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Abstract

Studies of the relationship between national inflation rates and the output gap, as for-

malized in the New Keynesian Phillips Curve, ignore macroeconomic heterogeneity which

exist in different parts of the country. This paper investigates differences in inflation and

output across United States cities. The policy implications are difficult to ignore given

differences in production across the country as a whole. Also of interest is identifying

the median city-economy in the US. Thus when policy is implemented which city sees the

greatest benefit of new policy? In addition to considering the standard Phillips relation

between inflation and the output gap, I also consider the relationship between inflation

and an index of wage costs as suggested in the literature. Preliminary results demonstrate

a significant degree of heterogeneity across cities implying centralized policy prescriptions

are helpful for some economies are harmful to others.

Keywords: Real interest parity condition, Transition countries, Unit root test, Structural

breaks

JEL: E31, E43, F32, F41



Introduction

One of the fundamental policy relationships has been the Phillips Curve. In its earliest

form, Phillips (1958) demonstrated the inverse relationship between wage inflation and the

unemployment rate. This formulation was revised by Samuelson and Solow (1960) to the

textbook version of unemployment rate and inflation. One of the key implications of this

standard Phillips Curve is that, given an underlying deterministic economic structure, no

policy maker can have both low inflation and unemployment contemporaneously. From

this analysis came the theoretical underpinnings for the monetary policy loss function and

the Taylor Rule, Taylor (19xx).

Simple Keynesian style business cycle use a national Phillips Curve relationship when

constructing the aggregate supply curve. xxx

It is well established that over time rational expectations the Phillips Curve collapses.

However, a key assumption of this literature is perfect price flexibility. To counter the

rational expectations legitimate xxx several models with price stickiness have been intro-

duced.

However, a shortcoming of this approach was to treat the entire economy homogenously.

Put another way, centralized monetary policy is optimal for all of the economy’s ‘city-

states’. In the past decade, or so, has come considerable evidence that responses to real

and nominal shocks are asymmetric and heterogenous, particularly to prices. Parsely and

Wei (199x) were the first to demonstrate differences across cities using disaggregated price

series. Using panel methods, Cecchetti, Mark, and Sonora (2002) demonstrated that price

convergence across US cities was highly persistent. More recently, for example, Chen

and Devereux (2003), Sonora (2008) and Basher and Carrion-i-Silvestre (2009), numerous

authors have found considerable differences in price convergence among US cities.

In the business cycle literature there is increasing evidence demonstrating asymmetric

impacts of centralized monetary policy on region or city specific business cycles. Carlino

and DaFina (1998, 1999a, 1999b), demonstrate a inter-regional and state business cycle

heterogeneity across the eight Bureau of Economic Analysis (BEA) regions in the US. They

identify three main sources of regional idiosyncratic responses to monetary policy: i. the

mix of interest-sensitive industries; ii. mix of large and small firms; and iii. idiosyncratic

banking regulations. Using semi-annual data Eyler and Sonora (2010) show considerable

differences to monetary policy across US cities. Indeed, city-states face a monetary sub-

optimal policy premium with a centralized monetary policy, especially when confronted

by asymmetric shocks, see Lane (2000). These shocks further undermine regional macroe-
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conomies if the shocks are moving in opposite directions.

Of course, contrary shocks are ameliorated when a central fiscal authority is in place,

as in the US. Regions suffering from negative shocks receive transfers from others enjoying

positive shocks.1 Alternatively, regions whose economies are weighted heavily in a partic-

ular sector, see greater benefits from government spending in that particular sector, e.g.

military spending.

This paper analyzes the impacts of these asymmetric shocks with New Keynesian

Phillips Curve (NKPC) from 1969-2008. The model used is the NKPC derived in Gaĺı

and Gertler (1999) and, in its various manifestations, frequently used in the literature to

model inflation dynamics. In general it models inflation as a function of expected inflation

and cost or demand ‘gap’. They employ the share of labor income and the output gap

as explanatory variables in understanding inflation dynamics. They also include lagged

inflation as a possible explanatory variable, to accommodate backward looking firms, the

‘hybrid’ NKPC.2

With quarterly US data they demonstrate a relatively high degree of price flexibility.

However, Gaĺı et al (2001) compare the euro area and the US and show the model fits

European data better than with the US. The Gaĺı et al (2001) paper and xxx (2009) are

of the most interest to this paper as they examine inflation dynamics in monetary union.

While Gaĺı et al (2001) use pre-euro data, their sample does include about 15 years of a

monetary union in Europe. Likewise, this paper treats individual cities as economic ‘city-

states’ each with different underlying macroeconomic dynamics. Like the eurozone, each

city’s monetary policy is dictated by a single central bank, which, essentially, must treat

the cities as, more or less, homogeneous.

This paper examines inflation dynamics in twenty-four US cities using city specific price

and income data. Using real wages, as a proxy for marginal cost, and the output gap as

explanatory variables I find considerable heterogeneity across US city inflation. Contrary

to some of the literature, notably Gaĺı et al (2001) I found the output gap to be better at

explaining inflation than real wages. While there is considerable differences across cities,

most of the estimates are line with the extant literature.

1This has been most glaring during the current Great Recession, particularly for those regions which underwent
large real estate bubbles. Likewise, areas already in decline, for example the Great Lakes states, saw a worsening
of their economies.

2There has been some debate about the robustness of these models. Rudd and Whelan (2005, 2007), who
argue that this class of models cannot fully explain the importance of lagged inflation, nor do they capture role
of future inflation in current inflation dynamics.

3



The remainder of the paper is as follows, in Section 1 we summarize the theoretical

underpinnings of real interest rate parity; Section 2 discusses the data and provides some

descriptive statistics; in Section 3 we outline the statistical tests and provide a summary

of inflation expectations; finally Section 4 provides some summary remarks.

1 Theoretical Motivation

Naive Keynesian Phillips Curve

The so-called ‘naive’ Keynesian Phillips Curve (KPC) is easily derived from the more tra-

ditional Phillips curve and Okun’s law. Write the Phillips curve as the inverse relationship

between inflation and cycle unemployment as:

πt − πe

t = −γ(ut − ū) + ǫt (1)

where ut is unemployment rate, ū is the natural rate, or NAIRU, of unemployment; πt

is the inflation rate; and π̄t can alternatively be defined as an inflation target and/or the

long run inflation rate. ut − ū is simply unemployment which results from business cycle

fluctuations, cyclical unemployment.

Okun’s law is the relationship between cycle unemployment and the output gap, defined

as the percentage difference between current and potential output:

ut − ū = −δỹt + ψt (2)

where ỹt = ln(yt/ȳt) is the output gap, with yt is real GDP and ȳt is the long run level, or

potential, real GDP. Combining equations (1) and (2) yields the textbook KPC

πt = πe

t + αỹt + νt (3)

where α = δγ and νt = ǫt + ψt ∼ iid(0, σ2) represents a cost shock. Alternatively, using

the positive aggregate supply relationship between marginal costs and the output gap:

m̃ct = κỹt, κ > 0 (4)
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equation (3) can be rewritten as

πt = πe

t + µm̃ct + νt (5)

where µ = ακ

With adaptive expectations we substitute πt−1 = πe
t to give us the naive KPC,

πt = πt−1 + αỹt + νt. (6)

‘Modern’ NKPC

The roots of the modern NKPC can be found in sticky price models introduced by Taylor’s

(1980) contract staggering model. In a monopolistically competitive market, firms face

some costs of changing prices each period, small menu costs, monopoly profit maximization,

or price ‘contracts’. In an ideal setting we would have information about each firm, their

price setting behavior and their time dependent pricing rules, is clearly nontractable at the

aggregate level.

A simplification to this was proposed by Calvo (1983) assumes that in each period a

firm has a fixed probability, (1 − θ) ∈ (0, 1) that it will change its price, and θ chance it

will not. With this pricing rule, the probability is independent of the time elapsed since

the last price change. The average time between each price revision is given by 1/(1 − θ)

which simplifies the aggregation of prices as revisions are independent of the firms pricing

history.

To derive the NKPC assume that firms are identical except for the value of their

production and their pricing calender. If each firm faces a constant price elasticity of

demand the overall price level is the weighted average of lagged price level and the profit

maximizing reset price, p∗t , thus

pt = θpt−1 + (1 − θ)p∗t . (7)

with each price is the deviation from the steady state. The degree of price stickiness in

this model is calibrated by θ as θ → 1 prices are perfectly flexible.

Firms set prices so as to minimize the loss (or maximize the profit) over the time in

which the price is fixed. Define the loss function of the representative firm as the discounted
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loss over the pricing period

ℓ(pt) =
∞∑

k=0

(θβ)kEt(pt − p∗t+k) (8)

where β ∈ (0, 1) is the discount factor. Differences are weighted by the discount factor and

the probability of not changing the price. Minimizing the loss function, it can be shown

that the optimal reset prices is given as the discounted flow of future optimal prices

p∗t = (1 − θβ)

∞∑

k=0

(θβ)kEt(p
∗

t+k). (9)

If the price is given by the markup adjusted nominal marginal cost, pt = µ+mct, we get

p∗t = (1 − θβ)
∞∑

k=0

(θβ)kEt(µ+mct+k). (10)

Converting prices to inflation and solving these equations (7) and (10) forward it can

be shown that

πt = βEtπt+1 + λm̃ct. (11)

where λ = θ−1(1 − θ)(1 − θβ) and m̂ct is the deviation from the long run real marginal

cost m̃ct = (µ + mct − pt) − m̄c. Alternatively, recalling equation (4), equation (11) can

be written as

πt = βEtπt+1 + κλỹt. (12)

Equations (11) and (12) make up the basis of the empirical analysis.

Finally, the marginal cost gap can be derived from the profit maximization for the

representative firm. Assuming production is Cobb-Douglas

Yt = AtK
ωK

t
LωL

t

where A is a productivity, K is capital, L is labor, and the ωs are the share of input shares.

Real marginal cost is derived from the period profit maximization problem as

mcr =
Wt

Pt

1

∂Y/∂L
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where W is the nominal wage and P is the price level. The above can be rewritten as

mcr =
Wt

Pt

Lt

Yt

1

ωL

, (13)

Y/L is per capita income. Gaĺı and Gertler (1999) use the share of labor income in non-

farm income as their proxy for marginal cost, given by the above. ωL is not available by

city, so I simply use the real wage-per capita ratio.

2 Data

There are twenty three cities in sample, given limitations on data, all time series are annual,

price level data is the annual average.3 The United States (USA) as a whole is also included

to observe city - national average differences. The sample is from 1969 – 2008, except for

Miami which has price data available beginning in 1979. While using data with higher

frequency would be preferable, semi-annual city income data is available only from 1990.

Another complication with higher frequency data is that city CPI changes frequency and

reporting periods over the sample.

Inflation and price level data are from the Bureau of Labor Statistics. City income

and total and average annual wage data is from the Bureau of Economic Analysis. In

the literature, one of the determinants of the wage gap is the share of labor income in

the non-farm business sector, however this data is not available at the city level. I use

the city hourly real wage for the marginal cost/share variable. To determine the average

hourly wage for all workers I used the average annual wage divided by the average number

of hours worked in each city in 2008. Annual hours worked was calculated by dividing

the average annual wage by the average hourly wage in 2008, this data is available from

2007-2009. Average hourly wage is not available for Anchorage and San Francisco so I use

the average pacific regional hourly wage for these cities.

The output and marginal cost gaps for the analysis are derived using a city specific

Hodrick-Prescott (HP) filter each series. There has been some discussion over what the

smoothing parameter, η, for annual data should be, most packages pre-specify a value of

3The cities (abbreviations) are: Anchorage, AK (ANC); Atlanta, GA (ATL); Boston, MA (BOS); Chicago,
IL (CHI); Cinncinnati, OH (CIN); Cleveland, OH (CLE); Dallas-Ft. Worth, TX (DFW); Denver, CO (DEN);
Detroit, MI (DET); Honolulu, HI (HON); Houston, TX (HOU); Kansas City, MO (KCM); Los Angeles, CA
(LAX); Miami, FL (MIA); Milwaukee, WI (MIL); Minneapolis-St. Paul (MIN); New York City, NY (NYC);
Philadelphia, PA (PHI); Pittsburgh, PA (PIT); Portland, OR (POR); San Diego, CA (SDO); San Francisco, CA
(SFO); and Seattle, WA (SEA).
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100 for annual data. Several authors, Maravall and del Ŕıo (2001) and Kim (2004) suggest

η ∈ [6, 14]. Similarly, Ravn and Uhlig (1997) recommend the filter parameter be given

by multiplying η with the fourth power of the observation frequency ratios, which yields

a similarly low parameter. I split the difference in Maravell and del Ŕıo (2001) and Kim

(2004) and set η = 10.

Table 1 displays the mean and standard deviation of inflation, total personal income,

the annual per capita wage and average hourly wage for each of the cities, all statistics are

in natural logs except inflation. Figures 1 – 3 show the annual city mean and standard

deviation for the output gap, marginal cost gap, and inflation minus the US as a whole.

As is shown, the city average can deviate by as much as 0.5% for short periods of time for

each of the three series. Additionally, it appears that cost, output and inflation differences

are falling as is witnessed by the decline of the standard deviation over the sample period.

Figure 4 displays the average log real wage and its standard deviation for the US over

the period 1969-2008. As can be seen the highly inflationary late seventies and early

eighties sharply reduced the real wage and it is only in 2006, or so, that it has recovered

to pre-1975 levels. We also, a considerable degree of rea wage ‘convergence’ since 1979.

Table 2 displays the results of ADF unit root tests for each series. The output and

wage gap refers to the HP detrended data discussed above. As can be seen the inflation

and output gap series are stationary at the 10% level or better. Despite the break shown in

Figure 4 the majority of the real wage series are also I(0). The ocular estimator suggests

an intercept and trend break in the series on average, in the early 1980s. I conducted a

Zivot-Andrews test (Zivot and Andrews, 1992), Model ‘C’ which includes an intercept and

slope break, to determine the dates of the break for each series. The break dates, are in

the fifth column of 2 with the majority of the series breaking in 1985, the exceptions are

Anchorage, Atlanta, Kansas City, and San Diego. The Zivot-Andrews unit root tests are

not presented, but are available on request.

3 Statistical Methodology and Results

The standard method to estimating the Phillips Curve has been to simply use least squares

of inflation on expected/lagged inflation and the output gap. Results of OLS regression

on lagged inflation and the output gap frequently either produce statistically insignificant

results and/or with estimated coefficients with the opposite sign as suggested by theory,

see Gaĺı and Gertler (1999). An additional problem arises when one considers the adaptive
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expectations version of the Phillips Curve in equation (6). In this case, prices are adjusted

on past behavior and, thus, violate the pricing strategy employed by the profit maximizing

firm over T future periods, as in equation (8). Additionally, unless all prices are adjusted

every period, i.e. when θ = 1, firms must perfectly anticipate changes in marginal costs,

however, this is at odds with adaptive expectations.

For comparison purposes with the extant literature, I present results of the least squares

regressions of the Keynesian Phillips curve for each city in Table 3. Both lagged and ex-

pected future inflation are used in the estimates. Each regression also includes a constant

and the annual growth of oil prices (a cost shock), however, these estimates are not pre-

sented to minimize clutter. ‘*’s denote statistical significance at the 10% level or better.

Cities identified with a ‘†’ are cities where both inflation and the output and/or wage gap

are statistically significant, at the 10% level or better, in at least one of the regressions. As

with previous studies, some of the results are contrary to theory, the estimated coefficients

on the gaps are negative, for example, Anchorage. Moreover, many of the results are not

statistically significant.

Looking beyond the significance of the estimates, quickly perusing the results reveals

that there is considerable differences across US cities with respect to the gap, though the

coefficients on inflation are remarkably similar with most of the results falling in the 0.5

to 0.7 range.

Reduced Form Model

The inclusion of rational expectations in equations (11) and (12) implies that errors made

in the forecast of expected inflation are uncorrelated with observations dated t and earlier.

From these equations we can derive the reduced form model

[Et(πt − α1πt+1 − α2x̃t])zt] = 0 (14)

where α1 = β and α2 = λ, x̃ alternatively is defined as the output gap or the real wage

gap; and zt is an orthogonal vector of instruments. The instruments used are two periods

of lagged city specific inflation and the annual growth of oil prices. The orthogonality

conditions are the basis for using GMM for estimating the model. In the literature, the

marginal cost variable is contemporaneous to inflation. However, as suggested by equation

(9) which shows that current optimal prices are a function of expected marginal costs, I

employ an additional model where x̃ = Etmct+1.
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The results for these three models can be found in Table 4. p−values are in parenthe-

sis, cites identified with a ‘†’ are cities in which at least one specification is theoretically

plausible and statistically significant. As can be seen, the GMM results using the output

gap are consistently statistically significant and plausible. As in the OLS results, there is

considerable heterogeneity of responses to both expected inflation and the output gap. As

with the OLS results the expected inflation elasticity, α1, is similar across all cities, falling

between 0.95 to 1.05, although because α1 = β estimates greater than 1.0 are theoretically

inconsistent. However, inflation responses to the output gap vary considerably. The steep-

est statistically significant Phillips Curves, perhaps unsurprisingly, can be found in New

York, with a gap elasticity, α2, of 1.92. On the other hand, the shallowest is in Anchorage,

with an elasticity of about 0.41.

When we consider the contemporaneous cost gap the results are less promising. All of

the gaps are negative and statistically insignificant, though, as with the output gap, the

inflation elasticities are similar, and close to those found with the output gap. On the

other hand, the results for expected cost are largely positive, however, few are statistically

significant. Those that are significant between roughly 1.7 and 8.0 (in St. Louis). The

relatively large estimates are plausible as the marginal cost curve is given by ratio of the

real wage weighted by per capita income.

Structural Model

Consider once again equations (11) and (12) which explicitly model the slope parameters

in the reduced form models to be functions of both β and θ. Now we have a nonlinear

econometric specification of the parameters.

As discussed in Gaĺı and Gertler (1999), in small samples, the GMM estimates can be

sensitive to the normalization of the orthogonality conditions. As in their paper, I use two

different specifications of the model. The first structural model, Model 1, is given as

[Et(πt − βπt+1 − θ−1ϕtx̃t])zt] = 0 (15)

and the second, Model 2, is

[Et(θπt − θβπt+1 − ϕtx̃t])zt] = 0 (16)

where ϕ = (1 − θ)(1 − θβ); x̃ alternatively is defined as the output gap or the marginal

cost gap; and zt is a vector of instruments which are, once again, two periods of lagged
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city specific inflation and the annual growth of oil prices.

The structural GMM results can be found in Table 5. Again I identify successful

models with a ‘†’. For example, consider Anchorage: Models 1 and 2 using the output

gap as a measure of cost yield plausible estimates of the price adjustment parameter θ and

the discount factor β. However, Model 1 with the wage gap, while yielding statistically

significance estimates, is at odds with theory. The maximum and minimum statistically

significant theoretically plausible estimates are underlined.

First we note that far more of the structural modes are successful than the reduced

form versions, the majority of the cities have at least one successful model only Chicago,

Denver, Miami, New York, Pittsburgh, San Diego, and St. Louis have no statistically

significant successful models. Indeed, both New York and St. Louis produce theoretically

plausible models, but one of the coefficient estimates were insignificant.

Turning our attention to differences across the various cities we see considerable asym-

metries in the timing of price changes as well as discount factors. The estimates here yield,

in general, θ ∈ (0.35, 0.60). This implies that price changes occur between 1.5 to 3.5 years

depending on the city. While the first estimate is consistent with the extant literature,

the later is a bit high. However, these results have considerable policy implications across

cities.

Recall that as θ → 1 prices become perfectly flexible. It is interesting to view these

results in term of the US city relative price convergence literature. Indeed, from this

perspective, cities with higher price adjustment parameters should converge faster than

those with closer to zero. There is some evidence when comparing these results with

those found in, for example, Chen and Devereux (2003), Sonora (2008) or Basher and

Carrion-i-Silvestre (forthcoming). There are several cities with relatively large adjustment

parameters which also display relatively fast price convergence. For example, using the

output gap Model 1 in Detroit has one of the largest price parameters and one of the faster

convergence rates in Basher and Carrion-i-Silvestre (forthcoming). However, it must be

noted that in the price convergence literature, price adjustment occurs in relative prices

not univariate inflation or price levels.

Likewise, discount factors appear to be similarly asymmetric with some cities far more

patient than others. In this context, more patience is manifested in great inflation expec-

tation elasticity. The highest is in Anchorage with a statistically significant β = 0.9999

using Model 2 with an output gap. The least patient is Philadelphia with Model 2 and an

output gap.
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Gaĺı and Gertler (1999) argued that the θ estimates might be biased upwards biasing

the slope coefficients found in Table 4 downwards. First, is the how marginal cost is

calculated as solely the function of the real wage. Though labor costs do account for the

majority of cost to firms, the current paper relies on wages for costs. And secondly, to

calculate real wage, city specific average number of hours worked in 2008 were backdated

through the series, clearly labor supply and demand react to real wage changes over the

course of the business cycle.

Nonetheless, they are less likely to be biased than when the economy as whole is

estimated as individual city prices are reacting to local market conditions. With this in

mind, it is important to note that the majority of the CPI is for nontraded goods and

services – housing, transportation, etc. – which implies city Phillips Curves contain better

information than an aggregated Phillips Curve.

A third version of the NKPC, called the hybrid NKPC, also includes a lagged inflation

term in equation, however these results were not informative.4

4 Summary

The results presented demonstrate considerable heterogeneity of inflation dynamics across

US cities. Moreover, the city-specific output gap is generally better suited to describe

inflation for the period.

The results presented here imply that designing optimal monetary policy is quite chal-

lenging as each city will respond differently to monetary shocks. While this is challenging

for an economy with centralized fiscal policy, the problem is compounded by other single

currency areas which face decentralized fiscal authorities.

4Results are available on request.
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Tables

Table 1: Descriptive Statistics

Inflation Total Income Per Capita Wage Mean Real Wage

Mean StDev Mean StDev Mean StDev Mean StDev

ANC 4.135 3.062 22.339 0.897 10.147 0.460 3.200 0.052
ATL 4.610 3.018 24.591 1.061 9.950 0.628 2.913 0.117
BOS 4.853 2.672 25.071 0.837 10.035 0.676 3.094 0.137
CHI 4.660 2.977 25.729 0.755 10.042 0.580 3.077 0.077
CIN 4.608 3.046 24.068 0.798 9.917 0.557 2.997 0.069
CLE 4.697 3.295 24.302 0.655 9.962 0.532 2.964 0.060
DEN 4.980 3.445 24.129 0.973 9.994 0.608 3.058 0.072
DET 4.552 3.133 25.017 0.682 10.093 0.539 3.159 0.056
DFW 4.657 3.394 24.867 1.017 9.963 0.624 2.909 0.107
HON 4.650 2.965 23.357 0.775 9.881 0.556 2.991 0.052
HOU 4.563 3.459 24.829 1.000 10.018 0.603 2.883 0.107
KCM 4.515 3.078 23.991 0.811 9.903 0.568 2.948 0.080
LAX 4.785 3.062 25.940 0.815 10.037 0.587 3.093 0.065
MIA 3.423 2.876 24.886 0.968 9.875 0.594 3.689 1.597
MIL 4.647 3.263 23.905 0.730 9.919 0.551 2.982 0.076
MIN 4.750 3.093 24.524 0.889 9.974 0.597 3.070 0.084
NYC 4.828 2.356 26.541 0.775 10.143 0.657 3.106 0.126
PHI 4.692 2.739 25.253 0.766 9.985 0.602 3.012 0.085
PIT 4.695 2.934 24.386 0.669 9.810 0.549 2.985 0.056
SFO 4.668 3.249 23.923 0.915 9.918 0.576 2.970 0.068
SDO 5.348 3.534 24.328 0.978 9.913 0.607 3.105 0.082
SEA 4.872 3.361 24.494 0.961 10.018 0.608 3.162 0.078
SFO 4.857 3.168 25.083 0.867 10.136 0.651 2.985 0.123
STL 4.480 3.077 24.447 0.748 9.926 0.560 2.951 0.073
USA 4.697 2.855 28.957 0.833 9.895 0.583 2.883 0.078
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Table 2: Unit Root Tests

π Output Gap Wage Gap Break Year

ANC -2.872* -6.459** -3.763** 1986
ATL -4.444** -3.570** -2.960** 1980
BOS -3.870** -3.798** -3.617** 1985
CHI -3.091** -4.202** -2.990** 1985
CIN -2.819* -3.793** -2.837* 1985
CLE -3.208** -3.608** -3.386** 1985
DEN -2.647* -3.195** -2.749* 1985
DET -3.351** -3.990** -3.083** 1985
DFW -2.627* -2.894* -2.627* 1985
HON -3.421** -3.310** -3.219** 1985
HOU -2.874* -3.612** -2.750* 1985
KCM -2.987** -4.064** -2.396 1979
LAX -3.045** -3.735** -3.075** 1985
MIA -3.206** -4.964** -5.377** 1980
MIL -2.941** -3.966** -3.346** 1985
MIN -3.944** -3.468** -2.563 1985
NYC -4.879** -4.333** -3.847** 1985
PHI -4.463** -5.049** -3.918** 1985
PIT -3.325** -4.740** -2.651* 1985
POR -3.191** -2.956** -2.717* 1985
SDO -3.003** -4.184** -2.629* 1979
SEA -3.346** -3.587** -3.120** 1985
SFO -4.014** -4.028** -3.601** 1985
STL -2.717** -3.229** -2.861* 1985
USA -3.140** -3.916** -2.974** 1985
Energy -3.938**

Notes: “*” and “**” denote rejection of a unit root at the
10% and 5% level respectively. Break is the year of an inter-
cept and slope break using Zivot-Andrews’ Model ‘C’.
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Table 3: OLS Regressions

Lagged Inflation Expected Future Inflation

Output Gap Wage Gap Output Gap Wage Gap

π Gap π Gap π Gap π Gap

ANC† 0.611* 0.005 0.573* -0.086 0.622* 0.213* 0.621* -0.563*
(0.000) (0.468) (0.000) (0.809) (0.000) (0.001) (0.000) (0.001)

ATL† 0.668* 0.358* 0.617* -0.169 0.580* 0.040 0.613* 0.206
(0.000) (0.003) (0.000) (0.881) (0.000) (0.832) (0.000) (0.383)

BOS 0.561* 0.164 0.543* -0.088 0.461* 0.191 0.444* -0.248
(0.000) (0.113) (0.000) (0.729) (0.000) (0.253) (0.001) (0.346)

CHI 0.616* 0.194 0.654* 0.144 0.588* 0.161 0.594* -0.022
(0.000) (0.154) (0.000) (0.168) (0.000) (0.449) (0.000) (0.935)

CIN 0.618* -0.057 0.638* 0.154 0.602* -0.033 0.605* 0.136
(0.000) (0.597) (0.000) (0.181) (0.000) (0.887) (0.000) (0.606)

CLE 0.625* 0.078 0.644* 0.078 0.582* 0.056 0.580* -0.125
(0.000) (0.355) (0.000) (0.291) (0.000) (0.818) (0.000) (0.667)

DEN 0.651* 0.038 0.641* -0.072 0.641* 0.268 0.636* -0.095
(0.000) (0.409) (0.000) (0.673) (0.000) (0.132) (0.000) (0.742)

DET† 0.610* 0.396* 0.566* 0.031 0.537* -0.065 0.519* -0.014
(0.000) (0.002) (0.000) (0.424) (0.000) (0.671) (0.000) (0.949)

DFW† 0.598* 0.033 0.619* 0.080 0.573* 0.353* 0.549* -0.001
(0.000) (0.400) (0.000) (0.261) (0.000) (0.035) (0.000) (0.998)

HON† 0.641* -0.075 0.692* 0.180* 0.665* 0.557* 0.619* -0.385
(0.000) (0.659) (0.000) (0.079) (0.000) (0.006) (0.000) (0.174)

HOU 0.641* -0.133 0.630* 0.125 0.671* 0.379* 0.580* -0.343
(0.000) (0.934) (0.000) (0.108) (0.000) (0.000) (0.000) (0.105)

KCM 0.559* 0.057 0.582* 0.111 0.512* 0.100 0.521* 0.072
(0.000) (0.407) (0.000) (0.279) (0.000) (0.709) (0.000) (0.813)

LAX† 0.559* 0.190 0.556* -0.092 0.508* 0.413* 0.484* -0.122
(0.000) (0.140) (0.000) (0.748) (0.000) (0.043) (0.001) (0.599)

MIA†‡ 0.761* -0.139 0.784* 0.132 0.620* 0.563* 0.563* -0.194
(0.000) (0.811) (0.000) (0.166) (0.000) (0.003) (0.004) (0.460)

MIL† 0.653* -0.055 0.697* 0.201 0.629* 0.374* 0.627* -0.130
(0.000) (0.613) (0.000) (0.063) (0.000) (0.084) (0.000) (0.618)

MIN† 0.626* 0.477* 0.589* -0.224 0.578* 0.340 0.612* 0.320
(0.000) (0.019) (0.000) (0.886) (0.000) (0.199) (0.000) (0.237)
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Table 3: OLS Regressions(Cont.)

Lagged Inflation Expected Future Inflation

Output Gap Wage Gap Output Gap Wage Gap

NYC 0.637* -0.023 0.641* 0.028 0.603* 0.177 0.583* -0.091
(0.000) (0.581) (0.000) (0.409) (0.000) (0.206) (0.000) (0.662)

PHI 0.536* -0.085 0.540* 0.042 0.455* 0.307 0.438* 0.063
(0.000) (0.643) (0.000) (0.400) (0.000) (0.255) (0.001) (0.858)

PIT† 0.648* -0.262 0.662* 0.178* 0.562* 0.349* 0.540* -0.284
(0.000) (0.948) (0.000) (0.050) (0.000) (0.048) (0.000) (0.141)

POR† 0.590* 0.027 0.620* 0.104 0.619* 0.477* 0.566* -0.199
(0.000) (0.444) (0.000) (0.264) (0.000) (0.004) (0.000) (0.425)

SDO† 0.572* 0.187 0.625* 0.110 0.575* 0.533* 0.546* -0.270
(0.000) (0.167) (0.000) (0.241) (0.000) (0.006) (0.000) (0.322)

SEA† 0.574* 0.046 0.563* -0.092 0.542* 0.377* 0.522* -0.056
(0.000) (0.364) (0.000) (0.729) (0.000) (0.004) (0.000) (0.809)

SFO† 0.578* 0.142 0.518* -0.282 0.540* 0.259* 0.506* -0.318
(0.000) (0.146) (0.000) (0.955) (0.001) (0.097) (0.002) (0.286)

STL 0.604* 0.073 0.633* 0.154 0.560* 0.263 0.575* 0.215
(0.000) (0.400) (0.000) (0.170) (0.000) (0.418) (0.000) (0.501)

USA 0.613* 0.057 0.641* 0.115 0.577* 0.346 0.564* -0.007
(0.000) (0.369) (0.000) (0.191) (0.000) (0.109) (0.000) (0.980)

Notes: Constant term and oil inflation are not presented to minimize clutter, results
available on request. p−values are in parenthesis. Cities identified with a ‘†’ are
cities where both inflation and the gap and/or the mpc are statistically significant,
at the 10% level or better, in at least one of the regressions. ‡Miami sample begins
in 1979. ‘*’s denote estimates of the gap parameter which are significant at the 10%
level or better.
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Table 4: Reduced Form GMM Regressions

Output Gap Wage Gap Expected Wage Gap

π Gap π MC π MC

ANC† 0.983*** 0.406*** 1.029*** -1.424*** 1.235*** -1.180
(0.000) (0.000) (0.000) (0.000) (0.000) (0.180)

ATL 0.954*** 0.437 0.948*** -0.346 1.017*** 1.788***
(0.000) (0.440) (0.000) (0.627) (0.000) (0.000)

BOS 0.999*** 0.469 0.995*** -0.547 1.021*** -0.072
(0.000) (0.161) (0.000) (0.132) (0.000) (0.928)

CHI 1.049*** 1.441** 0.954*** -0.510 0.966*** 0.250
(0.000) (0.031) (0.000) (0.539) (0.000) (0.805)

CIN 1.011*** 1.499* 1.003*** -1.590 0.996*** 0.353
(0.000) (0.054) (0.000) (0.163) (0.000) (0.648)

CLE 0.932*** 0.384 0.943*** -0.866 0.965*** 0.524
(0.000) (0.546) (0.000) (0.190) (0.000) (0.424)

DEN 0.989*** 2.000 0.985*** -1.219 1.000*** 0.064
(0.000) (0.329) (0.000) (0.291) (0.000) (0.945)

DET 0.942*** 0.613 0.949*** -0.996 1.008*** 2.531***
(0.000) (0.262) (0.000) (0.218) (0.000) (0.003)

DFW 1.088*** 1.202*** 0.919*** -0.698 0.966*** 0.368
(0.000) (0.009) (0.000) (0.208) (0.000) (0.563)

HON 0.956*** 0.472 0.910*** -0.882 0.944*** 0.088
(0.000) (0.181) (0.000) (0.230) (0.000) (0.905)

HOU 1.029*** 0.580** 0.992*** -0.879 1.047*** -0.621
(0.000) (0.036) (0.000) (0.044 (0.000) (0.199)

KCM 1.034*** 8.022 1.055*** -2.868 0.973*** -1.274
(0.001) (0.492) (0.000) 0.401 (0.000) (0.606)

LAX† 0.979*** 1.061* 0.955*** -0.644 0.972*** 0.732*
(0.000) (0.073) (0.000) 0.271 (0.000) (0.085)

MIA‡ 1.016*** 0.785*** 0.977*** -1.454 1.189*** 1.918***
(0.000) (0.000) (0.000) 0.019 (0.000) (0.001)

MIL 1.012*** 1.272** 0.963*** -1.599 0.965*** -1.194
(0.000) (0.011) (0.000) 0.051 (0.000) (0.301

MIN 0.942*** 0.288 0.971*** -0.019 1.026*** 2.267***
(0.000) (0.659) (0.000) 0.976 (0.000) (0.001)
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Table 4: Reduced Form GMM Regressions (Cont.)

Output Gap Wage Gap Expected Wage Gap

π Gap π Gap π Gap

NYC 1.047*** 1.923** 0.996*** -0.907 0.995*** 0.268
(0.000) (0.042) (0.000) 0.324 (0.000) (0.735)

PHI 0.889*** 4.486 0.967*** -0.655 1.009*** 1.541
(0.000) (0.114) (0.000) 0.708 (0.000) (0.500)

PIT 1.023*** 1.033** 1.057*** -1.346 0.953*** -0.486
(0.000) (0.028) (0.000) 0.011 (0.000) (0.203)

POR 1.010*** 1.120*** 0.913*** -2.660 0.961*** 0.170
(0.000) (0.001) (0.000) 0.023 (0.000) (0.830)

SDO 1.026*** 1.649** 0.973*** -2.470 0.975*** -2.103
(0.000) (0.013) (0.000) 0.134 (0.000) (0.425)

SEA† 1.020*** 0.863*** 0.889*** -0.171 0.955*** 0.697*
(0.000) (0.004) (0.000) 0.722 (0.000) (0.069)

SFO 0.927*** 0.090 0.914*** -0.230 1.040*** 1.884***
(0.000) (0.846) (0.000) 0.629 (0.000) (0.002)

STL 1.020*** 3.737 1.003*** -0.988 1.010*** 8.476*
(0.000) (0.226) (0.000) 0.481 (0.000) (0.087)

USA 1.031*** 1.228** 0.957*** -0.976 0.994*** 0.319
(0.000) (0.039) (0.000) 0.231 (0.000) (0.665)

Notes: p−values are in parenthesis. ‡Miami sample begins in 1979. ***, **,
and * represent rejection of the null hypothesis at the 1%, 5%, and 10% level
respectively. Cities identified with a ‘†’ are cities where estimates in at least
one model are statistically significant and with estimates which conform to
theory, β < 1.
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Table 5: Structural GMM Regressions

Output Gap Marginal Cost Gap

Model 1 Model 2 Model 1 Model 2

θ β θ β θ β θ β

ANC† 0.5374*** 0.9828*** 0.5189*** 0.9999*** 0.3864*** 1.0516*** 1.0352 80.68
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.171) (0.142)

ATL† 0.5305** 0.9539*** 0.3516*** 0.9849*** 0.1456 1.0409* -0.2221 -0.2168
(0.016) (0.000) (0.004) (0.000) (0.990) (0.064) (0.614) (0.509)

BOS† 0.5109*** 0.9989*** 0.2974*** 1.1702*** 0.8809*** 0.9715*** 0.5024*** 1.0236***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.011) (0.000)

CHI 3.0111*** 1.0486*** 0.2839*** 1.0628*** 0.3594*** 1.0342*** 0.1748 1.1687***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.143) (0.000)

CIN† 3.1589*** 1.0111*** 2.8991*** 1.0269*** 1.0574 1.0324*** 0.3451** 0.9534***
(0.002) (0.000) (0.003) (0.000) (0.817) (0.000) (0.037) (0.000)

CLE† 0.5562** 0.9321*** 0.3299*** 0.9860*** 27.419 0.9213*** 0.3633** 0.9253***
(0.047) (0.000) (0.000) (0.000) (0.743) (0.000) (0.030) (0.000)

DEN 3.7649 0.9890*** 3.5499 0.9967*** 2.1265 1.0432 0.1653*** 1.2685***
(0.142) (0.000) (0.138) (0.000) (0.594) (0.000) (0.393) (0.001)

DET† 0.4745*** 0.9417*** 0.2603** 0.8653*** -0.4394 0.9503*** 0.7056** 0.9367***
(0.003) (0.000) (0.025) (0.000) (0.800) (0.000) (0.042) (0.000)

DFW† 2.6803*** 1.0880*** 2.3193*** 1.0132*** 1.1908*** 0.9727*** 0.6072** 0.8870***
(0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.015) (0.000)

HON† 2.0224*** 0.9563*** 0.2970*** 0.9075*** 1.1067 0.9384*** -0.0955 1.0005***
(0.000) (0.000) (0.000) (0.000) (0.451) (0.000) (0.741) (0.011)

HOU† 0.4708*** 1.0287*** 0.4620*** 0.9866*** 4.7195 0.9499*** 0.1943 1.5969
(0.000) (0.000) (0.000) (0.000) (0.135) (0.000) (0.337) (0.018)

KCM 9.6244 1.0340*** 9.5143 1.0340*** -0.2983 1.0896*** -0.0045 -0.3000
(0.385) (0.001) (0.387) (0.001) (0.963) (0.000) (0.970) (0.994)

LAX† 0.3739*** 0.9789*** 0.2980*** 0.9694*** 1.5912 0.9508*** 0.4832*** 0.9620***
(0.000) (0.000) (0.001) (0.000) (0.338) (0.000) (0.003) (0.000)

MIA‡ 0.4215*** 1.0156*** 0.4161*** 1.0212 -1.7892 0.9941*** 0.4138*** 1.0185***
(0.000) (0.000) (0.000) (0.000) (0.797) (0.000) (0.003) (0.000)

MIL† 2.9049*** 1.0119*** 2.3503*** 1.0022*** 1.7651* 0.9475*** 0.4755** 0.9768***
(0.000) (0.000) (0.002) (0.000) (0.094) (0.000) (0.048) (0.000)

MIN† 0.6007* 0.9424*** 0.1898* 1.0999*** 1.2859 0.9716*** 1.2859 0.9716***
(0.093) (0.000) (0.072) (0.000) (0.312) (0.000) (0.312) (0.000)
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Table 5: Structural GMM Regressions (Cont.)

Output Gap Marginal Cost Gap

Model 1 Model 2 Model 1 Model 2

θ β θ β θ β θ β

NYC 3.5192*** 1.0474*** 3.4632*** 1.0498*** -14.4198 1.0131*** 0.2100 0.9844***
(0.002) (0.000) (0.002) (0.000) (0.195) (0.000) (0.226) (0.000)

PHI† 7.0127** 0.8886*** 0.1237** 0.8603*** 2.5816 0.9725*** 0.0098 1517.38?
(0.058) (0.000) (0.042) (0.000) (0.836) (0.000) (0.998) (0.997)

PIT 0.3741*** 1.0229*** 0.3683*** 1.0208 1.0185 1.0231 -0.5163 5.851
(0.000) (0.000) (0.000) (0.000) (0.929) (0.227) (0.636) (0.331)

POR† 2.7368*** 1.0102*** 2.6444*** 1.0130*** 0.7682*** 0.9399*** -0.1594 0.6628
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.361) (0.149)

SDO 3.2839*** 1.0264*** 3.1670*** 1.0293*** -0.0805 0.9522* 0.3678** 1.0164***
(0.000) (0.000) (0.000) (0.000) (0.996) (0.090) (0.031) (0.000)

SEA† 0.4047*** 1.0204*** 0.3814*** 1.0363*** -1.5946** 0.9096*** 0.4594*** 0.9452***
(0.000) (0.000) (0.000) (0.000) (0.016) (0.000) (0.000) (0.000)

SFO† 0.7640 0.9268*** 0.3387*** 1.0740*** 0.9096 0.9185*** 0.1174 703.24?
(0.202) (0.000) (0.002) (0.000) (0.268) (0.000) (0.888) (0.856)

STL 5.4627 1.0205*** 0.0915 0.9324*** 1.6374 1.0264*** 0.2245*** 1.0670***
(0.102) (0.000) (0.324) (0.000) (0.671) (0.000) (0.004) (0.000)

USA† 2.8164*** 1.0311**** 0.3034*** 1.0494*** 0.6337*** 0.9744*** 0.2931** 0.9881***
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.018 ) (0.000)

Notes: p−values are in parenthesis. ***, **, and * represent statistical significance at the 1%, 5%, and
10% level and for results which are theoretically feasible: θ < 1, β < 1. ‡Miami sample begins in 1979.
Cities identified with a ‘†’ are cities where estimates in at least one model are statistically significant
and with estimates which conform to theory, β, θ < 1. Underline coefficients are the minimum and
maximum estimates.
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Figures

Figure 1: City Output Gap Deviations from US: 1969-2008
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Figure 2: City Marginal Cost Deviations from US: 1969-2008

Figure 3: Inflation Deviations from US: 1969-2008
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Figure 4: Average and Standard Deviation of Real Wages: 1969-2008
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