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Abstract 

 
Long-term memory effect in stock prices might be captured, if any, with alternative models. Though 

Geweke and Porter-Hudak (1983) test model the long memory with the OLS estimator, a new 

approach based on wavelets analysis provide WOLS estimator for the memory effect. This article 

examines the long-term memory of the Istanbul Stock Index with the Daubechies-20, Daubechies-12, 

the Daubechies-4 and the Haar wavelets and compares the results of the WOLS estimators with that of 

OLS estimator based on the Geweke and Porter-Hudak test. While the results of the GPH test imply 

that the stock returns are memoryless, fractional integration parameters based on the Daubechies 

wavelets display that there is an explicit long-memory effect in the stock returns. The research results 

have both methodological and practical crucial conclusions. On the theoretical side, the wavelet based 

OLS estimator is superior in modeling the behaviours of the stock returns in emerging markets where 

nonlinearities and high volatility exist due to their chaotic natures. For practical aims, on the other 

hand, the results show that the Istanbul Stock Exchange is not in the weak-form efficient because the 

prices have memories that are not reflected in the prices, yet.  
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1. Motivation 

 

This article aims to test the long-term partial stationary memory effect in stock prices by 

wavelet analysis. Finding out the long-term memory parameter in accordance with timescales 

might be useful for the emerging markets in which high volatility, financial turbulences and 

chaotic behaviours are observed. By using wavelets in detecting long-term memory effect 

provides information on memories of the stocks in case f shocks.       

 

Timescaling capital asset pricing model and variance as a risk measure provide an alternative 

approach for the portfolio theory by giving information on change of risk amount in 

accordance with hold period and frequency.     

The empirical evidence on time-varying systematic risk supports the arguments that the 

systematic risk might change on frequency. On the other hand, scale based long-term memory 



or partial stability give financial information that the shock effects might be maintained in 

long-term and the current prices might depend on the historical price patterns.  

 

Long-term memory indicates the correlation structure of a series at long lags. If a series shows 

long-term memory, (or the biased random walk), there is persistent temporal dependence even 

between distant observations. Those time series are characterized by distinct but non-periodic 

cyclical patterns (Barkoulas and Balum, 2000).   

 

Maheswaran (1990) underlies that the presence of long-term memory in stock returns has 

important implications for many of the paradigms in financial economics. For example, 

optimal consumption /savings and portfolio decisions might become extremely sensitive to 

the investment period if the returns were long-range dependent. There might be also 

fundamental problems in the pricing of derivatives with martingale methods, since the 

continuous time stochastic processes most commonly employed are inconsistent with long-

term memory.  

 

The presence of long-term memory volatility in stock returns has important implications for 

pricing contingent claims in emerging markets. High volatility in the capital markets of 

Turkey as similar to other emerging equity markets creates non-linear behaviours in the stock 

returns, which might have long-term effect in their time series. Though the markets are 

expected to be efficient in terms of information flow, the chaotic climate in the emerging 

stock markets might block the investors to reflect their expectations on the their portfolio 

decisions or create a long-term effect in the markets especially in case of negative shocks. The 

negative shocks lead capital markets to affect long-term risk appetite reflected in the stock 

prices.  
 

The importance of the test results in terms of financial theory, on the other hand, comes from 

the fact that existence of long-term memory effect in the stock returns implies that the market 

is not weak form efficient. According to LeRoy (1989), the CAPM and the APT are not valid 

in the current financial markets because the usual forms of statistical inference do not apply to 

time series exhibiting such persistence; and tests of efficient markets hypotheses also hang 

precariously on the presence of long-term memory in the returns. Therefore, this research 

should also be considered as the examination of the weak-form efficiency in the Istanbul 

Stock Exchange-30 Index and 100 Index.  

 

As much as we know, this article includes the first empirical research on the long-term 

memory effect in the share prices at the Turkish capital markets. The long-term memory 

effect in the Istanbul Stock Exchange-30 Index, and randomly selected ten companies within 

the ISE-30 Index since 02.01.2002 are examined by using alternative tests, namely Geweke 

and Porter-Hudak (1983) tests, Hurst Exponent test and wavelet tests (Jensen, 1999; and 

Tkacz, 2001).  

 

The paper is organized as follow. In the next part, a recent literature on the long-term memory 

effect in the stock prices and application of wavelets theory in financial time series are 

reviewed. The methodologies of Geweke and Porter-Hudak (1983) tests, Hurst Exponent test 

and wavelet test (Jensen, 1999; and Tkacz, 2001) are presented in a cointegrated perspective 

in the third part. After discussing the empirical results in terms of both methodological and 

empirical points of view in the fourth part, the paper ends with some methodological 

suggestions for the future research on the modeling long-term memory in the financial assets.    

 



2. Literature Review 

 

Wavelet based integration and causality analysis are applied to the finance and economics by 

Jensen (1999, 2000), Jensen and Whitcher (2000) and Whitcher and Jensen (2000) who use 

the initial works of Wornell and Oppenheim (1992), Tevfik and Kim (1992), McCoy and 

Walden (1996). Percival and Walden (2000), Tkacz (2001), Gencay, Selcuk and Whitcher 

(2002) and Vourenmaa (2005) show that wavelet based long-term memory effect model 

performs better than Geweke and Porter-Hudak (1983) and fractional integration and causality 

tests. Jin, Elder and Koo (2006) show that wavelet based models solve the abnormal results of 

the alternative models dealing with long-term memory in the stock prices.  

 

Sowell (1992) suggests an exact maximum-likelihood estimator for long-memory models 

possessing both short and long-memory parameters, namely the autoregressive, fractionally 

integrated, moving-average model. However, the assumption of a constant long-memory in 

the returns might not be reliable in all case. Though Bayraktar et al (2003) argue a solution for 

the time-varying long-memory by segmenting the data before its prediction, the solution is not 

always sufficient in that Whitcher and Jensen (2000) argue that the capacity of estimating 

local behavior by applying a partitioning model to a broad estimating process is not enough 

when compared with an estimator constructed to model time-varying characteristics. For that 

reason, in this paper, we use the MODWT-based methodology to estimate long-memory 

effect.  

 

Wavelets employ Fourier analysis to decompose the variance of time series on different 

frequencies. The scales contributing the most to the variance of the series are related to those 

coefficients with the largest variance. Devore, Jawerth, and Popov (1992) state that the 

capacity of wavelet to localize the time series in multi-scale space causes the computational 

efficiency of the wavelet representation of an N £ N matrix operator by allowing the N largest 

elements of the wavelet-represented operator to represent the matrix operator. This feature 

enables dense matrices to have sparse representation when transformed by wavelets. 

 

Empirical evidences show that though the GPH-estimator based on the ordinary least squares 

regression of the log-periodogram for frequencies close to zero is consistent under Gaussian 

distribution, the normality assumption in the distributions are not realistic with financial data 

which have generally abnormally distributed volatility. In that framework, Jensen (1999) 

shows that a wavelet based OLS-estimator is consistent with the real financial dynamics, 

when the sample variance of the wavelet coefficients is used in the regression. 

 

The wavelets methodology is theoretically well-examined in the works by Schleicher (2002) 

and Crowley (2005). Usage of wavelets analysis in statistical time series can be followed on 

Nason and Von-Sachs (1999). Mathematical concerns on the wavelets are discussed within 

the work of Hardle et al (1998).  

 

In this paper, the predictive performance of wavelets is compared to those of the alternatives, 

namely GPH and Hurst Exponent test for capturing long-term memory in the stock returns at 

the Turkish capital markets. In that context, the article contributes the literature comparative 

empirical evidence.  

 

 

 

 



3. GPH Test For OLS Estimator vs. Wavelet Based OLS Estimator  

 

In the methodology part, we discuss the wavelet based OLS estimation and GPH test for 

detecting the long-term memory effect in the financial time series. Jensen (1999) argues that 

the wavelets are superior in estimation because of their strength to simultaneously localize a 

process in time and scale. Wavelets are based on Fourier analysis where any covariance-

stationary process xt is expressed as a linear combination of sine and cosine functions in the 

frequency domain. However, since few financial time series show smooth rhythmic cycles 

suggested by sine and cosine functions, an alternative transformation model, namely wavelet 

transforms where function f(x) on [0,1] interval is expressed in the wavelet domain as  
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On the formula cited from Tkacz (2001), Ψ(x) is mother wavelet, as the mother to all dilations 

and translations of Ψ in above equation. A mother wavelet can be shown as (Tkacz, 2001) 

 

 

             1, if 0 ≤ x < ½ 

Ψ(x) =  1, if  ½ x < 1                                                                                                             (2) ≤
  0, otherwise 

 

 

The functions of Ψjk(x) = Ψ (2
j
x-k) for j 0 and 0 ≥ ≤ k < 2

j
 are orthogonal, and they create a 

basis in the space of all square-integrable functions L2 along the [0,1] interval.  j is the dilation 

index compressing the function Ψ(x), and k is the translation index shifting the function Ψ(x). 

Any such basis in L2(R) is a wavelet, and the Equation 2 is the Haar wavelet (Tkacz, 2001). 

 

Among several wavelets models in the literature we use Daubechies model (1988), which has 

supported wavelets whereby each wavelet represents different degrees of smoothing of the 

step function, namely the Equation 2. By following Tkacz (2001), we use different 

Daubechies and the Haar wavelets to verify the robustness of the results to different degrees 

of smoothing. The Daubechies-20 wavelet is used as the smoothest wavelet, followed by the 

Daubechies-12 and the Daubechies-4, with the Haar wavelet being the least smooth.  

 

To test the long-term memory effect with wavelet based OLS estimator, we use Jensen (1999) 

and Tkacz (2001) technique. The matlab codes used by Tkacz (2001) are restructured for the 

empirical analysis. The WOLS estimator can be formulized as follow: 

 

Let define xt as a random process, 

 

(1-L)
d
xt = et                                                                                                                                                                                              (3) 

 

where L is the lag operator, et is i.i.d. normal with zero mean and constant variance σ2
, and d 

is a differencing parameter. The wavelet OLS estimator of d comes from the smooth decay of 

long-memory processes. When d=0, the random process xt equals to et and therefore, xt ~ 

(N(0, σ2
), or xt ~ I(0). On the other hand, when d=1, xt follows a unit root process with a zero 

mean and infinite variance (Tkacz, 2001).   

 



If d is noninteger, the random xt process becomes fractionally integrated, namely ARFIMA 

process as shown on the Equation 3. Hosking (1981) shows that when 0<d<½ the 

autocovariance function of the random process declines hyperbolically to zero as a long-

memory process. When ½ d<1, the random process takes an infinite variance but still 

reverts to its trend in the very long run (Tkacz, 2001). On the Table 1, the features of the 

fractional integration parameter (d) are summarized.  

≤

 

Table 1: Memory Features With Respect to the Fractional Integration Parameter Values 

D Variance Shock Duration Stationarity 

d =0 Finite Short Memory Stationary 

0< d <0.5 Finite Long Memory Stationary 

0.5≤  d <1 Infinite Long Memory -Finite Impact-

Reflect 

Nonstationary  

d=1 Infinite Finite-Not Revert to Its Mean Nonstationary 

d >1 Infinite Finite-Not Revert to Its Mean Nonstationary 

 

Source: Tkacz, G. (2001), Estimating the Fractional Order of Integration of Interest Rates Using a Wavelet OLS 

Estimator, Studies in Nonlinear Dynamics & Econometrics, 5(1): pp. 23.  

  

Tevfik and Kim (1992), McCoy and Walden (1996), Jensen (1999) and Tkacz (2001) 

empirically show that for an I(d) process xt with /d/< ½ , the autocovariance function shows 

that the wavelet coefficients cjk in Equation 1 are distributed as N (0; σ2
 2

-2jd
). By taking 

logarithms, an estimate of d can be reached using ordinary least squares from  

 

ln R( j) =  ln σ2 
– dln2

2j                                                                                                                                                                  
 (4) 

 

where R j denotes the wavelet coefficient’s variance at scale j (Tkacz, 2001). In that 

framework, Tkacz (2001) states that the wavelets are used only in the estimation of the d 

consistent with the observed autocovariance function. What’s more, the number of 

observations for the random process should be a factor of two due to the form of the wavelet 

expansion 1.  

 

To detect the long-term memory effect in stock returns, Geweke and Porter-Hudak (1983) 

test, Hurst Exponent test and wavelets are used. Long-memory was firstly developed by Hurst 

(1951) and adopted into the econometrics by Granger and Joyeux (1980) and Geweke and 

Porter-Budak (1983).  

 

The GPH test starts with the spectral density function of xi (Kasman, Kirbas and Turgutlu, 

2005): 
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)(λuf , is the spectral density function of  at iu λ  frequency. After taking logarithmics and 

including )( jI λ , at  j ordination, the Equation 5 is reached (Chambers ve Cifter, 2006).   
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When jλ  has low frequency, { })0(/)( uju ffIn λ  becomes inefficient. GPH regression can be 

formulated as 

 

[ ] [ ] jjj uInIIn ++= )2/(sin4)( 2

10 λββλ                       (7) 

 

The constant term, 0β , is ( { }πσ 2/)0(2

ufIn ), 1β =-d, =ju { })(/)( jj fIIn λλ χ  as the error term.  
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ix = [ ])2/(sin4 2

jIn λ .  In the GPH test, if ,  provides statistically acceptable and 

asymptotic normality. 
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4. Data  

 

The data is obtained from 10 common stocks namely AKBNK, AEFES, AKGRT, ARCLK, 

EREGL, KCHOL, KRDMD, TCELL, TUPRS and YKBNK, all of which are included in ISE-

30 index. These shares have been selected randomly and they represent 33% sample rate 

(10/30). Further, ISE 100 index has also been considered as an analysis subject. In this sense, 

the empirical study provides a wide range comprising ISE 30 and ISE 100 indexes along with 

the randomly selected shares from ISE 30. The volatility of the returns of the selected stocks 

depending on the size, systematic risk and long-term memory parameter are determined by 

using wavelet analysis. The statistical features of the selected stocks are available in Table 2. 

All stocks can be accepted in normal distribution according to Jarque-Bera normality test, and 

their depressiveness and distortion features are different from those of each other’s. 

 

Table 2: Descriptive Statistics  

 

Index/Equity 

 

Min. 

 

Maks. 

 

Std.Dev. 

 

Skewness 

 

Kurtosis 

Jarque-

Bera 

AKBNK 14786 135103 29218.5 1.08972 3.49509 221.864 

AEFES 93607 497321 97053.8 0.975298 2.94809 169.117 

AKGRT 14680 145396 26896.7 1.64071 5.84979 838.987 

ARCLK 21185 130137 23953.9 0.371356 2.7581 27.1002 

EREGL 12199 97200 24496.7 0.708779 2.30727 110.568 

KCHOL 25991 82246 13387.7 0.307466 2.16677 47.6328 

KRDMD 0.0299 0.7452 0.225812 0.352008 1.44914 128.845 

TCELL 16126 102214 23572.3 0.534852 1.84816 109.754 

TUPRS 44665 303477 66169 1.05593 2.81388 199.636 

YKBNK 10195 79864 17992.2 0.394087 2.1502 59.6686 

ISE100 8627.42 47728.5 10039.8 1.01437 3.1919 184.445 

ISE 30 10880.5 60772.1 12882.6 0.978913 3.11851 170.877 

 

In the determination of both volatility and the long-term memory effect parameters, first level 

logarithmic differences of series are considered. Taking logarithmic differences in data 

analysis of high frequency daily data is widely used in the literature. The firs level logarithmic 

differences of all series have been taken. 



In the Table 3, the stability values of the stocks are given according to Lo's RS test, KPSS 

test, P-P test, Augmented Dickey Fuller test and Robinson D test. All series are stable to 

logarithmic difference. 

 

Table 3: Unit Root Test  

Index/Equity Lo's RS 

test of I(0) 

KPSS test 

of I(0) 

P-P test 

of I(1) 

Aug. 

D-F test of I(1) 

 

Robinson's d

AKBNK 6.00128 

{<0.005} 

20.0126 

{<0.01} 

0.638136 

{<1} 

0.504895 

{<0.99} 

0.49484 

AEFES 6.44612 

{<0.005} 

20.456 

{<0.01} 

0.389534 

{<0.99} 

0.563084 

{<0.99} 

0.4957 

AKGRT 

 

5.69271 

{<0.005} 

17.512 

{<0.01} 

-1.44333 

{<0.9} 

-1.46362 

{<0.9} 

0.496279 

ARCLK 

 

6.41797 

{<0.005} 

20.4979 

{<0.01} 

-0.218052 

{<0.95} 

-0.393636 

{<0.95} 

0.493426 

EREGL 

 

6.5642 

{<0.005} 

21.6616 

{<0.01} 

-0.000165 

{<0.975} 

-0.0483108 

{<0.975} 

0.496771 

KCHOL 

 

6.48821 

{<0.005} 

18.6793 

{<0.01} 

-0.686503 

{<0.9} 

-0.838449 

{<0.9} 

0.493957 

KRDMD 

 

7.21092 

{<0.005} 

20.7315 

{<0.01} 

0.0472024{

<0.975} 

0.0981312 

{<0.975} 

0.496121 

TCELL 

 

6.84462 

{<0.005} 

21.8022 

{<0.01} 

-0.096907 

{<0.95} 

-0.0878089 

{<0.95} 

0.49652 

TUPRS 

 

6.37948 

{<0.005} 

19.7428 

{<0.01} 

1.52696 

{<1} 

1.60709 

{<1} 

0.495828 

YKBNK 

 

6.36436 

{<0.005} 

16.8746 

{<0.01} 

0.231628 

{<0.99} 

0.0857086 

{<0.975} 

0.497552 

ISE100 

 

5.2.619 

{<0.005} 

20.2774 

{<0.01} 

1.57173 

{<1} 

1.63275 

{<1} 

0.496025 

ISE30 

 

5.2.6284 

{<0.005} 

20.3486 

{<0.01} 

1.35768 

{<1} 

1.39816 

{<1} 

0.496063 

 

5. Empirical Evidence 

 

In Table 4, there are stability test results according to Geweke and Porter-Hudak method. The 

long-term memory parameter (d) changes between 0.98138 and 1.08555. The series are not 

stable and the shock period is infinite (non-returnable in the average of series), since the long 

term memory parameter is closing to 1, in the long-term. Owing to the long-term memory 

parameters of KCHOL and KRDMD are smaller than 1, these series are not stable and have 

long term memory. According to GPH method, it is evidenced that the stocks other than 

KCHOL and KRDMD are not stable, and no-returning is available in the averages of the 

series. 

 

Table 4 : Fractional Integration Parameters With Geweke/Porter-Hudak Method * 

Index/Equity d T(d) Bias Test: ChiSq(1) 

AKBNK 1.07727     14.583 0.273943 {0.601} 

AEFES 1.06873 14.468 0.443364 {0.506} 

AKGRT 1.08555     14.695 0.00479251 {0.945} 

ARCLK 1.01197     13.699 0.351684 {0.553} 

EREGL 1.07203 14.512 0.500397 {0.479} 

KCHOL 0.98672 13.357 1.24923 {0.264} 



KRDMD 0.98138 13.285 0.327224 {0.567} 

TCELL 1.0949 14.822 0.334297 {0.563} 

TUPRS 1.01841 13.787 1.17552 {0.278} 

YKBNK 1.08551 14.695 2.52501 {0.112} 

ISE 100 1.06538 14.422 0.162058 {0.687} 

ISE 30 1.07107 14.499 0.150576 {0.698} 

* Bandwidth = 90 (= T^0.65) 

 

All series are not stable and shock period is infinite according to Fractal Dimension – Hurst 

Exponent. In other words, the series do not return to their averages. In case of taking the 

difference of the series, all series are stable and the shock period is permanent (Table 5). 

 

Table 5 : Fractal Dimension – Hurst Exponent  

 Series Difference Series  

 

Index/Equity 

H Standart 

Dev. (H) 

 

R
2

H Standart 

Dev. (H) 

 

R
2

AKBNK 1.0216 0.002054 0.9948 0.8141 0.006859 0.9915 

AEFES 1.0137 0.001837 0.9995 0.8055 0.006702 0.9916 

AKGRT 1.0249 0.001866 0.9995 0.8081 0.006830 0.9911 

ARCLK 1.0230 0.002052 0.9995 0.8118 0.006781 0.9913 

EREGL 1.0208 0.002164 0.9994 0.8113 0.005877 0.9936 

KCHOL 1.0271 0.001817 0.9996 0.8246 0.006629 0.9921 

KRDMD 1.0078 0.001994 0.9994 0.7706 0.006956 0.9904 

TCELL 1.0163 0.001578 0.9996 0.8217 0.006401 0.9925 

TUPRS 1.0093 0.002565 0.9991 0.7923 0.006644 0.9917 

YKBNK 1.0310 0.002317 0.9993 0.8118 0.003744 0.9970 

ISE 100 1.0190 0.001391 0.9997 0.7590 0.005861 0.9928 

ISE 30 1.0144 0.001236 0.9998 0.7563 0.005890 0.9927 

* Bandwidth = 90 (= T^0.65) 

 

The partial stability test results of 10 stocks from ISE-30 according to Daubechies-4, 

Daubechies-20 and Daubechies-20 wavelet are available in the table 3.16. 

 

Table 6: Fractional Integration With Wavelets  

Index/Equity Haar Daubechies-4 Daubechies-12 Daubechies-20 

AKBNK 1.0792 

(0.0297) 

0.9433 

(0.0134) 

0.9575 

(0.0204) 

0.9453 

(0.0196) 

AEFES 1.0358 

(0.0415) 

0.9401 

(0.0204) 

0.9518 

(0.0199) 

0.9421 

(0.0226) 

AKGRT 

 

1.0870 

(0.0337) 

0.9348 

(0.0195) 

0.9490 

(0.0259) 

0.9361 

(0.0267) 

ARCLK 

 

1.0011 

(0.0245) 

0.8923 

(0.0260) 

0.9084 

(0.0295) 

0.8994 

(0.0226) 

EREGL 

 

1.0721       

(0.0177) 

0.9834 

(0.0129) 

0.9945 

(0.0203)  

0.9801 

(0.0247) 

KCHOL 

 

0.9397 

(0.0413) 

0.9157 

(0.0241) 

0.9276 

(0.0261) 

0.9170 

(0.0254) 

KRDMD 

 

0.9776 

(0.0809) 

0.9722 

(0.0121) 

0.9850 

(0.0157) 

0.9612 

(0.0279) 



TCELL 

 

1.0316 

(0.0372) 

0.9726 

(0.0119) 

0.9825 

(0.0200) 

0.9570 

(0.0368) 

TUPRS 

 

1.0548 

(0.0368) 

0.9414 

(0.0125) 

0.9458 

(0.0180) 

0.9312 

(0.0203) 

YKBNK 

 

1.0125 

(0.0372) 

0.9543 

(0.0541) 

0.9682 

(0.0382) 

0.9548 

(0.0349) 

ISE 100 

 

1.1104 

(0.0279) 

0.9544 

(0.0102) 

0.9678 

(0.0196) 

0.9531 

(0.0237) 

ISE 30 

 

1.1002       

(0.0274) 

0.9561       

(0.0097) 

0.9691 

(0.0186) 

0.9540       

(0.0232) 

Note: The values in the paranthesis are standart deviation. 

 

The findings found by using Harr wavelet are in parallel with GPH method. By performing 

Daubechies 4, 12 and 20 days wavelet analysis, it is found that all series can return to their 

averages where as they are not stable completely (0.5≤  d <1), and series has finite impact-

response weight. Parameter d’s being within the range of 0,89-0,98 and closing of the 

memory parameter in the long-run show that prediction models based on past period volatility 

can be effective in the long run for the stocks included in ISE 30. 

 

6. Concluding Remarks 

 

Detecting long-term memory effect in stock prices has fundamental results for both 

methodological concerns and portfolio management. Efficient market hypothesis states that 

the information comes into the markets is reflected in the prices immediately, thus the 

historical time series does not present any clues for the future prices. In other words, the 

markets are memoryless.  

 

On the other hand, interdisciplinary applications in the literature give opportunity to construct 

the advanced methodological models for the financial economics. In this paper, wavelets used 

in the quantum physics are applied for the fractional integration parameter detecting the long-

term memory in the stock returns. Due to relatively high volatility and turbulences in the 

emerging capital markets, wavelets are proper to use in detecting long-term behaviours in the 

returns by filtering short-term biased movements arising from the asymmetric information 

flows.        

  

This paper comparatively examines the alternative methods to model the long-term memory 

effect in the stock returns. The empirical findings show that methodological concerns create 

crucial differences, which might affect the decisions of the investors. While the results of 

OLS estimators based on the GPH tests imply that the markets are in the weak-form 

efficiency, the wavelets based OLS estimators display the fact that the prices have memory 

stating that analyzing the time series might be still effective in estimating the future 

behaviours in the returns.    

 

In the long-term memory analysis, despite the long term parameter of GPH and Hust Test is in 

the level of 1. The d is calculated within the range of 0.89-0,98 according to Daubechies 4,12 

and 20-day wavelets. The closing of long-term memory parameter in the long run suggest that 

prediction models base on the past period volatility can be effective. 

 

Empirical evidences show that Daubechies wavelet analysis providing the accurate 

determination for the long-term memory in the selection of volatility model also can increase 



the prediction performance. As a result of the study, it is concluded that wavelet method can 

be applied to develop strategy in the different frequencies (scales) in finance engineering and 

portfolio management.  
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