrix of the asymptotic distribution ofV'?(ﬁ - A),but an
estimated approximate covariance matrix of the distributicn of A for
a finite sample of length T; and this is #/T. To be more precise,
again following Christ, E/T "is an estimate of the exact variance
[covariance matrix, in our case)] of a distribution that approximates
the distribution of " ﬂ, while the exact distribution of A may not
have, in general, finite moments [4, p. 193].

Using E/T in equations (3.3.3) {or 2.8.5}, the resulting matrix
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ﬁt/’l' (or EE/T) is the estimated approximate covariance matrix of the
impact multipliers ﬁt (or ﬁ;), that is the result of practical inter-
est.

4.1. Application to the Klein-Goldberger revised model

The correctness of the metheds described in this paper has been
preliminarily tested on a linear model, the Klein-I model. The numer-
ical results were equal, up to 5 significant decimal digits, to those
obtained, using the analytical procedure described in [9],by means of
Havenner's program [10], thus convincing the authors of the correct-
ness of the adopted procédures; they were, however,substantially dif-
ferent from the numerical results presented in [9] and this led to a
revision of the numerical results of the literature relating
to linear models [2].

An’ application was then undertaken cn a larger nom-linear model,
the Klein-Goldberger revised model [13], estimated by means of Two
Stage Least Squares with 4 Principal Camponents..The model's structure,
the meaning of the symbols and the results of the structural estimate

can be found in [13]. The only difference in the re-estimation per-

formed by the authors concerns the asymptotic standard errors of ‘the
structu.ral coefficients and of the structural equations,whete no cor-
rection has been done for the degrees of freedom according to [15, p.
451, (5.3)]. Theil's formula [15, p. 500] has been used to compute
E/T, asymptotic covariance matrix of the structural coefficients.

Being the model non-linear in the endogenous variables, the im-
pact mltipliers change (slightly, in this model) over time. Table 1
presents, as an example, the impact multipliers and derived standard
errors in one year of the sample period (1560).

“The computations have been perfermed as described in  section
(3.4.) by means of special features introduced into the package de-
seribed in [1]; the displayed results have been obtained as . sample
means of 200 replications, each of which requiring. 30 seconds: of
CPU time on a computer IBM/370 model 168. The same <omputation has
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been carried out also by means of non-stochastic simulation, as in
section (2.9.2). These results, even if theoretically biased [11],
have been found practically equal, up to 3 (sometimes 4) significant
decimzl digits, to those displayed in the table.In other words, table
1 can be regarded as summarizing the numerical - results relating to
chapter (2.) as well. Of course, this result must be considered
strictly related to the structure of this particular model, which has
been recognized to be''nonlinear, but mildly so™ [13, p. 188].
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