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Abstract

I study how the political decision process affects urban traffic congestion policy. First, I look at the
case of a single government deciding, through majority voting, on a monetary charge to be paid to drive
to a city’s Central Business District (CBD): if the majority of individuals prefers to drive more (resp.
less) than the average, a voting equilibrium with lower (higher) charge emerges. Next, I consider the case
of two government levels involved in traffic policy: parking charges in (resp. cordon tolls around) a city’s
CBD and capacity investments are chosen by a local (resp. regional) government, through a majority
voting process. While tax exporting motives and the imperfect coordination among the two governments
may lead to higher overall charges than in the case of a single government, strong preferences for driving

across the population can still bring to an equilibiurm with suboptimal total charges.
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1 Introduction

Traffic congestion externalities have been the subject of economic enquiry for a long time: transportation
economists generally agree on the merits of pricing measures in reducing inefficient road congestion. Never-
theless, while congestion becomes a more and more significant problem, it is still the case in most cities that
traffic policy relies insufficiently on pricing instruments: politicians’ reluctance to implement them has been
recognized as one of the main factors contributing to their scarce application (Jones, 1998). This appears
to be true for such instruments as congestion charges, but also for parking charges, which can represent an
interesting alternative to discourage car travel (Calthrop et al., 2000).

It also appears that, although in a generally unfavorable political climate to the introduction of pricing
instruments to control congestion, local politicians are less restive to use certain among them than oth-
ers. For instance, while it has been pointed out that parking places in central cities are still significantly
underpriced (Shoup, 2005), parking charges seem to face less reluctance from local decision makers than
congestion tolls. To make some examples, plans to introduce cordon tolls have been recently considered
in cities such as Edinburgh, Manchester, Dublin, New York , and abandoned due to insufficient political
support. Interstingly, in the same cities, plans for congestion tolls have been rejected almost at the same
time as plans for raising parking taxes in central areas were being successfully implemented!. While various
factors may be behind this stylised fact (for instance, differences in the costs of implementation), it seems
reasonable (and it has been suggested by previous studies, see Proost and Sen (2006)) to link the relation
between different pricing instruments to the institutional setup and the assignment of their control to dif-
ferent governmental institutions. In particular, one may observe that, while parking policy is more likely
to be managed locally (by city or district councils, for instance), decisions about the implementation and
management of congestion charging (even in the, relatively common, form of a cordon toll around central
city areas) appear to be more likely to see the involvement of institutions representing larger portions of
the population interested by the scheme. To stick to our previous examples: while New York City’s DOT
controls parking policy, the proposal for the New York Congestion Pricing scheme, championed by Mayor

Bloomberg, was blocked in the New York State Assembly because of “overwhelming opposition”. In Manch-

!For instance, the city of New york has recently abandoned plans for a congestion toll in Manhattan, while parking meter
prices in Greenwhich Village have recently been raised by 50%. Moreover, the city plans to expand the scheme to other areas
as well (see Litman, 2010).



ester parking policy is under the responsibility of the Manchester City Council, while the proposed (and
recently rejected) congestion toll scheme was to be managed by the Association of Greater Manchester Au-
thorities (representing the whole metropolitan area). Finally, in Edinburgh, the City of Edinburgh Council
is in charge of parking policy in central city areas, while the decision proposed cordon toll scheme (although
ultimately taken by referendum only by the same constituency) saw the involvement of outer councils (Fife,
West Lothian, Midlothian): it seems likely that the latters’ strong opposition to the scheme played at least
some part in its final rejection?.

Based on these observations, one may ask some questions about the way governments seem to prefer
fighting traffic congestion: why do traffic charges (in general) tend to raise significant political opposition?
Why do some of them seem to be even less palatable than others, so that governments tend to avoid them
altogether? Does the presence of multiple (and possibly non-coordinating) government levels affect the
shape and the welfare gains of congestion policy? How does the scale of implementation of congestion
control measures influence their features? The objective of this article is to study how the political decision
process may influence the choice of traffic congestion policy, in order to try to answer these questions.

We build a model in which individuals have heterogeneous preferences for driving to the city centre, a
costly activity in terms of money and time (time costs being increasing with the amount of congestion). In
the first part of the paper, we consider the presence of a single level of government, controlling a generalised
charge on car trips (which could be seen as a cordon toll around the city centre, a charge to park the car
once there or a combination of the two): we obtain that when the majority of the population has stronger
(resp. weaker) preferences for using cars to travel to the city centre than the representative individual in
the population, the voting equilibrium policy is characterized by suboptimal (resp. higher than optimal)
driving charges. We argue that a distribution of preferences for car driving such that the majority drives
more than the average may be consistent with what is often observed in reality, for instance in metropolitan
areas that are signifcantly “car dependent” (where the majority of the population considers the car to be

the main, if not the only, viable option to meet its daily travel needs).

2Similar assignments of responsibilities can be observed also in other cases, where cordon tolls were successfully implemented:
in London, borough councils are responsible for parking policy and pricing of public parking places in their own jurisdictions,
while the London Congestion Charge is under the responsibility of the Mayor of London (representing the whole urban area).
In Stockholm, parking policy is managed by the Stockholm Municipality, while the congestion charge was established by
the national government and consultative referendums were held, prior to implementation, in several other municipalities of
Stockholm County.



In the second part of the paper, we assume congestion policy to consist of parking charges and a cordon
toll around the CBD. The parking charge is under the jurisdiction of a local government (representing only
people living inside a certain area, for instance the city’s administrative boundaries) and the road toll is
under the control of a regional government (e.g. an urban agglomeration authority, representing both people
living inside and outside the area’s boundaries). The possibility for the local population to exploit outside
commuters to generate revenues (assuming the local government is not required to share revenues with the
regional one) is likely to determine equilibria with higher parking than congestion charges. Since higher
parking charges tend to discourage drivers from accepting higher tolls, it may also contribute to generate
hostility to cordon tolls. Moreover, the imperfect coordination among the two governments also turns out
to play a role: we find that, in the presence of two government levels, the equilibrium total level of charges
is likely to be higher than with a single government level, because of the imperfect coordination between
the two (vertical tax competition, as both charge non-cooperatively the same tax base).

The rest of the paper is organized as follows: Section 2 by relates this work to existing literature. Section
3 introduces the model and derives the benchmark vector of policy parameters. Section 4 considers the case
of majority voting with a single government level, while Section 5 considers the same problem but with
two government layers involved (Proofs of all propositions and lemmas will be provided in the appendix).

Section 6 concludes. All proofs are provided in the Appendix.

2 Related literature

As mentioned above, there is a large body of literature studying road congestion policy from a normative
perspective: most of these studies focus on road charges (and capacity investments), in different scenarios
(see Small and Verhoef, 2007). There is also a strand of the transport economics literature looking at
parking policy (see, e.g., Arnott and Inci (2006)). Calthrop et al. (2000) look at the optimal policy mix
when governments can use both parking and road tolls to control congestion: they find that parking and
congestion charges can be seen as substitute instruments for reducing traffic. However, they take a purely
normative perspective, also neglecting the presence of multiple governments involved in congestion policy.

Although political acceptability is one of the main issues holding back the implementation of road pricing



in the urban context, there are, quite surprisingly, only few studies looking at congestion charges from a
positive perspective. To the best of my knowledge, only Marcucci et al. (2005) and Glazer and Proost
(2007) study (analytically) congestion tolls from a political economy perspective. In the first paper, a
citizen-candidate game is used to model the political decision process on congestion tolls, assuming the
government uses revenues to finance public transportation. In the second the authors use a majority voting
setup and find that when aggregate income is high enough that drivers constitute the majority of the
voting population, they will vote for suboptimal road tolls and higher than optimal capacity. While this
result is quite related to that of this paper, we consider individuals that are heterogeneous in preferences
for using cars and relate their reluctance to accept high charges to car dependence. Moreover, our paper
studies the issue of multiple (non coordinating) governments intervening in urban traffic policy with different
instruments. This seems important in light of its relatively small spatial scale of implementation.

There is a growing body of literature that focuses on the issue of govenrmental competition in tolling of
road networks. De Borger et al. (2005) and (2007) study the interacton of different governments in setting
traffic policy on parallel and serial networks. They find that imperfect coordination among governments
can lead to significant deviations from the optimal pricing and investment scheme. Ubbels and Verhoef
(2008), study the choice of pricing and capacity investments by a city and a hinterland government, each
controlling one part of a two link road network leading to the city’s Central Business District (CBD): the lack
of coordination among governments, but also, importantly, tax exporting motives for the city population,
who can exploit demand from outside commuters for the use of its own part of the network, leads to too
high total charges and higher tolls on the city than on the hinterland section of the network. However, while
these forces are surely relevant (and indeed similar phenomena are modelled in the present work), they do
not explain why cordon toll schemes to enter cities’ CBDs often find strong political opposition and are
rarely implemented in reality. Our paper provides a possible explanation.

Another paper closely related to this one is Proost and Sen (2006): they study the interactions between
overlapping (city and regional) governments in charge, respectively, of parking charge and cordon toll.
Their setup is therefore very similar to ours (although urbanites do not have to pay the toll and its revenues
are redistributed only ot external commuters). Indeed, they find a tendency for the local government to

overcharge for parking, while the regional government responds by reducing the cordon toll: these results
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are consistent with what we find.

3 The model

Spatial structure We consider an economy with the following spatial structure: there is a “large” pop-
ulation of individuals (whose size is normalized to 1) living along a line ending in the CBD. A first group
of individuals, comprising a fraction Ae (0, 1] of the total population is assumed to live within a certain
administrative area (for instance, a city’s jurisdiction), while a second group (the remanining 1 — X fraction
of total population) lives outside them, (for instance, in the city’s hinterland). Figure 1 provides a graphical
representation of the spatial structure of our economy: we make the important assumption that all car trips

(to be introduced later on) are return trips to the CBD.

Individuals Individuals derive utility from consuming two goods: a consumption good ¢ (the numeraire,
whose price is fixed and normalized to one) and car trips to the city’s CBD, denoted by ¢ (assumed for
simplicity to be a continuous variable). Utility also depends on the preference parameter r (non-negative)
which increases the marginal utility derived from a car trip. Individuals suffer some disutility X (¢, T") for
spending time stuck in their cars in traffic: it is proportional to the number of car trips taken, in a given time
period, and to the amount of time 7" required to complete a single trip (see below): therefore X (q,T) = ¢T.

We assume the utility function to be3
1
U(g,e, X51)=2(qr)2 +c—qT

Individuals differ only in the parameter r, which is exogenously distributed according to the CdF F(r),

with support [r!, %] over the entire population. We denote the average value of r as 7 = f;u rdF(r) and its

3We use this functional form for simplicity, since it allows to get cleaner results: other functional forms could be used,
without changing the qualitative results, while complicating exposition.



median value as 7, so F(f) = 1.

We assume that types are distributed according to the same distribution F(r) in both the city and the
hinterland: the same distribution of types F(r) characterizes both subgroups and, consequently, the entire
population in the region. The case of two different distributions is of course more general but also more

complex to treat and left for future work.

Costs of driving and congestion externalities There is a basic resource (monetary) cost for each car
trip, denoted by d (in units of the numeraire) and assumed to be the same for all the individuals of the
population, regardless of their location*. We assume a trip to be composed by two sub-activities: driving
to the CBD and parking the car once there. The two are strictly complementary and both are potential
targets for governmental levies, for all drivers (in what follows, we will assume that governments can impose
a cordon toll to enter the CBD and a parking charge to leave the car once inside it?). The direct monetary
cost (we will denote it by p) of a car trip for an individual is the sum of d and the eventual charges. We
denote the amount of time to drive to the CBD and to park the car, for a single trip, as 7', assume it is an

increasing function of the ratio of traffic volume ) with the following form:

T(Q) =bQ

The overall unit “cost” of a car trip, including the marginal disutility of time lost in traffic, is thus p+7(Q)°5.
We take the standard assumption that, when deciding on the number of trips to take, the individual will

take T'(Q) as given, disregarding the effect of her own contribution to total congestion. We also disregard

4The underlying assumption is that, even though individuals may have to travel different distances, travel is seamless and
takes place in ideal conditions up to the point where they get to the boundary of the CBD, where the only bottleneck is
placed. Assuming the costs of a seamless trip to be approximately invariant with distance (and the difference in distances to
be travelled sufficiently small anyway), we have that all car trips have the same time and resource costs. This is obviously
a simplification but is not without precedents in the literature: for example, it is the typical assumption of the “Bottleneck
Model” of traffic congestion (see, e.g., Small and Verhoef, 2007).

5We assume that all drivers have to pay for both charges. In most cities many drivers do not pay for parking and payers
may even be a minority. This may be due to the limited powers of local governments (unable, for instance, to force employers
to make workers pay for parking at the workplace, see Bonsall and Young (2010)), but it may also be due to lack of political
will: it seems therefore appropriate to study the behavior of local governments allowing them, a priori, to fully price parking
for every trip to the CBD. When studying the interactions of two governments involved in congestion policy, Proost and Sen
(2006) take the same assumption.

6Notice that we assume that individuals assign the car trips they decide to take randomly along the period considered (a
week, for instance). This implies that, even if individuals do not always travel at the same time, since the population is “large”,
the number of cars found on the road at any time is equal to the time average of the trips taken by all the population. This
justifies using an undifferentiated measure of time cost per trip 7. A similar assumption is used in Parry (2002).



other forms of externalities, such as air pollution.

Government We will start by assuming the existence of a single government, representing the fraction
of the population living within the local boundaries (including the special case in which A = 1 and the city
government covers the entire urban area). This government controls a monetary charge ¢ to be paid to to
drive to the CBD (this could either represent, in our setup, a cordon toll around the CBD or a parking
charge, or any combination of the two, assuming all drivers have to pay for them). The government is
assumed to fully rebate to each individual in the population it represents an equal share of charge revenues

(given by t@) using an undifferentiated lump sum transfer L. The government’s budget constraint is thus

AL = tQ (1)

with A = 1 in the case the administrative boundaries of the government in charge of traffic policy include
the entire metropolitan area. We assume L to take the form of a non-distortionary lump-sum tax in case the
revenues they generate were insufficient to cover capacity investments. As a result, the individuals’ budget
constraint is:

M+ L >c+pq

Timing We model a two-stage decision process. In the first stage, individuals vote on t. We assume
individuals vote perfectly anticipating their welfare at the following stage. In the second stage of the game,
once t has been set through the voting process, individuals allocate their resources deciding the amount of

car trips to take ¢ and consumption ¢, maximising their utility U(.).

3.1 Individuals’ behaviour after policy parameters have been set

Let us describe the equilibrium allocation ({¢q},{c}, L) in the economy once ¢ is set. Individuals choose the
number of times ¢ they want to drive to the CBD (in the given time period considered), their consumption
¢ and receive transfer L from the government. Each individual solves the following utility maximization

problem:



max U(G, ¢, X)

with respect to ¢ and ¢ subject to

M+ L >c+pq

We get the following demand function for car trips’:

(2)

Q(p;r)zm

by the linearity of U(.) in ¢, demand ¢(p;r) is independent of income and, therefore, also of transfer L.
Notice also that monetary and time costs, in our setup, have exactly the same discouraging impact on the
demand for car trips ¢ (this is due to the fact that both unit costs enter linearly in the individuals’ utility,
regardless of their type). Thus, the demand for car trips is decreasing in both p and T and increasing
(linearly) in r, the individual’s type. Substituting ¢(r) into U(.) above, and using the individual’s budget

constraint, we get the indirect utility function

To obtain the aggregate demand Q, integrate g(r) over the support [r!,r%] of F(r) to get®:

r

Q(p) = q(p;7) = W (4)

(in the following we denote Q(p) simply as @ to save notation) thus, we obtain that the aggregate amount
of driving in the economy coincides with that of the “average” individual, for which » = 7. By a similar

integration of the indirect utility function V (p, L;r) we obtain the (utilitarian) social welfare function (for

“from now on, we will denote, in order to save on notation, g(p;r) simply as q(r).

8While it is quite straightforward that a solution to the individual maximization problem exists (the objective function
being strictly concave in ¢ and the budget constraint being linear in ¢), for any value of r, one may wonder whether there
will always exist an aggregate equilibrium on the “car trips market”: in particular, @ would be the fixed point such that
Q= W. Since this fixed point coincides with the ¢ that maximizes U(.) for the individual with » = 7, then it must
exist for all values of p and 7.



a government taking care of the entire population)

W(p) = /Ir V(p, L;r)dF(r) = m + M + AL (5)

notice that, by assumption only the fraction A of the population receives the transfer L°.

We now study the behavior of aggregate demand for car trips with respect to changes in the unit cost
(including the disutility of time lost in traffic) of ¢, that is p + T'(Q). This is important for studying the
effects of monetary charges on car driving, since they translate one-to-one in increases in the total monetary

cost of a car trip (that is % = 1). We have, totally differentiating @ in (4) with respect to p:

aQ r M(To %) dQ 7

b prT@QP Ip+T@QF A Ip+T(Q) +lo

where Ty, = 2L = b). As the above formula shows, 9% is the result of two effects: a direct effect (first
Q aQ dp

term in the sum on the left), which is negative due to the change in the monetary cost of car trips p (for a
given amount of traffic )), and an indirect effect (second term in the sum on the left) accounting for the
reduction of T(Q) due to lower @ and congestion on the road and in parking search (a positive feedback
effect, which, per se, would stimulate additional demand). Notice that the first effect always dominates on

aQ
the second, so D < 0.

3.2 Benchmark: the utilitarian optimum

We study here the optimal charge "2 that would be chosen by a welfare maximizing government represent-
ing the entire population, wanting to decentralize the welfare maximising allocation, using the instruments

in 7 and the uniform lump sum transfer L. The government’s problem is

max W (p)

9However, this does not affect the welfare maximising choice of ¢, since a utilitarian government, when individuals have
quasilinear preferences, is not concerned with the redistribution of resources.

10



(with respect to t), subject to (1). Taking partial derivatives of W(p) with respect to t (after substituting

for L from (1) in W (p)), we obtain the FOC

W(p)fot : —Q[1 + TQ%] +Q+ t% =0= t=QTy (6)

The first equation tells us that the optimal charge ¢ is such that it is equal to Q7Tg, the marginal external
(time) costs of an additional car trip: it is a Pigouvian tax. Moreover, since W (p) is utilitarian (and
preferences are quasilinear), there is no concern for the distributional effects of the charge, neither intra nor

inter-jurisdictional. The results are summarised in Proposition 1:

PROPOSITION 1: First Best charge t*B, defined as the choice of a single government mazi-

mizing W (p) (a utilitarian social welfare function), is such that

t"% = Q(™)(Tq)

and is therefore a Pigouvian tazx.

4 Voting on traffic policy with a single government level

We now introduce majority voting as the social choice process that leads to the determination of .

4.1 Voting over the generalised charge

Individuals’ preferences over ¢ In order to describe individuals’ preferences over ¢, we start from
the reduced indirect utility function V(p;r) (written, that is, after using (1) to substitute for L), for a
generic individual of type r

Q

V(p;r):m+M+7 (7

11



To find the most preferred charge t*(r) by a type-r individual, we maximize V (¢; r) with respect to ¢t. Taking
partial derivatives of (7) with respect to ¢, we obtain that t*(r) is defined by the following FOC

aQ
ovVipmfor: —q(r)[1 + TQ@] + CH% =0 (8)

A marginal increase in the generalised charge affects V(¢;7) in two ways: it changes (in particular, it raises,
since 0 < 1+ TQ% < 1) the generalized unit cost of a car trip p + T, which affects the individuals to
different extents, depending on their amount of driving ¢(r)'°.

Secondly, a marginal increase in ¢ also affects the extent of the transfer L received by each individual,
by changing the total amount of charge revenues tQ). The relevance of the latter effect is greater the smaller

is A because, for a given amount of revenues, the share of them to which each voter is entitled to is greater,

given that individuals living outside the government’s jurisdiction are excluded from their redistribution.

Voting equilibrium We can prove that individuals’ preferences on ¢ (described by (7)) satisfy the
Single Crossing condition. Therefore, the voting equilibrium, (for any \), denoted by #¥(\) will, following
the result of Gans and Smart (1996), exist and coincide with the most preferred choice of the median

individual in the population considered, t*(\; #)

LEMMA 1: Under a single level of government, when individuals vote (Shepsle procedure) on
the generalised charge t, for any given value of X\, there exists a unique majority voting

equilibrium t¥(\), coinciding with the choice of the median individual t*(\;7)

Lemma 2 describes the nature of the equilibrium vector obtained and how it changes with respect to marginal
changes in the exogenous parameters describing the preferences of the decisive individual 7, the relative size

of the city population (compared to the total) A.

LEMMA 2: The generalised charge t¥ is decreasing in the preference for driving © of the pivotal

individual and in the relative size of the voting population A

10This particular feature depends on linearity of individuals’ utility in both monetary and time costs of a car trip, so that
marginal utility of both money and time are the same across the population. In a more general model of individual utility,
it would be reasonable to expect, for instance, certain individuals to have a higher marginal utility of time than others and,
therefore, to be less negatively affected (or even benefit) from a marginal increase in monetary charges (after accounting for
the equilibrium decrease in congestion).

12



The intuition is quite simple: the higher 7, the more frequently the individual drives, relative to the others,
and, as a consequence, the more he will suffer from an increase in the generalized price of driving due to a
raise in p. Therefore, individuals with higher r will prefer lower values of t. A marginally lower value of A
will instead induce a higher total level of charges t¥, because of their increased effectiveness as a device to
exploit people commuting from the hinterland in order to generate additional revenues'!.

The results in Lemma 2 are instrumental in establishing Proposition 2, in which we describe conditions

for the comparison among the components of t¥ and those of the vector '8

PROPOSITION 2: When the traffic policy vector t is decided via majority voting, under a

Shepsle procedure, by a single government, the equilibrium vector t¥ is such that:

o tF =t"B if and only if # = %

o If7 < T, the generalised charge level is higher than optimal, t¥ > t'B

>

o Ifr > ;, the generalised charge level is lower than optimal, t¥ < t¥'P

These results provide us with some ingredients to explain the shape of traffic congestion policy observed
in reality: the general prediction is that when the majority of the population has sufficiently stronger
preferences for driving than average (so that it also travels to the CBD by car sufficiently more frequently
than average), then we should observe a tendency by governments to underprice congestion. On the contrary,
when the majority of the population has weaker preferences than average for driving, the opposite should
occur. In addition, the relative size of the local population compared to the total is important: the smaller
it is, the more inclined, all else being equal, will voters be to choose high charges. Finally, the results
suggest that the smaller the size of the population involved in the voting process with respect to the total,
the more likely the government is to adopt a policy of high monetary charges. This is due to a (well
known) phenomenon of tax exporting behavior (charging non-voting outside commuters for a tax that will
be reabted only to voters).

Observation suggests that governments are usually reluctant to curb traffic congestion using pricing

instruments, while more willing to invest, when feasible, in additional road capacity. Our results say that

' The above results concerning the size of the local population A, would also hold in a model involving a welfare maximising
government (acting in the interest of the population’s representative individual): the size of the voting population (with the
tax exporting motive) affect the impact of the proposed measures on the welfare of the pivotal individual in the same way as
they affect that of every other voter.

13



a left-skewed shape of preferences for driving characterising the population of a metropolitan area could
contribute to generate such behavior. Contemporary urban societies often appear to be characterised by
significant “car dependence” (Kenworthy, 1999), with large shares of the population finding the car as a
difficult to subsitute means to satisfy their mobility needs'?. Many factors can be behind such a phenomenon:
lifestyles and habits that revolve increasingly around cars, supply of road and parking infrastructure, urban
sprawl and progressive suburbanization of the population of large urban areas, combined with insufficient
investment in public transportation, can all contribute to make the car hard to substitute with alternative
transport modes (including also walking and cycling). While our model clearly does not capture all of them,
and relates differences in driving habits across the population only to heterogenity in preferences for using
cars, a scenario in which a majority of the population has stronger preferences for driving than average,
with only a avoiding car travel, does not appear inconsistent with the widespread car dependence observed
in many urban contexts. This, in turn, could contribute to explain, according to our findings, the reluctance

by politicians to use pricing instruments to control congestion.

5 Voting on traffic policy with two government levels

The setup

The setup is the same as that of the previous section, except that now we introduce the presence of a
regional and a local (city) government, that represent the respective populations, still deciding on policy
through majority voting. So, while the second stage of the game we described is the same as in the previous
sections, the first (voting) stage now involves two distinct governments, representing different (though
partially overlapping) populations.

Traffic policy is now assumed to consist of two parameters: a parking charge tc to be paid to park
in the CBD and a cordon toll around it tg. We assume the following institutional setup: the local (city)
government has authority over parking charge and capacity ¢, while the regional government decides on the

congestion charge tz. The two governments represent overlapping polities: while the regional government’s

12WWhile this seems to be a particularly relevant phenomenon in north american and australian cities, it is not of secondary
importance in most european and asian cities as well (for some anecdotal evidence, see the case of Dublin, cited in Khan , or
the study by Kenworthy, cit.)

14
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includes all the population considered (that is, both the city’s and the hinterland’s), only the individuals
living within the city’s boundaries are represented by the local government. The spatial setup (as well as
the allocation of responsibilities for the components of traffic policy among the two governments) is similar
to that used in Proost and Sen (2006). Figure 2 provides a graphical representation.

All individuals face the same charges (we assume, therefore, that no one lives inside the CBD and
can “escape” any of the levies). The total level of charges (called the “generalised charge” in the previous
section) is now t = tc + tr'®. Both governments are assumed to fully rebate to each individual in their
respective polities an equal share of the charge revenues net of capacity investments (given by tr@ and
tc @ respectively) using undifferentiated lump sum transfers Lr and Le. The regional government’s budget

constraint is, thus

L =tr@Q 9)

and the city government’s is

Moo =teQ (10)

(recall that it represents only people living inside the city boundaries, a fraction A\e(0, 1] of the total pop-
ualtion, and we assume it has no reason to redistribute revenues to people living in the hinterland, who do

not belong to its constituency). As a result, the individuals’ budget constraint is:
M+Lr+Lc >c+pg

for individuals living in the city and

M+ Lrp>c+pq

13Notice, therefore, that, in terms of their “contribution” to the monetary price of a car trip p, the two charges are, in our
setup, completely equivalent: they are, therefore, equivalent instruments to implement a given allocation on the car transport
market. The key difference between the two is in the way the revenues they generate are redistributed to the public, as well
as their assignment to the control of different governments.

15



if the individual lives in the hinterland.

The outcome if only one government were in charge of traffic policy

Before we start introducing the results for the case of two governments, it may be useful to say something
about what would happen if traffic policy consisted in the two charges described above (t¢,tg) but they
were all set by a single government, as in the previous sections!?.

In that case, we can expect the choice of the government to coincide with that of Section 2, in the
case it simply acted as a welfare maximiser, or with that of the single government of Section 3, in case the
choice of policy was determined through majority voting, with the only difference that only the “generalised
charge” t = to + tg would be determined and there would be a degree of freedom in setting one of the
two charges t¢ and ti. The reason is that, under the stylised setup of our model, driving and parking in
the CBD are perfectly complementary activities and all individuals, when taking a car trip, are assumed to
have to pay both charges: therefore, the impact any of the two has on the generalised price of a car trip is
the same. Moreover, in a single government scenario, the asymmetry between the two charges, in terms of
rebated revenues, that is assumed in the two government case is eliminated: every individual in the polity
is entitled to an equal share of net revenues. Therefore, in order to implement any allocation of resources ,
the government will be indifferent among any combination of the two charges that yields the desired level

tFB

of “generalised charge” t: either the welfare maximising or the most preferred by any of the individuals

in the population ¢*(r).

5.1 The voting procedure with two governments

Since we want to capture the imperfect interaction among two governments, we still study voting using a
Shepsle procedure (Shepsle, 1979): this allows us, importantly, to work under the assumption that voting
takes place with governments that do not coordinate their policies. Moreover, it allows us to avoid the
difficulties of multidimensional voting. The vector of parameters obtained as the outcome of the voting

procedure, denoted by TINVF = (tNE tNF) will be a Nash Equilibrium, in which each of the governments

MWe would assume that the government cares only for the polity it represents, and would redistribute the (residual) revenues
from both charges only to its polity, as in the previous section.
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involved chooses (through majority voting) its respective policy variable as the best response to those

expressed by the other.

5.1.1 Voting by the local polity

Individuals’ preferences We start by looking at preferences for t¢ in the local population. Consider
an individual of type r: using the local and the regional governments’ budget constraints (9) and (10), her

(reduced) indirect utility function V(p,r) can be written as

r tc@Q

As anticipated, we assume that individuals vote separately but simultaneously on the parking charge t¢,
taking tr as given. When choosing the parking charge rate t¢, type-r individual’s most preferred charge

level t% (tg, A;7) will have to satisfy the following FOC

dQ

dQ
Q-i-tC% dQ_
Xy L Tdp TR
dp

OV () fore : —q(r)[1 + T X dp

|+ 0 (12)

at the given tr. Notice that, as anticipated, a maginal increase in t¢ translates entirely, given tg, in a
marginal increase in p. Another important thing to notice is that the parking charge tc’s revenues are
redistributed by the city government only to its own constituency, while outside commuters pay for it but
do not get any of its revenues: this is why the impact of a marginal change in t¢ (and therefore, in p) on
parking charge revenues (the last term on the right hand side of the equality) is divided by Ae(0, 1). Parking
charges are, therefore, affected by the tax exporting motive that we identified in the previous sections.
Notice, in addition, that city individuals are nonetheless entitled to a share in the revenues generated via
tr (through the transfer Lg) and so they take into account the fact that raising ¢ can marginally reduce

the tax base for tg.

Equilibrium choice of the local government, given the choice of the regional government The
city population’s preferences on to satisfy the Single Crossing property. Therefore, for each of the two

voting dimensions, a majority voting equilibrium exists, in which the 7 individual (that is, the individual
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with median value of r for the city population) is pivotal. In turn, the equilibrium of the voting procedure
coincides with the most preferred policy ¢ (7;tr) of the (local) pivotal individual 7 (conditionally on tg set

by the regional government).

LEMMA 3: When the local population votes on parking charge to , under a Shpesle voting
procedure, for any given value of tr, there exists a unique equilibrium tBE(tr) =t (tr, \; 7).
To conclude this part we can derive an (implict) reaction function for the (pivotal) type-# individual for the

city when voting on 7, as a best response to tr set by the regional government:

LEMMA 4: The local government’s best response tBF(tr) to the strategy played by its regional

countrerpart is implictly defined by the following condition:

Q+tc 42
—q(r)[1+ TQ%] + /\Cd” +tR% =

and we have

otel ot
oF 1 OA

BR
ol

-1 <F <0 ;

<0

Therefore, the local government will respond to a marginal increase in tg by reducing t¢¢ less than propor-
tionally. The intuition for the comparative statics involving 7 and A follow the same lines as those of Section

3.

5.1.2 Voting by the regional polity

Individuals’ preferences We consider here preferences for ¢g in the regional (that is, the entire) popu-
lation. A crucial distinction among individuals is that between those living in the city and in the hinterland
(the latter not being entitled to receive any of the revenues generated by the parking charge t¢): this plays
a role in determining their attitudes towards tg. While for an individual living inside the city the relevant
V(p,r) to be maximised with respect to tr (taking tc as given) is given by (11), for an individual living in
the hinterland it will be

Vip,r)= + M +trQ (13)

(r+T(Q))
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which does not account for the revenues t-(@Q coming from the parking charge, as well as capacity investments.
When choosing (taking all the other parameters in IT as given) the cordon toll rate tg, type-r individual’s

most preferred t};(tc; ) will have to satisfy the following FOC

dQ
dQ A tcgs dQ .
oV (p,r F— _x P hain — —
(er)forn : —q(r)[L + To ]+@< | >+th +Q=0 i=1{0,1} (14)

and is equal to zero otherwise. Note the index 7, which takes value 1 if the individual lives in the city
and 0 if in the hinterland, the key difference in attitudes mentioned above: in the former case, individuals
take into account the fact that a higher ti reduces aggregate demand for car trips () and, thus, revenues
generated by to. In the latter, this effect is neglected. Notice that toll revenues are redistributed by the
region’s government to the entire population: contrary to the case of parking charges, there is no asymmetry

between the population who pays tr and that which receives its revenues.

Equilibrium choice of the regional government, given the choice of the local government The
different attitude towards t for people living in the city and in the hinterland mentioned above, is the crucial
reason behind the fact that, when they vote on ¢z (given t¢), the Single Crossing condition fails to hold, as
this introduces an additional dimension of heterogeneity among individuals, orthogonal to preferences for
driving: this makes it impossible to identify a pivotal individual, which in turns does not allow us to define
a proper reaction function 3% (tc) for the (decisive individual in the) regional government.

However, we are able to identify the individuals that would be pivotal if city and hinterland voted
separately on tx (denote them, respectively r& and r%): since, taking each of the subpopulations separately,
preferences on ti do satisfy the Single Crossing property, they are the medians in the distributions of types
r for the two subgroups (incidentally, since we assumed that the two subpopulations are characterized by
the same distribution of types F(r), then the two individuals both have the same type, so rd=r%—=f).
Moreover, it is also the case that we can always rank their most preferred values of ¢, denoted t}}(ré)
and t%(r%) respectively: for any value of tc set by the city government, we have t5(rd,tc) < ti(r%, tc).
This is because the objective function individuals 7% and 7% look to maximise with respect to tp is not

the same, since, as explained above, those living in the city are, coeteris paribus, less keen to raise the
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congestion charge than their counterparts in the hinterland, in order to preserve parking charge revenues.
Using these important pieces of information, we can argue that a Condorcet Winner in the voting on tg
exists and, importantly, that it necessarily coincides with the most preferred choice of one of the individual

in the population, belonging to the interval [t} (rd), t5(r%)].

LEMMA 5: When the region population votes on tg, taking as given the values of to and K,
there is no individual who is decisive in every pairwise majority voting contest. Nonetheless,

a magority voting equilibrium th(tc) exists and is unique for all values of tc.

Define t}}(rdc) the most preferred value of tr for the type-r individual who would be decisive if the
city population were the only one voting on it and t}*%(r;l[) the most preferred value of tr for
the type-r individual who would be decisive if the population living outside the city were the

only one voting on it. Then, tN¥(tc) necessarily belongs to the interval [ty (rd), ty(rd)].

To prove this, we use an argument proposed by De Donder (2010): he shows that, when a population
composed of subgroups that face different governments’ budget constraints (in our case, city and hinterland
population face different rebating transfers for the same taxes on car trips that they pay) votes on a single
policy parameter, as long as the Single Crossing condition holds if each group is taken separately (, then a
condorcet winner, when the entire population votes, exists and coincides with the most preferred choice of
one of the individuals in the population'®.

We are able to identify a subset of the population among which the condorcet winner has to lie thanks to
the fact that preferences on tp, if the two populations are taken separately, satisfy the single crossing condi-
tion and that r¢, = r%,. These conditions are sufficient to say that any value outside [t},(rd), t5(r%)]cannot

be the condorcet winner (the explanation is left for the appendix).

5.1.3 The Shepsle equilibrium

As mentioned at the beginning of this section, we describe the outcome of the voting procedure as a Nash

Equilibrium in which every tax rate is chosen, by the relevant polity, as a best response to the other

151Tn our setup, taking each subgroup separately clearly eliminates the additional element of heterogeneity among individuals
mentioned above. Moreover, since, for any individual in our population, the most preferred choice is unique, then we know
that also the voting equilibrium on tg is unique.
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two. Unfortunately, the result of the voting procedure on tg limits the amount of information that can be
obtained on II, as we are unable to identify, as was the case in the voting for the local population, a reaction
function characterising the choice of the regional government.

We can, however, derive some important information on the nature of the equilibrium. First, we can
draw a comparison between the two taxes on car trips t¢ and tg. We find that, unless A is sufficiently large,

the parking charge will always be the higher tax:
PROPOSITION 3 : There ezist a unique threshold \ such that:

o )\ < X\ is a sufficient condition for tNF > tNF

e )\ > ) is a necessary, but not sufficient, condition for tNE > th

Two forces are behind this result: on the one hand, the tax exporting motive determined by the smaller size
of the city population with respect to the total. Such motive is stronger, for each city voter, the smaller
is A. On the other hand, the individuals in the city vote on ¢t taking into account the effect it has on
the tax base for tg (recall that people living in the city are entitled to tg revenues as much as those living
outside), while, when voting on tg, they are the only ones to care for the effect it may have on the tax
base for tc: this is an asymmetry that, in itself, would make voters on tc more reluctant to support its
increase than voters in the hinterland to support a raise in tg, but, as long as A is not too big, its effect is
surely dominated by the tax exporting motive and we would end up with an equilibrium with th > th .
Instead, if A is large enough, we may end up in an equilibrium with ¢p that is higher than t¢.

These results are consistent with the casual observation that, even if total charges to drive or park cars in
central cities are too low, given the associated externalities (congestion being the main one), local politicians
seem less reluctant to use parking charges as instruments to curb congestion (and also raise revenues) than
cordon tolls (which are rarely implemented at all): our results suggests that an equilibirum policy vector
with higher parking than congestion charges would result if the city government can use the parking charge
to exploit, in a certain mesure, outside commuters to generate revenues. The key force lying behind this
particular finding is a tax exporting motive driving the choices of local voters (and governments), which
seems to be less likely for cordon tolls, since they are generally administered by government levels that

represent, larger portions of the population, including commuters coming from the hinterland. Moreover,
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due to the substitutability between the two charges, the fact that high parking charges are levied in the
CBD would further discourage the regional government from implementing congestion tolls.

To be sure, the above findings (and the driving forces behind them) are not specific to our majority
voting setup and would also hold in models with purely welfare maximising governments (they are indeed
in line with those of Proost and Sen (2006), who consider a similar insititutional setup to ours, but with no
voting). However, they are not the only ones shaping governmental behavior in our setup: unlike previous
works in the literature, governments here also respond to voters’ heterogeneous preferences for driving. In
particular, as we will see later, our findings suggest that the presence of tax exporting motives do not mean
that the local government will necessarily set a parking charge that is high neither in absolute terms nor
compared to the external costs of car trips: if the population consists of sufficiently frequent drivers, as we
argue in the following section, th while still likely to be higher than th, may still be quite low (at least

compared to the marginal external costs of a car trip).

5.2 Comparison of the equilibrium of the voting game to the first best policy

vector

To conclude this part, we compare tVF = th + t%E to the first best policy tax . Once again, the
inability to identify the Condorcet Winner on t% £ does not allow us to give a complete comparison between
benchmark and equilibrium vectors. However, we can give sufficient conditions for tV¥ to lie below t'Z, as

well as necessary conditions for the opposite to happen:
PROPOSITION 4: The equilibrium of the voting game IINE (tNE tXF) is such that :

Fs (1 1-)\ 7 NE FB
.r>r< +1+3§(pFB))>A:>t <t

NE - +FB P 1-X
o tNE > :>7"T<1+1+7i%(pp3)>

What this implies is that if the populations considered are such that a majority of individuals has preferences
for driving that are sufficiently stronger than average, we may expect to end up with suboptimal level of total
traffic charges, and, on the contrary, if the majority has sufficiently weaker preferences than the average,

the opposite may happen.
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The role of tax exporting and competition among governments

Previous literature has taught us that the imperfect coordination among the two governments in setting
traffic policy (particularly in the setting of charges for the use of the road infrastructure) can have important
implications for the policy outcome. In a setting like ours, where two overlapping governments can charge
for access to the same piece of infrastructure, we could expect, at least to some extent, their imperfect
coordination to determine an increase in the total level of charges, with respect to the case of a single
government'®. The above results suggest that such an effect can be relevant in our model. Suppose for a
moment that the individual who is pivotal for the city population (ré) were decisive in the voting on the
entire 7: then we could expect th to be infinitely close to zero, for the reason that ¢tz and tc would be,
from her perspective, two equivalent instruments to implement her most preferred allocation of resources,
except for the fact that raising the former implies a lower net monetary loss than the latter: therefore,r%
would always strictly prefer to use only the former and not the latter. In such a situation, it would be
as if the two governments were perfectly coordinating their choices and the sufficient condition to have a
suboptimal total charge would, indeed, be the same as the one that would be relevant if only one government
were in charge of the whole set of policy parameters (that is 7 > g, cfr. Proposition 2).

However, we cannot be sure that ré will be decisive when voting on tr. Suppose instead that the
Condorcet Winnner in the voting on ¢ coincided with the most preferred ¢r for an individual living in the
hinterland. He would vote on it without taking into account the impact on the revenues from ¢¢. This, as
previously argued, would induce him to prefer a level of ¢ty higher than that most preferred by an individual
of identical type r but living inside the city. We thus have a source of imperfect coordination between the
two subpopulations and, ultimately, the two governments. This can lead to an equilibirum entailing higher
total taxes than if only one population were voting on the whole policy vector, coeteris paribus. Indeed,
in the two government case, the sufficient conditon for having a suboptimal ¢V¥ (given in Proposition 4),
when two different governments are involved, requires the difference between 7 and 7 to be larger than in

the case of a single government.

163imilarly to the setup of Proost and Sen (2006). The authors find that the imperfect coordination between a city government
setting parking charges and a regional one setting a cordon toll leads to vertical tax competition and increases overall charges.
The extent of this effect, the authors argue, is however limited, due to the fact that the regional government sets its own charge
taking into account the welfare of the city individuals as well.
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These results suggest that, even in the presence of imperfect coordination between governments and
of tax exporting motives for a local government, the total level of charges on car usage may be too low
with respect to the social optimum. While neither tax exporting behavior by local governments nor the
effects of imperfect coordination among two taxing governments are new to the literature, this latter finding,
determined by voters’ preferences for car driving, comes from one of the novelties of our approach: that
of studying the behavior of a regional and a local government, imperfectly coordinating in setting traffic
congestion policy, while also being deomcratically elected and having to respond to the will of heterogenous

voters.

6 Conclusions

We have studied how the political process may determine the shape of traffic congestion policy when two
overlapping and democratically elected governments are involved. The non-cooperative interaction between
different levels of government (one of which represents only a subset of the total population), may lead to
higher charges than with a single government involved and the possibility of exploiting people outside the
government’s jurisdiction to generate revenues generates an important tax exporting mechanism. However,
as long as the majority of individuals in the population has sufficiently strong preferences for driving, total
charges will still be suboptimal: a novel result proposed by this paper is that a distribution of preferences
for using cars among the population such that the majority of individuals drives more frequently than the
average (which may, we have argued, not be inconsistent with a significantly widespread “car dependence”
phenomenon observed in many cities), can determine insufficient political support for traffic charges. While
the last two driving forces mentioned above are not specific to our setup and would also characterize models
of purely welfare maximising governments, an important novelty of our approach is that of combining the
three in order to give some insights on the way governments act when setting traffic congestion policy.
Our results suggest that the effects of the lack of coordination among governments and of their divergent
objectives may be less harmful to social welfare than suggested in previous literature. A common insight of
preceding studies on the effects of governmental competition in traffic policy is that its effects are harmful

since it leads to generally to high levels of taxation and charges on the use of road infrastructure, although
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to different extents depending on the institutional setup. However, these works importantly neglected the
fact that governments do not, in general, simply act as welfare maximisers (though not coordinating) for
the respective populations, but respond to the preferences of voters. Now one of the main novelties of the
paper is to embed the effects of governmental competition in a majority voting framework. Indeed, we find
that, in the presence of significant political opposition to the use of pricing instruments (a quite relevant
phenomenon in reality), the higher total tax level induced by governmental competition may actually help
mitigate the bias from the first best policy.

The results obtained rest on some important assumptions: first of all, our institutional setup is crucially
linked to the forces shaping congestion policy in the model. Although relatively common, the setup is
clearly not universally valid: for instance, in the city of Milan, both parking and a (recently implemented)
cordon toll are under the control of the city government: we provide some insights about such situations in
Section 3. Moreover, we assumed that the local government is entitled to keep the revenues from parking
charges, while, in reality, the charge revenues may benefit also individuals that do not belong to the city’s
polity. Nevertheless, it seems fair to say that, while parking policy is more likely to characterise itself as
a strictly local policy, debates about (and political consultations on) congestion tolls have often assumed,
geographically, a much broader connotation: therefore, even if it is ultimately a local government running
all of congestion policy, the use of some of its instruments is more likely to be subject to pressures from
outside government levels than others. Secondly, we have assumed that both in the city and in the regional
population, all individuals have to pay both charges, which may not always be the case in reality: for
instance, we did not consider the possibility of “resident discounts” schemes, nor the issue of privately (or
employer) provided parking. Third, we have assumed a monocentric city model, with all traffic flows going
in the same direction (towards the CBD), neglecting the phenomenon of “multicentric” cities. Fourth, we
have assumed, for simplicity, that revenues from the charges are redistributed using uniform lump sum
transfers: this may not necessarily be the case in reality. Finally, we have neglected the possiblity of having
different distributions of preferences characterizing the city and the hinterland population. All these would

be an interesting questions to extend the study for the future.
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Appendix

Proof of Proposition 1

We have, after substituting for L = tQ from the government’s budget constraint,

" 7
Wp:/ V(p;r)dF(r) = ————— + M + tQ
) r EEndrE() (p+T(Q))
that the government maximizes with respect to t. Taking first order derivative
d d
Whor: -Q[1+To92| +Q+1%2 (15)

equating the expression to zero one obtains ¢ = TH(Q as in the text. It is easy to see that, taking the
second order derivative of W (p) and imposing ¢t = Tp(), we obtain a negative value: all points satisfying
the FOC above are local maximisers of W (p). Therefore, it has to be the case that there is only one of
them: otherwise, given that W (p) is continuously differentiable in all its domain, there would be at least

one other point satisfying the FOCs being a local minimizer.
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Proof of Lemma 1

To prove that preferences over ¢ satisfy the Single Crossing condition, we use the result of Gans and Smart

(1996): they prove that such a condition is satisfied if and only if
B(MRSmn)/ar:a(%/g%)/ar

has a constant sign, for all values of ¢, L and r. The expression has the following form:

dq(r)

dQ
or [

1 +TQd7p]

D(MRS(r))Jor = —

which, since % >0and 1+ TQ% > 0 for all ¢t and r, is strictly negative, for all ¢, L and r. Therefore,
the Single Crossing condition holds. As a consequence, we can claim that a voting equilibrium exists and

coincides with ¢*(\;7), as claimed in the text.

Proof of Lemma 2

We use the Implicit Function Theorem. Condition (8) can be seen as a function of t¥, r? and \:

Q+t9
A

dQ

== =F@EP 70 =
o (t*,7,A) =0

—q(M)[1+To—=] +
By the IFT, we know that, in a neighbourhood of ¥ satisfying the above conditions, we can express t¥ as

functions of 7 and A. The IFT tells us that

oF oF

o _ G ot _ 5
A oF - oF
or e o\ &

it is easy to see that the numerator is negative in both expressions. As for the denominator, its value

is negative because of second order conditions, always verified'”), for all values of #. Therefore, t¥ at

7The second order condition writes as

2 2 Qe
CAQTY P B P e A
ot? dp
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equilibrium is decreasing in 7 and in A.

Proof of Proposition 2

To prove the first part of the proposition, simply compare condition (6) defining 2, to (8) that defining
t¥. They coincide, by the linearity of ¢(r) in r, if and only if £ = 7. It is only in that case, then, that we

have that £ coincides with the first best one tf2. The rest of the claim follows from Lemma 2.

Proof of Lemma 3

When the city population votes on tc, we have, following the same steps as in the proof for Lemma 1,
that a voting equilibrium exists since individuals’ preferences for t¢ satisfy the Single Crossing condtion.
The equilibrium of the voting procedure involving the city government, for any tg, coincides with the most
preferred policy of the median individual in the city t& = t% (tg; A, 7).

To prove that tZ is unique, we simply maximise, for any value of ¢z, the 7 individual’s reduced indirect

utitlity V(p, #), with respect to tc. The FOC is
_(f)[1+T @]+M+t dQ _
q Qdp X Rap =

now, every value t¢ satisyfing the FOC above is such that, in its neighbourhood, the second order derivative

%V
ot

is negative:

dQ d2Q
827‘/:_@ 1+T@_qu27Q M th27Q
o2, dp dp Q@ ap? ) dp?
which evaluated at the FOC above, is negative (the condition is the same as that for the footnote above).

As a consequence, since the function V (p, 7) is continuously differentiable and concave in the neighbourhood

of any point t¢ satisfying the FOC, it has to be the case not only that this point is a local maximiser, but

which, evaluated at t satisfying the FOC above is negative as long as

T 1 /#\ 3 [ AF
—— s> (2o -2 (2=
T+p 2\ 87 \ 7

which, since necessarily # < 27, is such that the right hand side is always negative and is therefore always verified.
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that it is the only one.

Proof of Lemma 4

Write conditions implictly defining the Best Response vector tNF(tz) as

d Q+tc d X
()[1+TQ dQ} )\ HR% :Fl(tc,tR,T,)\): 0

by the Implicit Function Theorem, we know that, in a neighbourhood of t¥¥(tg) satisfying the above

conditions, we can express t¢ as function of 7#, A and tg. The IFT tells us that

OF;

Otc _ Bign
= TR

Otr G

The denominator is negative (by SOC, as discussed in the previous Lemma). As for the numerator, we have

dQ

d2
iyt |, PQ  dQ
A dp? ' dp

OF, dg dQ d*Q
2t [+ 7a%] - [ratpd] + B

1+Tog—
+ dp de2

which is negative as long as

B S L M_l
T+p 2\r2 A0+ )7

which is always verified as long as 7 > 3/2: this is simply a scaling condition that we caan always assume

to be verified without loss of generality. Moreover, since gf L is negative but differs from aF L by (1 —1),

which is negative, it has to be the case that, in absolute value, the numerator is smaller than the numerator.
Therefore, impicitly defined derviatives in the neighborhood of the equilibrium vector, satisfy the inequalities

%tf and %\C, the proof goes along the same lines.

claimed in the text. As for

Proof of Lemma 5

Let us prove, first of all, that the preferences of subgroup C (city) and H (hinterland) in the population,

taken separately, satisfy the Single Crossing condition when voting on ¢y, while they do not satisfy it when
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considered jointly. Consider an individual belonging to C: the objective function, for a type-r individual, is

T tc
Vipir) = ———= + M+ Q+L
P = gy TN e
while for an individual belonging to H is
r
Vip;r) = +M + Lr
(r+T(Q))

We have that, for any given t¢

d tcd
MRSy,r(r) = #5/ 45 = —a(r)[1 + TQ% i (CQ)
with ¢ = 1 for the individual living in the city and ¢ = 0 otherwise. So

0q(r) dQ
(MRS (1) /oy = — T, 2%
( ( ))/a or [+ Tq dp}

which is strictly negative, for any initial ¢tg. Therefore, as argued by Gans and Smart (1996), preferences
over tg in the two subgroups satisfy the SC property. This implies that, in the hypothetical case that the
C were the only subgroup involved in the voting on tg, then a majority voting equilibrium would exist and
would coincide with the most preferred ¢z of the individual with median r among C, 7: we denote this value
by t5(#,C). Similarly, if group H was the only one allowed to vote on tr, a majority voting equilibrium
would exist and would coincide with ¢3,(7, H).

Looking at the expression above, we see that the M RS}, is generally nonmonotonic with respect to
r when the whole population is considered, as for any tc and tg, since MRS;,r(r)? > MRS;,(r)°.
Therefore, the Single Crossing condition does not hold when both subgroups vote on ¢r. Moreover, an
individual in the city of given preference parameter r, always prefers a (weakly) lower ¢z than an individual
with same r living in the hinterland. This also implies that we can rank the two most preferred values for
the two individuals that are pivotal in each subgroup, for any given tc: th (7, C) < t5 (7, H).

Finally, since SC holds in the two subgroups, it is not possible that the CW lies outside [t} (7, C), t5 (7, H)].
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Suppose (by absurd) that the CW is on the left of this interval: then surely at least half of the city popu-
lation would strictly prefer any value inside the interval to it. A fortiori, at least half the population in the
hinterland would strictly prefer values in the interval to it. Therefore, the CW cannot lie to the left of the

interval. A similar reasoning shows it cannot lie to the right either.

Proof of Proposition 3

We proceed, for the moment, assuming the condorcet winner for ¢g coincides with ¢t},(7, H). In this case,

HNE

we provide first of all a lemma stating that the equilibrium vector would be unique.

LEMMA 1A: When II is chosen by majority voting, under a Shepsle voting procedure, assuming

the condorcet winner for tg coincides with t7, (7, H)

6BR

o We can (implicitly) define a best response function t3%(tc), such that attRc <0

o There ezists a unique equlibrium vector IINE(tNE tNF)

PROOF: In the case the condorcet winner t2%(¢¢) in the regional voting coincides with the most preferred
t (7, H) for the individual decisive among the commuters (as defined for Lemma 5), his best response t5%

is unique. This value has to satisfy the FOC

) dQ, , dQ o
_q(’l“)[l—i-TQ dp]+thp —|—Q:F(tR,tC,7",)\)—O

and we can easily show that any t5F(t¢) satisfying the above, also satisfies the SOC. Uniqueness follows.

BR
As for 2a- < 0, we can use the implicit function theorem:

ote
BR OF
8tR _ 3tc
- OF
ote o

the denominator is negative, by SOC. As for the numerator, we have

OF  dg dQ
R S P s
Oto dp[ + de] q[ @ dp?
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which, evaluated at t g satisfying the FOC above (the relvant neighbourhood we need to focus on), is negative

if
b3 6)
which is always verified as long as ¥ > 3/2, a scaling condition that we can always assume to be verified
without loss of generality.
INE

Next, we prove that the equilibrium vector is unique. We know that, if the CW in the regional voting

coincides with t%(7, H), IINE would be implicitly defined by the following conditions holding simultaneously

aQ
R dQ, Q+tcTs aQ o
—q(7)[1 +TQCTP] t— JFtR% = Fi(tg,tc,7,A) =0
. aQ dQ .
— 1+Top— th— = Fs5(tp,t =
q(?)[1+ de]+ Ry +Q = Fy(tgr,tc,7,A) =0

Let us look at Fy(tgr,tc,7,\) = 0and Fa(tg, tc, 7, A) = 0 as functions implictly defining, in a neighbourhood
of the equilibrium vector IIVF, for given # and), tr as function of to. We get, evaluating derivatives at

points (tg,tc) satisfing Fy and Fy above:

dg |1 4 7,99 1,89] 4 2B HenE |, ig
8th OF1/pt,, ~dp [ + QTP] —CI{ Q dpz] + ——— +tr o ( 3
- =" €(—o0; —
6th rl OF1/pip, 4 d 2 Z—Q+tcd2—§ - . ;
-~ [1+70%] - g [ro 58] + BT 4 g 1 a0
d dQ d’Q d?Q | dQ
onr e [ not] o[rtg] g eg
= — = — e(—1:
NE AF2 > 5 ;
Oc 2 forn 214+ To92] - g |To%# | +tn %3 + 292

Both derivatives are strictly negative: this tells us each of these functions define, in a neighbourhood of
each point (tg,tc) satisfying them, tg as decreasing function of t¢. Now, all candidate equilibiurm points
IIN¥ are such that both these functions cross on the (tg,tc) plane: if we can prove that they cross only

once, we can be sure of uniqueness of IIV¥. Since we have (at the points satisfying both F; and Fy) that

NE NFE
ot ot

NFE NFE
O™ py O™ py

<0
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at any such point, it has to be the case that the t3%(¢¢) from the first function crosses that from the second
one only from above, at any equilibirum point. Since both functions are continuous, it has to be the case
that the crossing is unique and, therefore, the couple IIV¥ has to be unique.

—END OF PROOF

Let us continue assuming that, in the equilirium the CW for ¢ coincides with ¢,(#, H). Now, equilibrium

conditions describing IIVF are

aQ
dQ, Q+tcy dQ
—a(M\1 + T2 I T N A
q(P)[1+ deH \ + R 0
R dQ dQ
—q(A)[1+To—=2] 4+ tp—= =
q(P)[1+ deH R +Q =0

Let us focus on the limit case in which A — 0. In that case, the first equation gives

Q= —tc%

which we can plug into the second equation and rewrite it as

d
— g(ms )1+ TQd%

d
tp —tc) — =
(tr C)dp

now, the right hand side of this expression is positive. Therefore, at equilibrium, when A — 0, we must have
tc > tg. Since, if tg coincides with t5,(7, H), it is increasing and ¢¢ decreasing in A (—proof on paper—),
a value A such that tY¥ = tN  given the above findings, must be unique, as long as it exists. The relation
describing A can be found using the above expressions and imposing the condition t¢ = tg = t/2. This

leads, isolating A, to the following expression

S

p+T
p+ 3T

At equilibrium, the right hand side is a function of X itself (7" depends ultimately on p, and p is a function

of \). However, the function z(\) = A —

S

( ;I:}j;“) is strictly increasing in A (this requires using the fact

e A [ 2T—2pTo 42
that, at equilibrium, g—f = %j—f\ < 0, which is proved below). We have z'(\) =1— £ (M) %\ > 0.
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Therefore, there can be at most one value of A satisfying the above expression. It may be possible that this
value is out of the interval (0,1): in that case, we will have either A =0or A =1 as corner solutions.

Now, we know that the equilibrim ¢ has to lie in the interval [t} (7, C'), t} (7, H)]. Then we can conclude
that if A\ < A, surely tc > tg: if the CW coincided with any other value among [t} (7, C), t5(#, H)], we
would have an even lower tr and a higher t¢, so t¢ > tg would hold a fortiori'8,

Finally, when A > X, then tp > t¢ if the CW coincides with t; (7, H). By continuity, the inequality will
hold also if the CW coincides with the most preferred values of ¢tr for individuals living in the hinterland
whose preferences are sufficiently close (but stronger) to 7. However, we cannot be sure that this will always
be the case: the CW may coincide with the most preferred choice of ¢t for individuals, living either in the
city or in the hinterland, whose attitudes are sufficiently strong against it to determine a reversal of the
inequality (this would be, for example, the case if the CW coincided with t};(#, C')). Therefore, A > Nis a

necessary, not sufficient, condition, to have tgp > t¢ in equilibrium.

Proof of Proposition 4

First of all, we need to establish that, assuming ¢z coincides with t},(#, H), the equilibrium policy would

be such that ¢ is strictly decreasing with # and A. The conditions defining the equilibrium in this case are

aQ
@]_’_m_'_t @
dp ) Bap

d d
()1t TQd% +tRCT§

—q(M[1+Tq =0

+Q=0

next, substituting —Q = —q(#)[1 + T %] + tR% from equation 2 into 1 and multiplying both sides of the

resulting expression by A, and then adding it to 2 we obtain an expression that can replace equation 1 to

'8Notice that for any other CW in [t (#,C),t5(#, H)], we do not draw any conclusion of the unicity of the equilibrium:
what is important for us is that, in any event, the (possibly multiple) equilibria will be such that t%E < tR(#, H) and lie on
the part of the best response function t2%(tz) that involves t¢ > tBE(t5 (7, H))
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obtain the following equivalent system

—q(F)[1 +TQ%] + (tc +t3)% +2-NQ  =Fhltstc,,A) =0
—q(M)[1+ TQ%] + tR% +Q = Fx(tp,tc,7,A) =0

Importantly, the first expression contains only terms that are functions only the total charge ¢, not of its
components. Since it must, however, always hold at the equilibrium policy vector, we can use the implicit

function theorem to obtain that

oF,

ot _ i
r T OF
or ot

both numerator and denominator are negative: therefore the whole derivative also is. We can repeat the
reasoning using A as the independent variable, instead of 7, and obtain similar results.

Next, we prove that there exists a unique value r* = (1 + M) such that if # = r*, then,
QRdp

assuming that ¢t coincides with ¢ (7, M), tN¥ = tF"B. Take condition F1 and add and substract the

following

dQ
T, 2%
QTq a0

the equality we obtain implies (using the explicit formula for Q) that

AN d d
Gy eI oG 20 - ToQ) G S0 - Toq) 20
now since
h(t) =t —ToQ

is a strictly increasing function of ¢, then it has to be the case that it is equal to zero if and only if t = T Q.

In other words, we have

_FB o (2= M)F —7] [QFF — q(7)FP] To %2

! (» + T(QFF))
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which translates in the condition on parameters

fer1y 1A
1+ TG (07 )

Now, combining this result with g;f, < 0, we have that

p

AV

FB . < - 1-A
pter=r|{l1+ P
> ( 1+ T @ (pFB)
Since t};(#, H) is an upper bound on the set of condorcet winners on ¢z and since, as proven for Lemma 4

BR
otB

-1 <% <o

we have the first part of the claim: as long a r is large enough, then the equilibrium ¢ lies certainly below
the First Best one, since, even if tr were not to coincide with t%(#, M), it would be strictly lower than in
the equilibrium obtained. But since the reaction function for th(tR) has the properties derived above,
the sum of the two charges cannot be higher and capacity cannot be lower than those obtained under the

assumption.
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Figure 4:



